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1 Phase Plane

The differential equation describing many nonlinear oscillators can be written in the form:

d2x

dt2
+ f

(
x,
dx

dt

)
= 0 (1)

A convenient way to treat eq.(1) is to rewrite it as a system of two first order o.d.e.’s:

dx

dt
= y,

dy

dt
= −f(x, y) (2)

Eqs.(2) may be generalized in the form:

dx

dt
= F (x, y),

dy

dt
= G(x, y) (3)

A point which satisfies F (x, y) = 0 and G(x, y) = 0 is called an equilibrium point. The solution
to (3) may be pictured as a curve in the x-y phase plane passing through the point of initial
conditions (x0, y0). Each time a motion passes through a given point (x, y), its direction is always
the same. This means a given motion may not intersect itself. A periodic motion corresponds to
a closed curve in the x-y plane. In the special case that the first equation of (3) is dx/dt = y, as
in the case of eqs.(2), the motion in the upper half-plane y > 0 must proceed to the right, that
is, x must increase in time for y > 0, and vice versa for y < 0.

1.1 Classification of Linear Systems

An important special case of the general system (3) is the general linear system:

dx

dt
= a x+ b y,

dy

dt
= c x+ d y (4)

We may seek a solution to eqs.(4) by setting x(t)=A exp(λt) and y(t)=B exp(λt). For a nontrivial
solution, the following determinant must vanish:

∣∣∣∣∣∣∣
a− λ b

c d− λ

∣∣∣∣∣∣∣ = 0 ⇒ λ2 − tr λ+ det = 0 (5)

where tr = a+d is the trace, and det = ad− bc is the determinant of the associated matrix. The
eigenvalue λ is given by

λ =
tr

2
±

√(
tr

2

)2

− det (6)

If det < 0, then (6) shows that there are two real eigenvalues, one positive and one negative.
This type of linear system is called a saddle. An example of a saddle is provided by the equation:

d2x

dt2
− x = 0 (7)
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If det > 0 and tr2 > 4 det, then there are still two real eigenvalues, but both have the same sign
as the trace tr. If tr > 0, then both eigenvalues are positive and the solution becomes unbounded
as t goes to infinity. This linear system is called an unstable node. The general solution is a
linear combination of the two eigensolutions, and for large time the eigensolution corresponding
to the larger eigenvalue dominates. Similarly, if the trace tr < 0, we have a stable node. An
example of a stable node is provided by the overdamped oscillator:

d2x

dt2
+ 3

dx

dt
+ x = 0 (8)

If det > 0 and tr2 < 4 det, then there are two complex eigenvalues with real part equal to
tr/2. Euler’s formula shows us that the resulting motion will involve an oscillation as well as
exponential growth or decay. If the trace tr > 0 we have unbounded growth and the linear
system is called an unstable spiral or focus. Similarly, if the trace tr < 0, we have a stable spiral
or focus. An example of a stable spiral is provided by the underdamped oscillator:

d2x

dt2
+
dx

dt
+ x = 0 (9)

If det > 0 and tr = 0, then there are two pure imaginary eigenvalues. The corresponding linear
system is called a center. An example of a center is provided by the simple harmonic oscillator:

d2x

dt2
+ x = 0 (10)

All the foregoing results can be summarized in a diagram in which the determinant det is plotted
on the horizontal axis, while the trace tr is plotted on the vertical axis.

1.2 Lyapunov Stability

Suppose that we have an equilibrium point P : (x0, y0) in eqs.(3). And suppose further that we
want to characterize the nature of the behavior of the system in the neighborhood of point P .
A tempting way to proceed would be to Taylor-expand F and G about (x0, y0) and truncate the
series at the linear terms. The motivation for such a move is that near the equilibrium point,
the quadratic and higher order terms are much smaller than the linear terms, and so they can
be neglected. A convenient way to do this is to define two new coordinates ξ and η such that

ξ = x− x0, η = y − y0 (11)

Then we obtain
dξ

dt
=
∂F

∂x
ξ +

∂F

∂y
η + · · · , dη

dt
=
∂G

∂x
ξ +

∂G

∂y
η + · · · (12)

where the partial derivatives are evaluated at point P and where we have used the fact that
F and G vanish at P since it is an equilibrium point. The eqs.(12) are known as the linear
variational equations.

Now if we were satisfied with the linear approximation given by (12), we could apply the classifi-
cation system described in the previous section, and we could identify a given equilibrium point
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as a saddle or a center or a stable node, etc. This sounds like a good idea, but there is a problem
with it: How can we be assured that the nonlinear terms which we have truncated do not play
a significant role in determining the local behavior?

As an example of the sort of thing that can go wrong, consider the system:

d2x

dt2
− ε

(
dx

dt

)3

+ x = 0, ε > 0 (13)

This system has an equilibrium point at the origin x=dx/dt=0. If linearized in the neighborhood
of the origin, (13) is a center, and as such exhibits bounded solutions. The addition of the nonlin-
ear negative damping term will, however, cause the system to exhibit unbounded motions. Thus
the addition of a nonlinear term has completely changed the qualitative nature of the predictions
based on the linear variational equations.

