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There is doubtless a layer of Jess strongly excited gas in the
neighbourhood of the walls of any vacuum tube ; but the
fact that the observation of reversal scems to depend ona
liigh carrent density appears to imply that the existence of
this layer is not suflicient to explain the phenomena.

July 81st, 1926, ' .

LXXXVIIL On “ Relawution-Oscillations.”
By Baurm. VAN DER Por, Jun., 2.8¢.*
1. FEVWHE condition of a simple escillatory system,
possessing one degree of freedom and subjected
to a dissipative force, may be represented by the well-
kuown linear differential equation
Fpadt+ote=0, . . . . . . (1)

the solution of which 1s

a=Uhe Qsm(\/w"'—-v_i—-t-}-({)). o {2
>0

If we have also
2
oL
and 7< w?,
the solution (2) represents a damped oscillation with a
logarithmic decrement & given by
& o«

kin &

If it huppens that the “resistance” in the system is
negakive, such as may be the case in certaln  electrical
cireuits, the sign of a is reversed and (1) becowes

ok +wle=0, . . . . . (3)

the solusion of which is

af 2
w==Ce” Zsin (\/wQ_z.t+¢)_

if, again, we have a>0

3
=
and i < e’

she solution (2 a) represents an oscillation 5 bat in this case
the amplitnde is gradually increasing instead of decreasing,

# Communicated by the Author,
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and the logarithmic decrement of the Lormer case is replaced
by a logarithmic inerement & given by

2. A solution of the form (2a) is, however, plysically
unrealizable because it indicates an amplitude growing to
infinity. Thus for sciual physical systems the differential
equation (3) will only be valid for values of & up to a
certain value. To express the limitation of the amplitude
we must assume that the coefficient of the *resistunce”
term is a function of the amplitude itself, becoming positive
at the higher values. Thus we may in (3) replace a by the
expression a—3ya?, where 7 is a constant. Hence we
obtain instead of (3} :

S (amByait@ta=0. . . . . (1)
This equation has heen previously considered * in con-

nexion with the subject of triede oscitlations,
Let us now change the units of time and of 2 and write

~

wi=1',

e C ),
and e ,\/fm . {
Sy

Then (4) becomes (after dropping the accents)
. d%r o o (ZI’ _
S A= te=0. 0 L L (5)
Writing furiher

- =g

oy

and using fluxional notation we have
t—e(l—oHt+e=0. . . . . . (6)

Now in the usual cases of itriode oscillations we know
from the éxperimental data that it tukes several periods
for the amplitude to build up to the final steady value.
Expressed mathematically this means

e@l.‘,.....('?)

* Vag der Pol, Tidsch . v h. Ned., Rudio Gen. 1. 11920); Radio
Review, 1. p. 701 (1920). Appleton and van der Pol, Phil. Mag.
xliih. p. 177 (1922}, Hobb, Phil. Mag. xliii. p. 206 (1922), .
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Recognizing the condition™ (7) the equation (6) may Le
solved approximately in the following way «

Let cpe= g sin (E-+ ¢,
in which, since the logarithmic increment is small, we may
assume a to be a slowly varying function of the time, such
that

a < d.

On substifuting (8) in (6), .zmd orzn:tting small quantities

and neglecting higher hurmonics, we find that

o |
. 4
o TS

The approximate solution of (6} may therefore be written

which represents an oscillation the amplitude of which at
¢
.
first * increases with time according te the factor ¢ ¥, but
finally approaches the steady value

o ==2,

Reverting to the original variables of (4) we thns have

P 1 . o
.'L‘m/\/_:— v sin (@), . . (8)
RV e ;

There is, however, a more direct method of finding the
steady final amplitade of the oscillations for cases repre-
sented by (6).  For example, let us assume that a periodic
solution of the equation exists. Multiplying (6) throughout
by gv dt and integrating over the (unknown) peried we find
that ,

B N .

(the horizontal dashes indicating integration over the peried).
Tf now we assume v to be very nearly sinusoidal, ¢. e.

