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ABSTRACT

In this paper, stability results of main concern for
control theory are given for finite-dimensional linear
fractional differential systems. For fractional differ-
ential systems in state-space form, both internal and
external stabilities are investigated. For fractional
differential systems in polynomial representation, ex-
ternal stability is thoroughly examined. Our main
qualitative result is that stabilities are guaranteed iff
the roots of some polynomial lie outside the closed
angular sector |arg(c)| < an/2, thus generalizing in
a stupendous way the well-known results for the in-
teger case a = 1.

1. INTRODUCTION

Fractional differential systems have proved to be use-
ful in control processing for the last two decades (see
[21, 22]).

The notion of fractional derivative dates back two
centuries; some references that have now become clas-
sical were written two decades ago (see [20, 25]). Sev-
eral authors published reference books on the subject
very recently: see [26] for a thorough mathematical
study, and [17] for a treatment of linear fractional
differential equations which slightly differs from ours
in so far as the link between algebraic tools and an-
alytic properties is not being made so clear: in our
approach, only sequential fractional differential equa-
tions are considered, for it is the only way to justify
the use of linear algebra properly (see [9, 13, 10]).

The question of stability is of main interest in con-
trol theory; it has been addressed in [2, 23, 19]: the
conclusion is that no poles of the generalized non-
integer system must lie in the closed right-half plane
of the Laplace plane. For the particular class of frac-
tional differential systems with integer powers of one
fractional order of derivation, this question has been
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reconsidered and solved in [9, 13]: in this paper, we
aim at focusing on this very technical point, and give
the most general results on the subject (refined esti-
mates of the aymptotic behaviour of the eigenfunc-
tions in the case of multiple poles have recently been
given in [11]).

From a theoretical point of view, questions of con-
trollability and observability of finite-dimensional lin-
ear fractional differential systems are also interesting;
they have recently been addressed in [16] (see also ref-
erences therein).

This paper deals with stability properties of linear
fractional differential systems, given either in state-
space form or in polynomial representation.

The paper is organized as follows: in section 2,
we first recall recent results in the theory of frac-
tional differential systems and introduce some nota-
tions and definitions used throughout the paper; in
section 3, we then define the problem of internal sta-
bility for state-space representations, and state theo-
rem 2, which gives an algebraic solution to the inter-
nal stability problem, together with refined analytical
estimates for the convergence rate (in the stable case);
in section 4, we finally introduce the problem of exter-
nal stability, and state theorem 4 for systems in state-
space representation and theorem 5 for systems in
polynomial form, which both give algebraic solutions
to the external stability problem, and refined ana-
lytical estimates for the decay rate of the impulse re-
sponse, which proves to belong to L! (R* RP™) when
stable.

2. PRELIMINARIES ON FRACTIONAL
DIFFERENTIAL SYSTEMS

We now recall the main definitions and results con-
cerning fractional derivative operators in subsec-
tion 2.1, and concerning their eigenfunctions in sub-
section 2.2. We also introduce the state-space form
and polynomial representation of linear fractional dif-
ferential systems in subsection 2.3 and subsection 2.4
respectively.
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For more details, the reader can refer to [9, Ap-
pendix A], [13, 11], [7, chapter 1, section 5.5] and
[26, chapter 2, section 8].

2.1.1. Fractional integrals

Notation. We define Y,,, the convolution kernel of or-
der « for fractional integrals:

1

)

where T' is the well-known Euler Gamma function.
The Laplace transform of Yy, is: L[Y,](s) = s™* for
Re(s) > 0; we have the important convolution prop-
erty Y, « Yg for a > 0 and 8 > 0.

ta
for a>0, Y,(t)2 F-Z € Li,.(RY)

With this notation, the fractional integral of order
a of a continuous, even L{ (R*), causal function f
is:

I“fR2Y, xf

2.1.2. Fractional derivatives in the sense of dis-
tributions

Notation. We define Y_,, the causal distribution
— or generalized function in the sense of Schwartz
(see [27, chapters II & III] and [7, chapter 1, sec-
tion 3.2]) — as the unique convolutive inverse of Yy,
in the convolution algebra D!, (R); with the use of § —
the Dirac distribution — which is the neutral element
of convolution, this reads:

Y+a *Y_a =4

The Laplace transform of Y_, is: L[Y_,](s) = s* for
Re(s) > 0; we then have the important convolution
property Y, % Y3 for any real numbers o, 3: the lat-
ter property ensures that derivation in the sense of

causal distributions is sequential in the sense of [17,
section VI.4].