In order to use the linear variational equations to characterize an equilibrium point, we need to
know when they can be trusted, that is, we need sufficient conditions which will guarantee that
the sort of thing that happened in eq.(13) won’t happen. In order to state the correct conditions
we need a couple of definitions:

Definition: A motion M is said to be Lyapunov stable if given any ε > 0, there exists a δ > 0
such that if N is any motion which starts out at t=0 inside a δ-ball centered at M , then it stays
in an ε-ball centered at M for all time t.

In particular this means that an equilibrium point P will be Lyapunov stable if you can choose
the initial conditions sufficiently close to P (inside a δ-ball) so as to be able to keep all the
ensuing motions inside an arbitrarily small neighborhood of P (inside an ε-ball). A motion is
said to be Lyapunov unstable if it is not Lyapunov stable.

Definition: If in addition to being Lyapunov stable, all motions N which start out at t = 0 inside
a δ-ball centered at M (for some δ), approach M asymptotically as t → ∞, then M is said to
be asymptotically Lyapunov stable.

Lyapunov’s theorems:
1. An equilibrium point in a nonlinear system is asymptotically Lyapunov stable if all the eigen-
values of the linear variational equations have negative real parts.
2. An equilibrium point in a nonlinear system is Lyapunov unstable if there exists at least one
eigenvalue of the linear variational equations which has a positive real part.

Definition: An equilibrium point is said to be hyperbolic if all the eigenvalues of its linear varia-
tional equations have non-zero real parts.

Note that a center is not hyperbolic. Also, from eq.(6), any linear system which has det = 0 is
not hyperbolic.
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Thus Lyapunov’s theorems state that if the equilibrium is hyperbolic then the linear variational
equations correctly predict the Lyapunov stability in the nonlinear system. (Note that in the
second of Lyapunov’s theorems, it is not necessary for the equilibrium to be hyperbolic since the
presence of an eigenvalue with positive real part implies instability even if it is accompanied by
other eigenvalues with zero real part.)

1.3 Structural Stability

If an equilibrium point is hyperbolic, then we saw that the linear variational equations correctly
represent the nonlinear system locally, as far as Lyapunov stability goes. But more can be said.
For a hyperbolic equilibrium point, the topology of the linearized system is the same as the topol-
ogy of the nonlinear system in some neighborhood of the equilibrium point. Specifically, for a
hyperbolic equilibrium point P , there is a continuous 1:1 invertible transformation (a homeo-
morphism) defined on some neighborhood of P which maps the motions of the nonlinear system
to the motions of the linearized system. This is called Hartman’s theorem.

A related idea is that of structural stability. This idea concerns the relationship between the
dynamics of a given dynamical system, say for example eqs.(3), and the dynamics of a neighboring
system, for example:

dx

dt
= F (x, y) + εF1(x, y),

dy

dt
= G(x, y) + εG1(x, y) (14)

where ε is a small quantity and where F1 and G1 are continuous. A system S is said to be
structurally stable if all nearby systems are topologically equivalent to S. Specifically, eqs.(3)
are structurally stable if there exists a homeomorphism taking motions of (3) to motions of (14)
for some ε.

Note the similarity between Lyapunov stability and structural stability: Both involve a given dy-
namical object, and both are concerned with the effects of a perturbation off of that object. For
example in the case of Lyapunov stability, the object could be the equilibrium point x=dx/dt=0
in eq.(13), and the perturbation could be a nearby initial condition. In the case of structural
stability, the object could be the simple harmonic oscillator (10), and the perturbation could be
the addition of a small term such as −ε(dx/dt)3, giving eq.(13).

From this example, we can see that if a system S has an equilibrium point which is not hyper-
bolic, then S is not structurally stable. Another common feature which can prevent a system
from being structurally stable is the presence of a saddle-saddle connection. In fact it is possible
to characterize all structurally stable flows on the phase plane. To do so, we need another

Definition: A point is said to be wandering if it has some neighborhood which leaves and never
(as t→ ∞) returns to intersect its original position.

Now it is possible to state Peixoto’s theorem for flows on the plane which are closed and bounded
(that is, which are compact). Such a system is structurally stable if and only if:
1. the number of equilibrium points and periodic motions is finite, and each one is hyperbolic;
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2. there are no saddle-saddle connections; and
3. the set of nonwandering points consists only of equilibrium points and periodic motions.

1.4 Examples

Example 1.1
The plane pendulum.

d2x

dt2
+
g

L
sin x = 0 (15)

Equilibria: y = 0, x = 0, π
By identifying x = π with x = −π we see that the topology of the phase space is a cylinder
S × R.