R

s =g sin
(9) gives ns at once _
a=2.
* 1. e., so long as the amplitade iz so small that in (€) the non-linear
teri e2®s may be neglected in comparizen with — e
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To find the time period of the oscillations we multiply {(6)
by v and again integrate over the (unknown) period. In
this case we find that

e ¢ £ 1)
so that, assuming again the solutien to be approximately
sinugoidal, we find from (10), that the angular frequency is
umty.

3. Up to the present we have considered (6) with
the sapplementary condition

exl, . . . . . . . (D

but it is of considerable interest, and also the main object
of this paper, to investigate the sequence of events when

exl. . . . . . .. (Ta)

It may be noted that even with the new condition (7 a)
the equation (6) has a periodic solution, since the relations
(%) and (10) are independent of the numerical value of e.
Fuarther, on physical grounds, we viay expect that there is
a periedie solution of (6) when (7a) holds, as may be seen
from the following considerasions. For small values of v,
(6) may be written approximately as

peeprv=0, . . . . . . (11)
and this hag, when (7 a) holds, an appreximate solation

:

v e 4 Uoe®.
The value of v therefore would approach infinity asym-
ptotically so that » =0 is not a stable solution. Thus, so
long as (11} is valid, we are dealing with the well-known
apeviodic case, but with negative damping. But when the
amplitude increases and »?>1, the coefficient of the second
term on the lefi-hand side of {6) becomes positive
indicating a positive resistance and therefore a reduction
in amplitude with time, Now the limiting values v=+1
are nob solations of (), se that, in general, we may expect
the solutions to be periodic, even when condition (Ta} is
Ffulfilled.  Althongh for small amplitndes the resistance has
snch a big negative value that the linear case would be highly
aperiodic, the non-linear term in (6), i. e. +*#, makes the
solution periodic. We may thus say that we are dealing
with a guasi-aperiodic solution.

4. Tt has net been found possibiéﬁbto obtaln an approxi-
mate analytical solution for (6) with the supplementing
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condition (7a), but a graphical solution may easily be
found in the following way. If we write

p= 23,
(6) may be written
dz o ki i
E'{;“‘E(l""!") +; mO, . . . > (1&}
which is a first order equation of the super-Riccatti type.
Let us draw in a 2z, v plane a series of “isoclynes,” i, e

. . L oode
curves’ connecting all points for which = 1s equal to a
\ o

cerlain quantity. An example of suck iscclynes is denoted
by

)
dz e
dv ?
where (J; is a constant so that, combining with (12), we
have as expression for an isoclyne: :

Oy—e(1—v¥) + = =0,

Several of these Isoclynes may be drawn in the 2, v plane,
and we can indicate by means of short lines, as is done in
fig. 1, the direetion the integral curve must have when it
crosses an isoclyne. (Tor example, this direction for the
isoclyne C, is given by

dz

7= 4y, etel)

From a diagram In which the inclinations of the integral .

curves are marked on the isoclynes we may easily draw the
integral eurves in the z, v plane. This is done in fig. 1 for
the value

e=01,

and it is seen that the integral curve obtained indicates the
track of a point approaching a clesed curve alfer many
complete circuits (small increment).

In the same way fig. 2 is drawn for

em=],
and fig. 3 for
eum 10,

all three figures showing a closed curve solution. In the
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Fig. 1.

-5

-2

case of fig. 3 (quasi-aperiodic case) the final steady closed
curve, represeniing the periodic solution, is practically
reached after ome revolation only. When the intermediate
integral z==7(v) has been oblained in this way it 1is easy to
construet from it in a similar fashion the integral

v=a(t}.

Some examples of such resulis are exhibited in fig. 4 and
represent the solution of (8) for the three cases -

e={1,
e=1l,

e=1{}L
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Fig.d.
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The first case (small increment) might also have been
plotted from the solution (8), and a nomerical comparison
of the two solutions shows them to be in satisfactory agree-
ment. This case represents a sintsoidal oscillation of
gradually increasing amplitude, the value of which is finally

v
[—
15 IE:JG f{ !