With this notation, the fractional derivative of or-
der a of a continuous causal function f is:

DYf2Y_ xf

2.1.3. Smooth fractional derivatives

In order to make this definition tractable from an
analytic point of view, it proves useful to define a
smooth fractional derivation operator for continuous
[, with f/ € Ll (R*);for0 < a < 1:

t
doF & Dof - f(04)Y_, = / Vicalt = )7 (r) dr
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exactly the same as the one between derivation in the
sense of distributions (D!) and classical derivation

(d'); namely, D'f = d'f + f(0%)§

Remark 2.2. Care must be taken that, contrarily to
D%, d* does not intrinsically possess the sequential-
ity property: it really depends on the function under
study! Hence, we will work with one basic smooth
operator d* and its successive compositions (d*)®’ to
ensure the sequentiality property (think, for example,
that usual derivative of the second order is nothing
but derivative applied twice to the function).

2.2. Eigenfunctions of the fractional deriva-
tive operators

Let us now define the eigenfunctions of the previous
operators D and d® (see [9, Appendix B], [13, 24, 18]
for more details, and especially [11], where an exten-
sive study of these special functions is made, and ex-
isting links with generalized Mittag-Leffler functions
and their derivatives are examined).

2.2.1. for fractional derwatives in the sense of
distributions

Notation. We define £,(A,t) as the fundamental so-
lution of the operator D* — A, the Laplace transform
of which is (s — A)~! for Re(s) > ay.
It follows that:
D*Ey (A1) = A€ (M t) + 0

But in the case of multiple root, we need to define
the j-th convolution of £4(A,t), namely:

Definition 1. For integer j, we define £ (), t) as
the fundamental solution of the operator (D% — X)*:

g\t 2 Z(Jj e M Y bh)a

— t]oz 1203 1 )‘ta)k
ITHET(( 4 k)e)

the Laplace transform of which is (s* — )™/ for

Re(s) > ax.
It follows that:
(D% = XN &9\ t) =6

Remark 2.3. With this extended definition, the pre-
vious notation becomes: &, (A, t) = EXL(\, ).
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Notation. For 0 < a < 1, we define E,(At) as the
eigenfunction of the smooth derivation operator d“
for the eigenvalue A, with initial value 1, the Laplace
transform of which is s*~1(s* — A)~! for Re(s) > an.

It follows that:
dO‘Ea(Ati) = )\Ea()\ti) with Fu(0) =1

Remark 2.4. In fact, there is a convolution link
between these two special functions, namely:

Fa(At2) = (Yi_a() % Ea(M, ) (2).

In the case of multiple root, it then proves useful
to define the analogous function of order j, namely:

Definition 2. For integer j and for 0 < o < 1, we
define EJ (A t) as:

B 2 (Visa()*E7(A ) (1)

= D I A Vig(o14kya
k=0
0 a\k
 LG=1)a =1 (At$)
= t Cci” -
+ ; ITHE T4+ (j— 1+ k)a)

the Laplace transform of which is s*~1(s® — X)~J for
Re(s) > ax.

It follows that:

(d* — X Ei(\t)=0, with j initial conditions:

@)UV B =1
t=0

@)V EL (A = 0
t=0

Eg;()\,t)|t:0 = 0

Remark 2.5. With this extended definition, the pre-
vious notation becomes: Fq(At$) = EL(A,1).

Remark 2.6. For a = 1, the two eigenfunctions are
the same causal exponential function, convoluated j

times: E{(A,t) = gfj()\,t) = exp(At) Y;(t).

2.3. Fractional differential equations: state-
space form

In the sequel, as introduced in [9, Appendix B] and
[13, 10], we will consider a system given by the follow-
ing linear state-space form with finite inner dimension
n:

d*z = Az + Bu ’ o
{d= =& a0 =m (1)

willele U s~ ¢ >~ 1, & © Ix 15 LHC COLLLOL, £ T I 15

the state, and y € R? is the observation.