First integral:
y2

2
− g

L
cos x =constant

Example 1.2
Pendulum in a plane which is rotating about a vertical axis with angular speed ω.

d2x

dt2
+
g

L
sin x− ω2 sin x cosx = 0 (16)

Equilibria: y = 0, x = 0, π and also cosx =
g

ω2L
For real roots,

g

ω2L
< 1, illustrating a pitchfork bifurcation.

First integral:
y2

2
− g

L
cos x+

ω2

4
cos 2x =constant

Example 1.3
Pendulum with constant torque T .

d2x

dt2
+
g

L
sin x =

T

mL2
(17)

Equilibria: sinx =
T

mgL

For real roots,
T

mgL
< 1, illustrating a fold or saddle-node bifurcation.

First integral:
y2

2
− g

L
cos x− T

mL2
x =constant

1.5 Problems

Problem 1.1
Volterra’s predator-prey equations. We imagine a lake environment in which a certain species
of fish (prey) eats only plankton, which is assumed to be present in unlimited quantities. Also
present is a second species of fish (predators) which eats only the first species. Let x=number
of prey and let y=number of predators. The model assumes that in the absence of interactions,
the prey grow without bound and the predators starve:
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dx

dt
= ax,

dy

dt
= −by (18)

As a result of interactions, the prey decrease in number, while the predators increase. The
number of interactions is modeled as xy. The final model becomes:

dx

dt
= ax− cxy,

dy

dt
= −by + dxy (19)

where parameters a, b, c, d are positive.

a. Find any equilibria that this system possesses, and for each one, determine it’s type.

b. Using
dy

dx
=
dy

dt
÷ dx

dt
, obtain an exact expression for the integral curves.

c. Sketch the trajectories in the phase plane.
d. Is this system structurally stable? Explain your answer.

Problem 1.2
Zhukovskii’s model of a glider. Imagine a glider operating in a vertical plane. Let v=speed of
glider and u=angle flight path makes with the horizontal. In the absence of drag (friction), the
dimensionless equations of motion are:

dv

dt
= − sin u, v

du

dt
= − cosu+ v2 (20)

a. Using numerical integration, sketch the trajectories on a slice of the u-v phase plane between
−π < u < π, v > 0.

b. Using
dv

du
=
dv

dt
÷ du

dt
, obtain an exact expression for the integral curves.

c. Using your result in part b, obtain an exact expression for the separatrix in this system.

d. What does the flight path of the glider look like for motions inside the separatrix versus
motions outside the separatrix? Sketch the glider’s flight path in both cases.

Problem 1.3
Malkin’s error. In his book “Theory of Stability of Motion” (1952), I.G. Malkin presents an
example of a physical problem in which the linear variational equations do not predict stability
correctly. His analysis is restated below for your convenience. In fact, there is a mistake in his
argument. Your job is to find it.

The periodic motions of a pendulum are certainly Lyapunov unstable (since the period of per-
turbed motions differs from the period of the unperturbed motion, etc.) However, the linearized
equations predict stability:

The governing equation is d2θ
dt2

+ sin θ = 0. A periodic solution θ = f(t) will correspond to the

initial condition θ(0) = f(0) = α, dθ
dt

(0) = df
dt

(0) = 0. (The pendulum is released from rest at an
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angle α.) Note that d2f
dt2

(0) = − sin f(0) = − sinα.

Consider the linearized stability of θ = f(t). Set θ = f(t)+x(t) and linearize the eq. on x to get
d2x
dt2

+ x cos f(t) = 0. Consider the perturbed motion defined by the initial condition x(0) = 0,
dx
dt

(0) = β. Malkin shows that “for a sufficiently small value of β it [i.e. x(t)] will remain smaller
than any preassigned quantity.”

Since f(t) satisfies d2f
dt2

+ sin f = 0, f(t) satisfies (differentiating) d2

dt2
(df
dt

) + df
dt

cos f = 0. But this

equation on df
dt

(t) has the same form as the linearized equation on x(t). Since the function df
dt

(t)

satisfies the initial conditions df
dt

(0) = 0, d
dt

(df
dt

)(0) = d2f
dt2

(0) = − sinα, it follows from uniqueness

that x(t) = − β
sinα

df
dt

(t). Now since df
dt

(t) is bounded, x(t) can be made as small as desired for all
t by choosing β small enough. Ha!

1.6 Appendix: Lyapunov’s Direct Method

Lyapunov’s Direct Method offers a procedure for investigating the stability of an equilibrium
point without first linearizing the differential equations in the neighborhood of the equilibrium.
Using this approach, Lyapunov was able to prove the validity of the linear variational equations.