v Tig. 2,

10 | . U

-2

S
w
é
4
e
&

-
57 |+ + F) el
L -
N 0 L 1
; , : .. g

steady and equal to 2. The angular frequency, for the units - -
used, is unity. The second case of fig. 4, (i e e=1I) il
indicates a somewhat similar sequence of events, but here j
the final amplitude is reached in fewer oscillations, while a \ ‘
marked departure from the sinusoidal form is noticed. The :
third case (. e.e==10) is particularly interesting. Here it 15 l

is noticed that the carve first rises asymptotically and after




Fig. 4.
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P TRl only one peried practically reaches the final steady state.
/ L I . ¥ . : ¥
: f This steady state is characterized by a very marked departure
- from the sinuscidal form. It is seen that the amplitnde
e alters very slowly from the value 2 to the value 1 and then
-t . . g AT
< 5 very suddenly it drops to the value — 2. Next we observe
A a very gradnal increase from the valne —2 1o the valune —1
LY : : . ,
. \ : and again a sudden jump to the value 2. This eyele term
» T proceeds indefinitely.
b e / Obviously this form of oscillation contains many higher
] ; harmonics of considerable amplitude.  As will be seen later,
/\ i e the period T, instead of being 27 (as was the case when
[ ‘ ! ¢ <1} increases with increase of e, and when 21 becomes
S~ S g - equal to approximately ¢ itsell ; that is, we have
N N ' : .
N - ; T == e.
ST & . . -
0o Let us now consider more closely the physical factors
e T i \ determining the value of the period T. If our eguation (1)
—— < > : o / i %" ] ‘. represents the circulation of electricity in a system of
E:_‘“;!'*“ . |7 / ; ! 5 resistance R, capacity C, and inductance L, we have, as
I — %hi- 5 : —a usual,
__Qig:;é__wm g \\ l\ ; ‘.1 [ ’ _ 31
E i ' =i
; i
: ! i
W . \\ / : 1 Wiz
£ ! Ve
o ./ T g : . . Les oo
. T L ! I e Now for the time period expressed in units of ¢ we have
e g 4 S ! already
=l 4 ! ' : T=e¢
==l " \\ ! » : so that, expressed in terms of #, the period becomes
=T g T ; .
-;_-:‘"'_-"""‘" g’ '/ ! : “ re o T ¥
e:::m / \'i ‘!‘ 2 l = Q)E —-v}g.(J, PR P . (15)
= 3 o |
c:;:' \ { I which is a fime of relaration (time constant).
1 . k) * . Kl « -
< ; N Thus our equation (6) for the quasi-aperiodic case, which
; & o ; I differs considerably from the normal approximately sinugoidal
§> / 5 solution, has again a purely periodic solution, the time
2 ! | period of which is expressed by the time of relaxation of
i g ! : the system. For this reason the term relacation-oscillation
. i _ gy ' N .
g : o o 2 is suggested for this phenomenon.
e 1% 1 %? ] _wii 5. A type of oscillation previonsly described by Abraham
(W L 83 & Bloeh* is an example of relaxation-oscillations,
i o>t o | These authors used an electrical system comprising two
g8 2 ° 2 gg &8 % ° 2§ g" R - A triodes and resistances and capacities only, which system

# Abraham & Bloch, fnw, de Physique, xil. pi237 (3918).
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they called ““multivibratour 7 because of the many higher
harmonics of appreciable amplitude which it produced when
oscillating, This system, which may be regarded as a
two-stage resistance-capacity coupled amplifier with the
ontput coupled back to the nput side, is shown in = slightly
modified form in fig. 5. In their original description of the
system Abraham & Bloeh draw attention to the fact that
the time period of the oscillations produced by the multi-
vibrator is approximately equal to the product RC (see
fig. 5), but, so far as I am aware, no theoretical discussion
of the way in which the oscillations are mainfained has been
published,

Pig. 5.

From the symmetrical value of the eircuit we may expect
that the two triodes can vibrate in exactly opposite phases.
Tt is further known that the pofentials and anode currents
experience temporal variations closely represented by fig. 4
(e=10). Now, in order fto explain the reason for the
maintenance of oscillation in  this system containing
resistances and capacities only, we found it necessary to
take into account the inductance L. of the wires connected
to the two capacities. (These are represented by the dotted
lines I in fig. 5.3 With the notation of the latter figure
the current and potential departures from the unstable
equilibrinm values are given by the following equation :

o 4 1 {‘ N
—ma=mi= (R+L 7+ ‘”)“L (14)