Remark 2.7. The realization of an input/output lin-
ear fractional differential equation naturally leads
to a state vector z of the following form: z' =
[y d*y (d*)°?y (da)°(”_1)y]/. In the case
a = 1/q, the (1+ kq)-th component of the initial con-
dition vector g is exactly y{*)(0) for integer k, while

the other components are set equal to 0 (see [13, 10]).

2.4. Fractional differential equations: polyno-
mial representation

2.4.1. for ordinary differential systems

An ordinary input/output relation (with only integer
derivatives) can be written in a polynomial represen-
tation (see e.g. [8, chapter 6], [1, chapter 8]):

Po)¢ = Q(o)u
{ y = R(o)¢ 2)

where u € R™ is the control, £ € R™ is the par-
tial state, and y € R? is the observation; P, @, R are
polynomial matrices in the variable o of dimensions
n xn, nxm and p X n respectively; o can be seen
either as the symbol for the usual derivative d! or as
the Laplace variable s when all initial conditions are
zero.

Let us briefly recall stability results for polynomial
representation (2) (see e.g. [1, section 8.4]).

Property 1. If det(P(c)) # 0 VYo, Re(o) > 0, then
system (2) is bounded-input bounded-output.

Care must be taken that some pole—zero cancella-
tions can occur when P and @ are not left coprime
(lack of controllability), or when P and R are not
right coprime (lack of observability); then, defining
the transfer matrix H (o) of the system, and comput-
ing the irreductible form of it:

where N (o) is a polynomial matrix of dimension pxm
and d(o) is a monic polynomial of minimum degree,
we have:

Property 2. System (2) is bounded—input bounded-
output iff d(o) #0 Vo, Re(o) > 0.
2.4.2. for fractional differential systems

In a similar way, a fractional input/output relation
can be written in a polynomial representation of the
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bol for the fractional derivative d® or as s, the com-
plex function in the Laplace variable s, when all ini-
tial conditions are zero.

Remark 2.8. From now on, o and therefore represen-
tation (2) will be considered in the fractional deriva-
tive sense.

Remark 2.9. A straightforward representation (2)
can be obtained from state-space form (1) by simply
taking:

Ploc)=0lI—A, Q(c)=B, R(o)=C

We are now interested in stability properties of
fractional differential systems given either by (1) or

by (2).
3. INTERNAL STABILITY

Following [8, section 6.2] or [1, section 3.1], we pro-
pose the definition of internal stability:

Definition 3. The autonomous system (1)
d*z = Az, withz(0) = a¢
is said to be:
- stable iff Vg, 3A, ¥Vt > 0, ||z(¢)]| < A

- asymptotically stable iff lim;, 1o ||2(¢)|| =0

Theorem 1. We have the following asymptotic
equivalents for EJ (A, t) as t reaches infinity:

- for |arg(A)| < am/2,

stal(2) )

it has the structure of a polynomial of degree
j—1 int, multiplied by exp(\'/*t).

EL (A1) ~

o=A

- for|arg(A)| > an/2,

1

EI (A1) ~ T —a)

(=37t
which decays slowly towards 0.

The proof of the theorem requires some analytic
insight; we give a sketch of it in two steps:

e step 1: we compute the inverse Laplace trans-
form of s271(s* — X\)~! with a cut along R~,
in order to tackle the multiformity of the com-
plex function under study (see [4]). We are then

1€l Wiltll a4 11011 2010 1es1UUc telill O polylolillal™
exponential type when |arg())| < am, and an
integral term, namely:

LA t) = /+OO wl, \(B) e dp
0

the latter can be viewed as a continuous super-
position of purely damped exponentials (it is
therefore sometime called the aperiodic multi-
mode, see [21]).

e step 2: we then perform the asymptotic ex-
pansion of the integral term, which naturally
proves to be strongly related to the fractional
power series expansion at § = 0 of the weight
function w}, , (see e.g. [6, 5]).

The complete proof of theorem 1 is to be found in
[11] (see also references such as [3] therein).
We can now state the main result of this section:

Theorem 2. The autonomous system (1) is:

- asymptotically stable iff | arg(spec(A))| > am/2.
In this case, the components of the state decay
towards 0 like t~°.

- stable iff either it is asymptotically stable,
or those critical eigenvalues which satisfy
| arg(spec(A))| = am/2 have geometric multi-
plicity one.

The proof is straightforward. (Let us briefly re-
call, with e.g. [1, section 2.4], that geometric multi-
plicity in the minimal polynomial must not be con-
fused with algebraic multiplicity in the characteristic
polynomial).