As an introduction to the method, consider the simple example:

dx1

dt
= −x1,

dx2

dt
= −x2 (21)

It is obvious that the origin in this system is an asymptotically stable equilibrium point since we
know the general solution,

x1 = c1 exp(−t), x2 = c2 exp(−t) (22)

Ignoring this knowledge, consider the function:

V (x1, x2) = x2
1 + x2

2 (23)

being the square of the distance from the origin in the x1-x2 phase plane. Now consider the
derivative of V with respect to time t:

dV

dt
= 2x1

dx1

dt
+ 2x2

dx2

dt
(24)

Substituting eqs.(21), we see that along the trajectories of the system,

dV

dt
= −2x2

1 − 2x2
2 ≤ 0 (25)

Thus V must decrease as a function of time t, that is, the distance of a point on a trajectory
from the origin must decrease in time. Since there is no place at which such a point can get
stuck (since dV/dt = 0 only at the origin), we have shown that all solutions must approach the
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origin as t→ ∞, which is to say that the origin is asymptotically stable.

The approach in this example can be generalized by inventing an appropriate Lyapunov function
V (x1, x2) for a given problem. Without loss of generality, we may assume that the equilibrium
point in question lies at the origin (since a simple translation will move it to the origin if it isn’t
already there.) In all cases we will require that:
1) V and its first partial derivatives must be continuous in some neighborhood of the origin, and
2) V (0, 0) = 0.

For a general system
dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2) (26)

we shall be concerned with dV/dt along trajectories. As in the example, we will compute this as:

dV

dt
=
∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
=
∂V

∂x1
f1(x1, x2) +

∂V

∂x2
f2(x1, x2) (27)

We present the following three theorems without proof:

Theorem 1: If in some neighborhood of the origin, V is positive definite while dV/dt ≤ 0, then
the origin is Lyapunov stable.

Theorem 2: If in some neighborhood of the origin, V and −dV/dt are both positive definite, then
the origin is asymptotically Lyapunov stable.

Theorem 3: If in some neighborhood of the origin, dV/dt is positive definite, and if V can take on
positive values arbitrarily near the origin (but not necessarily everywhere in some neighborhood
of the origin), then the origin is Lyapunov unstable.

Using these theorems, the validity of the linearized variational equations can be established under
appropriate conditions on the eigenvalues. Suppose the system is written in the form:

dx1

dt
= ax1 + bx2 + F1(x1, x2),

dx2

dt
= cx1 + dx2 + F2(x1, x2) (28)

where F1(x1, x2) and F1(x1, x2) are strictly nonlinear, i.e. they contain quadratic and higher
order terms. Writing this in vector form, where x = [x1 x2]

T and F = [F1 F2]
T ,

dx

dt
= Ax+ F (x) (29)

Transforming to eigencoordinates y, we set x = Ty, where T is a matrix which has the eigenvec-
tors of A as its columns, and obtain:

dy

dt
= T−1ATy + T−1F (Ty) = Dy +G(y) (30)

where D is a diagonal matrix (the theorem also holds if D is in Jordan form), and where
G = T−1F is strictly nonlinear in y.
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Theorem 4: x = 0 is asymptotically Lyapunov stable if all the eigenvalues of A have negative
real parts.

Take V = y1ȳ1 + y2ȳ2, where ȳi is the complex conjugate of y. Then V so defined is certainly
positive definite. For asymptotic stability we need to show that −dV/dt is positive definite.

dV

dt
= y1

dȳ1

dt
+
dy1

dt
ȳ1 + y2

dȳ2

dt
+
dy2

dt
ȳ2 (31)

Now we have that
dyi
dt

= λiyi +Gi and
dȳi
dt

= λ̄iȳi + Ḡi (32)

so that (31) becomes

dV

dt
= (λ1 + λ̄1) y1ȳ1 + (λ2 + λ̄2) y2ȳ2 + cubic and higher order nonlinear terms (33)

which gives

−dV
dt

= −2 Re(λ1) y1ȳ1 − 2 Re(λ2) y2ȳ2 + cubic and higher order nonlinear terms (34)

Thus in some neighborhood of the origin, the cubic and higher order nonlinear terms in (34)
are dominated by the quadratic terms, which themselves are positive definite if Re(λi) < 0 for
i = 1, 2. Thus −dV/dt is positive definite and the origin is asymptotically stable by Theorem 2.

In a similar way we can use Theorem 3 to prove

Theorem 5: x = 0 is Lyapunov unstable if at least one eigenvalue of A has positive real part.

The idea of the proof is the same as for Theorem 4, except now take V = y1ȳ1 − y2ȳ2 if, for
example, Re(λ1) > 0 and Re(λ2) < 0. (The case where Re(λ2) = 0 is more complicated and we
omit discussion of it.)

An excellent reference on Lyapunov’s Direct Method is “Stability by Liapunov’s Direct Method
with Applications” by J.P.LaSalle and S.Lefschetz, Academic Press, 1961.
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2 The Duffing Oscillator

The differential equation

d2x

dt2
+ x+ εαx3 = 0, ε > 0 (35)

is called the Duffing oscillator. It is a model of a structural system which includes nonlinear
restoring forces (for example springs). It is sometimes used as an approximation for the pendu-
lum:

d2θ

dt2
+
g

L
sin θ = 0 (36)

Expanding sin θ = θ − θ3

6
+O(θ5), and then setting θ =

√
εx,

d2x

dt2
+
g

L

(
x− ε

x3

6

)
= 0(ε2) (37)

Now we stretch time with z =

√
g

L
t,

d2x

dz2
+ x− ε

x3

6
= 0(ε2) (38)

which is (35) with α = −1/6.