Riz=—u,

éa1=£l+i3m¢(vgl)a
where ¢{u,) denotes the characterisiic of the first triode
round the equilihrium position and wheve, for simplicity,

< Rolaration Oscillations.” 989

the infinence of the anode potential on the anode current is
neglected.  Further, assnming that the triodes of this
sv?ﬂmetrical sysfen: are exactly equal and vibrate in opposite
phase, we have -

'Z.’g|_= Vg2 - . . - . . (15)

From (14) and (13) we derive
(L‘% -4 (Hz"}"’!’) + %{ﬂ dt)vylmR-r¢(vgl) . . (16}

[ A

Now, as an approximate expression for the characteristic
Now, as an ¢ 3
iai:(g)(vﬁ}:
we may fake again the third order parabola
. %
Dl \ 1’~
K :q 1 e __-j,’_',_?g 1 R . . . ( £}
faz M( 'Ugozj 4
where § is the slope of the anode-eurrent/grid-voltage

eurve, _ ) ) " S
Usuaily the anode lead resistance 7 is small compared

with the grid leak R, i. e.
rE R,

so that from {16) and (17) we have
gy 1L .
1 Vot - =0, .".
Li}glm—ﬂ- { (rﬁ——l)‘_?bi—’g:’; } T+ thg‘{ 0 (18)
From (18) we note that the “resistance” of the system
for small amplitudes is ouly negative so long as
a1,
roximate ition for the
at we have here the approximate  condition .
E{‘)(i'og}tj;;ttion of oscillations. 1f we further make the following

substitution : -
t=t' /O L 3

: G
e:R(?‘S—«»l}r\/I—J

v

(18) may be written .
‘ p—e(l—tDo+wv=0, . . . . . (6}
i : iging liscuss . vhich may
ioh is the equation originally Qtscusne‘d and which maj
g;n:ﬁﬁi:{a be i.%e represe;t’.ative differential equation of the
mu'i-tivihra%-or (ew1). But we may note that, in or&el: to
repréﬁent the nction of the multivibrator by this equation,

3 . - N .

|

'

|
J
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we had to iake into acconnt the small inductance L of the
wires connected fo the capaeities (, as shown in fig. 5.

We further note from ({19) that e depends on the value of
L-%t g0 that e inereases without limit the further I, is
decreased. We may make a rouglt estimate of & for the
following practical values :

R=10° ohms, #B—1=1, C“__:O'O_l whd, Li==10 em.

In this case,

e=10%.3. . ;8_8 =2.10°,
g0 that the conduetion
el

is certainly satisfied. The smaller the value of the residual
inductance L, the greater is this inequality.

1t therefore may be concinded that ithe special vibration of
the multivibrator represents an example of a general ype of
relawation-oseillotions and that in order to explain the
maintenince of the oseillations we have to take into account the
residual induetance of the system {as shown in fig. 5), however
small this may be.

The result of the ahove discussion liustrates how the form
of the solution of differential equationslike the representative
equal (18) or (6) is entirely altered by taking into account a
term with an infinitesimal coefficient (e, g. the first term
L, in (18)). '

But the physical reason for taking this into account
becomes immediately apparent when we solve (18) or (6)
omitting the first term. In this case the solution of (6) is

Al
loger—wt=2C0 L o)

€

which is represented graphically in fig. 6. We note that
the value of »* first increases exponentially with #ime, bug
near #®=:1 the curve bends upwards with an infinite slope,
there being further no selution in the real domain. When
the inductance is thus disregarded both ¢ and % become
infinite when ve= +1, so that the condensers ( (fig. 5
would acquire a very large charge in an indefinitely small
time. DBut these infinitely sudden changes of current are
prevented by the presence of the smail residual inductance.

This is illustrated by the fact that the solution (20) for
the derivation of which the inductance has been neglected,
and which is represented by the repeated doited lines in
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fig. 4 (e=10), is found to coincide approximately with the
exach solution so long as the slope of » 18 small.  Whenever,
however, the slope tends to become infinite we note that the
term @ in (6) becomes of importance and keeping the slope
finite maintains the multivibrator in vibration.

The multivibrator may therefore be compared fo a double
steam engine with a flywheel which is much too small.