4. EXTERNAL STABILITY

Following [8, section 6.2], [28, section 6.3] or [1, sec-
tions 7.4 & 8.4], we recall the definition of external
stability:

Definition 4. An input/ouput linear system is ex-
ternally stable or bounded—input bounded—output iff:

Vue L% (RYR™), y=hxue L™ (R, RP)

which is equivalent to: h € L1 (R RP*™).

4.1. Fractional systems in state-space form

Theorem 3. We have the following asymptotic
equivalents for £ (A1) as t reaches infinity:
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it has the structure of a polynomial of degree
j—1int, multiplied by exp(\'/*t).

- for|arg(A)| > ar/2,

@

EF (A1) ~ T(i—a)

HA
which belongs to L" ([1, +oo[, R), Vr > 1.

The proof of the theorem requires some analytic
insight; as for theorem 1, it is performed in two steps.
The complete proof of theorem 3 is to be found in [11].

Remark 4.1. Contrarily to t — EJ (X, t), the function

t — EX (A1) is not continous at the origin ¢t = 0; in

fact, the following equivalent can be easily computed:
joa—1

t+

I(ja)

which proves that it is locally integrable at the origin.

ET(N ) ~Yja(t) =

We can now state the first main result of this sec-
tion:

Theorem 4. If the triplet (A, B,C) is minimal, we
have the equivalence: system (1) is bounded-input
bounded—output iff | arg(spec(A))| > an/2.

In general, we have the equivalence: system (1)
1s bounded—input bounded—output iff the controllable
(relatively to the pair (A, B)) and observable (rela-
tively to the pair (C, A) ) modes Apin of the matriz of
dynamics A satisfy | arg(Amin)| > am/2.

When system (1) is externally stable, each com-
ponent hi; of its impulse response behaves like =1~
at infinity; thus h belongs to L' (R* RP™).

The proof is straightforward. In the general part
of the theorem, we refer to the algebraic notions of
controllability, observability and minimality for time-
invariant linear ordinary differential systems in state-
space form; see [16] for an analytic justification of the
extension of these notions to linear fractional differ-
ential systems.

4.2. Fractional systems in polynomial repre-
sentation

With the help of theorem 4, we can now state the
second main result of this section, which is the fol-
lowing necessary and sufficient condition analogous
to property 2 for polynomial representation:

Lucolclll J. 4f e Lttt (4, gy, LLV) Uy putyneo=
mial matrices is minimal, we have the equiva-
lence: system (2) is bounded-input bounded-output
iff det(P(c)) #0 Vo, |arg(o)| < an/2.

In general, we have the equivalence: system (2) is
bounded—input bounded—output iff the minimum de-
gree polynomial d(o) of the denominator of the irre-
ductible form of the transfer function H (o) satisfies
d(o) #0 Vo, larg(o)| < ar/2.

The proof is straightforward. In the general part
of the theorem, we refer to the algebraic notions of
minimality of a triplet of polynomial matrices for
time-invariant linear ordinary differential systems in
polynomial representation; see [16] for a justification
of the extension of these notions to linear fractional
differential systems.

5. CONCLUSION

In this paper, we have defined the internal and exter-
nal stability propreties of linear fractional differen-
tial systems of finite dimension, given either in state-
space form or in polynomial representation, and we
have derived the structural results from both analytic
and algebraic point of views.

The main qualitative result of this paper is that
stabilities are guaranteed iff the roots of some poly-
nomial (the eigenvalues of the matrix of dynamics or
the poles of the transfer matrix) lie outside the closed
angular sector:

thus generalizing in a stupendous way the well-known
results for the integer case a = 1.

The main quantitative result of this paper is that
stabilities are not of exponential type: in the case of
stable systems, the response to initial conditions de-
cays like t—%, whereas the impulse response decays
like 17 whatever the location of the roots out-
side the aforementionned sector — a so called long
memory behaviour typical for fractional differential
systems, which does not occur in ordinary differen-
tial systems.

Future works will first consist in designing ob-
server based controllers for linear fractional differen-
tial systems: see [15] for complete results, which were
already suggested in [13]; secondly, they will consist
in extending the stability results to abstract linear
systems of infinite dimension, as already done on a
special case in [9, 14, 12].
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