In order to understand the dynamics of Duffing’s equation (35), we begin by writing it as a first
order system:

dx

dt
= y,

dy

dt
= −x− εαx3 (39)

For a given initial condition (x(0), y(0)), eq.(39) specifies a trajectory in the x-y phase plane, i.e.
the motion of a point in time. The integral curve along which the point moves satisfies the d.e.

dy

dx
=

dy
dt
dx
dt

=
−x− εαx3

y
(40)

Eq.(40) may be easily integrated to give

y2

2
+
x2

2
+ εα

x4

4
= constant (41)

Eq.(41) corresponds to the physical principle of conservation of energy. In the case that α is
positive, (41) represents a continuum of closed curves surrounding the origin, each of which rep-
resents a motion of eq.(35) which is periodic in time. In the case that α is negative, all motions
which start sufficiently close to the origin are periodic. However, in this case eq.(39) has two
additional equilibrium points besides the origin, namely x = ±1/

√−εα, y = 0. The integral
curves which go through these points separate motions which are periodic from motions which
grow unbounded, and are called separatrices (singular: separatrix).
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If we were to numerically integrate eq.(35), we would see that the period of the periodic motions
depended on which closed curve in the phase plane we were on. This effect is typical of nonlinear
vibrations and is referred to as the dependence of period on amplitude. In the next section we
will use a perturbation method to investigate this.

2.1 Lindstedt’s Method

Lindstedt’s method is a simple singular perturbation scheme which can be used to derive the
relationship between period and amplitude in Duffing’s equation (35). The idea is to build the
period-amplitude relationship into the approximate solution by stretching time:

τ = ωt, where ω = 1 + k1ε+ k2ε
2 + · · · (42)

where the coefficients ki are to be found. Substituting (42) into (35), we get

ω2d
2x

dτ 2
+ x+ εαx3 = 0 (43)

Next we expand x in a power series in ε:

x(τ) = x0(τ) + εx1(τ) + ε2x2(τ) + · · · (44)

In view of the power series expansions (42) and (44), the results obtained by Lindstedt’s method
are expected only to be valid for small values of ε. Substituting (44) into (43) and collecting
terms gives:

d2x0

dτ 2
+ x0 = 0 (45)

d2x1

dτ 2
+ x1 = −2k1

d2x0

dτ 2
− αx3

0 (46)

d2x2

dτ 2
+ x2 = −2k1

d2x1

dτ 2
− (2k2 + k2

1)
d2x0

dτ 2
− 3αx2

0x1 (47)

Eq.(45) has the solution
x0(τ) = A cos τ (48)

Here A is the amplitude of the motion, and we have chosen the phase arbitrarily, a step which is
possible because of the autonomous nature of eq.(35), i.e. the explicit absence of the independent
variable t in (35). Substituting (45) into (46) gives

d2x1

dτ 2
+ x1 = 2Ak1 cos τ −A3α cos3 τ (49)

Simplifying the trig term cos3 τ gives

d2x1

dτ 2
+ x1 =

(
2Ak1 − 3A3α

4

)
cos τ − A3α

4
cos 3τ (50)
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For a periodic solution, we require the coefficient of cos τ on the right hand side of eq.(50) to
vanish. This key step is called removal of resonance or secular terms. We obtain

2Ak1 − 3A3α

4
= 0, that is, k1 =

3

8
αA2 (51)

Substituting this result into the ansatz (42), we obtain the approximate frequency-amplitude
relation:

ω = 1 + k1ε+O(ε2) = 1 +
3

8
αA2ε+O(ε2) (52)

The period T = 2π/ω may then be written as:

T =
2π

ω
=

2π

1 + 3
8
αA2ε+O(ε2)

= 2π
(
1 − 3

8
αA2ε+O(ε2)

)
(53)

We may continue the process to obtain higher order approximations as follows. Substituting
condition (51) into eq.(50), we may solve for x1(τ):

x1(τ) =
A3α

32
(cos 3τ − cos τ) (54)

Here we have chosen the complementary solution in order that the amplitude of vibration be
given by A, that is, in order that x(0) = A, cf. eq.(44). Substituting (54) into the x2 equation,
(47), we may again remove secular terms and thereby obtain an expression for k2. The process
may be continued indefinitely.