‘The small inertia of the flywheel must, however, be present

10 carry the system beyond its equilibrinm (dead) points,

Tig. 6.
X ‘Q
£=10
MMM—M
Nb\
10
Iy
P
7] 25 50 5 ng 25 50 el 280

§ 6. Now that the general eguation (4) for relawation-
oscillationis is known, it iz an easy matter to devise further
electrical systems of the same type. Oune such a system is

Fig. 7.

bl —

depicted in. fig. 7 and comprises a totrode, two resistances
r and R, and a condenser C. If we again recognize the
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inductance L. of the wire connecting the condenser to the

outer grid, we find that the circulation of electricity in the

system is represented by (6). An experimental test of the
- system showed that the system produced oscillations with a

time period approximutely equal to CR.  When r is replaced

by a telsphone receiver the oscillations become audible and
" the change of frequency by changing R or C is easily
demonstrated.

7. Finally it seems quite likely that, when the total
characteristic (including the parts with a negative slope) is
taken into account, the well-known vibration of a neon-tube
connected to a resistance and condenser in shunt * may be
similarly treated ander the heading of relaxation-oscillations.

Similarly, (though no detailed investigation has bein
carried ont) it is likely that the oscillations of a “ Wehnelt”
interrupter belong to the general class of relaxation-oseil-
lations and perhaps also heart-beats.

Eindhoven, 6th May, 1926,

Physical Laboratory,
Philips’ Glowlempworks, Lid.

LXXXIX. The Orystalline Structuve of Anhydrite.
By Prof. Jary A, Wasasragrya 1,

"N a particularly interesting paper published in the July
number of this Journal, Messrs. Dickson and Bioks
examined the siructure of Aphydrite. In a note added, it
is stated that the present author had previeusly exammined
the same problem (Societas Seientiarum Fennica : Commenta-
tiones Physico-Mathematiem, ii. p. 26, 1923), and that the
two investigations produced structures of the same type bui
of somewhat different parameter values. From that the
conclusion might ke drawn, that the two pleces of work
stand in certain opposition to each other, if enly in detail.
But that cun hardly be said to be tbe case. .

By virtue of a method of ehﬂ_nnatmn, carried through
consistently, which takes every type ol stracture, mathe-
matically possible, into consideration (in this case there are
85 such different types), the present author has shown that
in respect of anhydrite there ave two, and only two,

# See, e g. Schallreuter, ¢ Ueber Sehwingungserscheinungen in _Entladm
ungsrohren.  Braunschwelg, 1923 ) .

+ Clommunicated by Prof. W. L. Bragg, FRE.
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possible structures, In the preseng author’s work these
structures are deneted as IV and V (pp. 39-40), Tet us
cail thewr A and B. These two structures are of the same
type and extremely closely related to one another. A dis-
placement of the atem groups in the direction of the g-axis
of 0-05 transforms one structure to the other,

The atomic coordinates ave —

co: { - LLrd00] [[g.4.0]]

Clg+4-5-410 LLg+4.%.41]
. 4 [[r.2.00] [[7.2.01]
[[r+4.4.4]] LF+E-2.41]
- g 0] [[f-g+%.0]
A A Nl [[f-7-007
| [l n)] [[Egtddl
0- g Lk g+ 311 [Lf+4.9.4]]
B NI [{%.2.%]]
L .47 HERIN
| [[A+d 4. 6+351] [[A+3.2.5+3]]
L [la+d.2.8+4]] [[R+3.2.6431]
We iu’_rfrodu'ce the following new para;neters T
& f=r+i
G gy
h:?’-ut._;
;Czugo

The parameters acquire  the following values according to
Messrs. Dickson and Binks and to the present author e

Wasastjerna. Dickson and Binks®,

£, =016 £, 5016

t, =016 1,={ib
#, =019 a, =18
#,:=0019 2, =018

g g+ =g

Alternative A. Alternative B,
(10 =15

Tt should be emphasized that + cannot have values in the

* Tn Messrs. Dickson and Binks' work another system of notation is
used. In our celeulation the final results have been shortenediso thag
all the parameters are given in two decimals only.

Phil. Mag. 8. 7. Voi 2. No. 11. Now, 1926, 3t