2.2 Elliptic Functions

Although most nonlinear differential equations are not solvable in terms of tabulated functions,
it turns out that Duffing’s eq.(35) may be solved exactly in terms of Jacobian elliptic functions.
In this section we will collect together some facts about elliptic functions which will permit us to
solve eq.(35). Our motivation is two-fold: firstly to check the approximate results obtained by
Lindstedt’s method, and secondly to provide a basis for perturbation methods which begin with
the elliptic function solution of Duffing’s equation. We use the notation of “Handbook of Elliptic
Integrals for Engineers and Physicists” by P.Byrd and M.Friedman, Springer Verlag, 1954.

There are three elliptic functions: sn, cn and dn. The sn function is odd and may be thought of
as the elliptic version of the trig function sine, while the cn function is even and may be thought
of as the elliptic version of the trig function cosine. These are related by the identity

sn2 + cn2 = 1 (55)

which is reminiscent of the comparable trig identity. In contrast to sine and cosine, the three
elliptic functions sn,cn and dn each depend on two variables,

sn = sn(u, k), cn = cn(u, k), dn = dn(u, k) (56)

where u is called the argument and k is called the modulus. (Note that in contrast to Byrd
and Friedman, other standard treatments use m = k2 instead of k. In particular, this is true
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of “Handbook of Mathematical Functions” by M.Abramowitz and I.Stegun, Dover Publications,
1965.) The elliptic function sn reduces to sine when k = 0, and cn reduces to cosine when k = 0.
There is no trig counterpart to dn, which reduces to unity when k = 0. The formulas for the
derivatives of sn and cn are reminiscent of their trig counterparts:

∂

∂u
sn = cn dn,

∂

∂u
cn = −sn dn (57)

The elliptic function dn satisfies the following equations:

∂

∂u
dn = −k2sn cn, and k2sn2 + dn2 = 1 (58)

The period of sn and cn in their argument u is 4K, where K(k) is the complete elliptic integral
of the first kind. The period of dn is 2K. As k goes from zero to unity, K(k) goes monotonically
from π/2 to infinity. In the limit as k approaches unity, the elliptic functions approach the
following hyperbolic trig functions:

sn(u, 1) = tanhu, cn(u, 1) = sech u, dn(u, 1) = sech u (59)

In order to compare the exact solution which we shall derive to eq.(35) with the approximate
solution obtained by Lindstedt’s method, we will need the following expansion for K(k) (from
Byrd and Friedman, p.296, formula no.900.00):

K(k) =
π

2

[
1 +

1

4
k2 +

9

64
k4 +

25

256
k6 +O(k8)

]
) (60)

In order to obtain an exact solution to eq.(35), we look for a solution in the form of a cn function:

x(t) = a1 cn(u, k), u = a2t+ b (61)

Since eq.(35) is a second order o.d.e., its general solution will possess two arbitrary constants.
Since it is an autonomous o.d.e., one of the arbitrary constants will be the phase b. Of the other
three constants, a1, a2 and k, only one is independent. In order to obtain the relations between
these three, we substitute (61) into (35) and use the foregoing elliptic function identities. To
begin with, let us take the derivative of (61) with respect to t:

dx

dt
= a1 a2

∂

∂u
cn = −a1 a2 sn dn (62)

where for brevity we write cn = cn(u, k), sn = sn(u, k) and dn = dn(u, k). Differentiating (62),

d2x

dt2
= −a1 a

2
2

(
sn

∂

∂u
dn + dn

∂

∂u
sn

)
= −a1 a

2
2(cn dn2 − k2sn2cn) (63)

Using the identities (55) and (58), this becomes

d2x

dt2
= −a1 a

2
2 cn

(
1 − 2k2 + 2k2cn2

)
(64)
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Substituting (64) into Duffing’s equation (35), and equating to zero the coefficients of cn and cn3

gives two equations relating a1, a2 and k:

a1(2a
2
2k

2 − a2
2 + 1) = 0 (65)

−a1(2a
2
2k

2 − a2
1αε) = 0 (66)

These may be solved for a2 and k in terms of a1:

a2
2 = 1 + a2

1αε, k2 =
a2

1αε

2(1 + a2
1αε)

(67)

Eq.(61) together with (67) is the exact solution to Duffing’s equation (35). Note that if α is
positive, then k will be real, but if α is negative, k may be imaginary. In the latter case, we may
obtain a real form of the solution by using the following identity (from Byrd and Friedman, p.38,
160.01):

cn(u, ik) =
cn
(
u
√

1 + k2, k̃
)

dn
(
u
√

1 + k2, k̃
) , where k̃ =

k√
1 + k2

(68)

We shall use the exact solution to check the approximate period-amplitude relation (53) obtained
by Lindstedt’s method. The amplitude of the exact solution (61) is a1 which we will identify
with the amplitude A of eqs.(48),(53). The period T of the exact solution (61) is 4K(k)/a2 which
may be written, using eq.(60),

T =
4K(k)

a2
= 4

π

2a2

[
1 +

1

4
k2 +

9

64
k4 +

25

256
k6 +O(k8)

]
(69)

Substituting eqs.(67) and expanding for small ε, we obtain:

T = 2π
(
1 − 3

8
αA2ε+

57

256
α2A4ε2 + · · ·

)
(70)

which agrees with eq.(53).

2.3 Problems

Problem 2.1
This problem concerns a nonlinear oscillator with quadratic nonlinearity:

d2x

dt2
+ x+ εx2 = 0 (71)

Compute the period for ε = 0.1 and the initial condition x(0) = 1,
dx

dt
(0) = 0 in three different

ways, and compare your answers:
a. Using numerical integration (Runge Kutta).
b. Using Lindstedt’s method. Include terms of O(ε2).
c. Using elliptic functions. Hint: x = a0 + a1 sn2(u, k), u = a2t+ b
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Problem 2.2
For the oscillator:

d2x

dt2
+ x+ εax2 + ε2bx3 = 0 (72)

What relation between parameters a and b makes the frequency independent of amplitude if
terms of O(ε3) are neglected?
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3 The van der Pol Oscillator

The differential equation

d2x

dt2
+ x− ε(1 − x2)

dx

dt
= 0, ε > 0 (73)

is called the van der Pol oscillator. It is a model of a nonconservative system in which energy
is added to and subtracted from the system in an autonomous fashion, resulting in a periodic
motion called a limit cycle. Here we can see that the sign of the damping term, −ε(1 − x2)dx

dt

changes, depending upon whether |x| is larger or smaller than unity. Van der Pol’s equation
has been used as a model for stick-slip oscillations, aero-elastic flutter, and numerous biological
oscillators, to name but a few of its applications.

Numerical integration of eq.(73) shows that every initial condition (except x = dx
dt

= 0) ap-
proaches a unique periodic motion. The nature of this limit cycle is dependent on the value of ε.
For small values of ε the motion is nearly sinusoidal, whereas for large values of ε it is a relaxation
oscillation, meaning that it tends to resemble a series of step functions, jumping between positive
and negative values twice per cycle. If we write (73) as a first order system,

dx

dt
= y,

dy

dt
= −x+ ε(1 − x2)y (74)

we find that there is no exact closed form solution. Numerical integration shows that the limit
cycle is a closed curve enclosing the origin in the x-y phase plane. From the fact that eqs.(74)
are invariant under the transformation x �→ −x, y �→ −y, we may conclude that the curve
representing the limit cycle is point symmetric about the origin.

3.1 The Method of Averaging

We could obtain an analytic approximation for the limit cycle in (73) by using Lindstedt’s
method. However, in order to obtain information regarding the approach to the limit cycle, we
will need a more powerful perturbation method called the method of averaging. We begin with
a system of the more general form:

d2x

dt2
+ x = εF

(
x,
dx

dt
, t

)
(75)

We seek a solution to (75) in the form:

x = a(t) cos(t+ ψ(t)),
dx

dt
= −a(t) sin(t+ ψ(t)) (76)

Our motivation for this ansatz is that when ε is zero, (75) has its solution of the form (76) with a
and ψ constants. For small values of ε we expect the same form of the solution to be approximately
valid, but now a and ψ are expected to be slowly varying functions of t. Differentiating the first
of (76) and requiring the second of (76) to hold, we obtain:

da

dt
cos(t+ ψ) − a

dψ

dt
sin(t+ ψ) = 0 (77)





R.Rand Nonlinear Vibrations 20

Differentiating the second of (76) and substituting the result into (75) gives

−da
dt

sin(t+ ψ) − a
dψ

dt
cos(t+ ψ) = εF (a cos(t+ ψ),−a sin(t+ ψ), t) (78)

Solving eqs.(77) and (78) for da
dt

and dψ
dt

, we obtain:

da

dt
= −ε sin(t+ ψ) F (a cos(t+ ψ),−a sin(t+ ψ), t) (79)

dψ

dt
= − ε

a
cos(t+ ψ) F (a cos(t+ ψ),−a sin(t+ ψ), t) (80)

So far our treatment has been exact and is nothing but the procedure of variation of parameters
which is used in linear differential equations to obtain particular solutions to nonhomogenous
o.d.e.’s. Now we introduce an approximation in the form of a near-identity transformation which
is a written as a power series in ε:

a = ā + εw1(ā, ψ̄, t) +O(ε2) (81)

ψ = ψ̄ + εw2(ā, ψ̄, t) +O(ε2) (82)

where w1 and w2 are called generating functions, to be chosen so that the transformed equations
on ā and ψ̄ are as simple as possible. Substituting (81),(82) into (79),(80) and neglecting terms
of O(ε2), we obtain:

dā

dt
= ε

(
−∂w1

∂t
− sin(t+ ψ̄) F (ā cos(t+ ψ̄),−ā sin(t+ ψ̄), t)

)
+O(ε2) (83)

dψ̄

dt
= ε

(
−∂w2

∂t
− cos(t+ ψ̄)

ā
F (ā cos(t+ ψ̄),−ā sin(t+ ψ̄), t)

)
+O(ε2) (84)

Now the question is how to choose the generating functions w1 and w2? It is tempting to try to
wipe out the O(ε) parts of the right hand sides of eqs.(83) and (84) by choosing

w1 =
∫ t

0
− sin(t+ ψ̄) F (ā cos(t+ ψ̄),−ā sin(t+ ψ̄), t) dt (85)

and a similar expression for w2. There is a problem with this choice, however. It is that the
integral in (85) will in general have a nonzero average, which means that as t increases, w1

will also increase, on the average linearly in t. Now if w1 grows like t, then the near-identity
transformation (81) will be messed up: specifically, the εw1 term, which is assumed to be small
for small ε, will eventually grow large as t approaches infinity. The expansion (81) will not be
uniformly valid on the infinite time interval. In order to avoid this technical difficulty, we choose
w1 and w2 to wipe out all the O(ε) terms on the right hand sides of eqs.(83) and (84) except for
their average value! This results in the following d.e.’s on ā and ψ̄:

dā

dt
= −ε 1

T

∫ T

0
sin(t+ ψ̄) F (ā cos(t+ ψ̄),−ā sin(t+ ψ̄), t) dt+O(ε2) (86)

dψ̄

dt
= −ε 1

T

∫ T

0

cos(t+ ψ̄)

ā
F (ā cos(t+ ψ̄),−ā sin(t+ ψ̄), t) dt+O(ε2) (87)
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Note this is partial integration in the sense that ā and ψ̄ are held fixed during the integration
process. Here T is the period over which the average is to be taken. If F (x, dx

dt
, t) is periodic in

t with a certain period P , then we take T = P . This is the case of an nonautonomous system
with periodic forcing. On the other hand, if t does not explicitly appear in F , then we take the
averaging period T = 2π, the period of the unforced (ε = 0) oscillator in (75). In this case the
d.e. is autonomous, as in van der Pol’s equation (73). For an autonomous system, the integration
in eqs.(86),(87) may be simplified by replacing the variable t with φ = t+ ψ̄:

dā

dt
= −ε 1

2π

∫ 2π

0
sinφ F (ā cosφ,−ā sin φ) dφ+O(ε2) (88)

dψ̄

dt
= −ε 1

2π

∫ 2π

0

cosφ

ā
F (ā cosφ,−ā sinφ) dφ+O(ε2) (89)

For small ε, eqs.(86),(87) or eqs.(88),(89) are called slow flow equations, since they specify the
evolution of ā and ψ̄ on a slow time scale (slow time=εt). In the nonautonomous case, the slow
flow (86),(87) is autonomous, since t has been averaged out. In the autonomous case, the slow
flow (88),(89) depends only on ā, since φ has been averaged out. In this case the slow flow
simplifies to two uncoupled first order o.d.e.’s. Thus in both nonautonomous systems and in
autonomous systems, the slow flow resulting from the method of averaging is easier to treat than
the original system.

Often when the method of averaging is presented in textbooks, the near-identity transformation
is omitted, and the discussion is simplified as follows. One leaps directly from eqs.(79),(80) to
eqs.(86),(87) by reasoning that since ε is small, da

dt
and dψ

dt
are also small, and hence a and ψ

are slowly varying, and thus over one cycle of duration T the quantities a and ψ on the right
hand sides of eqs.(79),(80) are nearly constant, and thus these right hand sides may be approx-
imately replaced by their averages as in eqs.(86),(87). Since this argument is quite compelling,
you may ask why we bother with the intricacies associated with the near-identity transformation.

The advantage of the near-identity transformation is two-fold. Firstly, after solving the slow flow
eqs.(86),(87) or eqs.(88),(89) for ā and ψ̄, we may achieve greater accuracy by transforming back
to a and ψ via the near-identity transformation. We speak of the solution of the slow flow eqs.
without the use of the near-identity transformation as simple averaging or first order averaging,
whereas we refer to the procedure of combining the solution of the slow flow eqs. with the near-
identity transformation as one and a half order averaging.

The second advantage of using the near-identity transformation is that the averaging procedure
may be extended to any order of approximation by continuing the process. For example we may
replace eqs.(81),(82) by

a = ā+ εw1(ā, ψ̄, t) + ε2v1(ā, ψ̄, t) +O(ε3) (90)

ψ = ψ̄ + εw2(ā, ψ̄, t) + ε2v2(ā, ψ̄, t) +O(ε3) (91)

where w1 and w2 take on the values which we have already found, and where v1 and v2 are to
be determined by an entirely analogous process. The method may be similarly extended to any
order of approximation.
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Now we shall apply the method of averaging to van der Pol’s equation (73). Comparing (75)
with (73), we obtain

F

(
x,
dx

dt
, t

)
= (1 − x2)

dx

dt
(92)

Eqs.(88),(89) become, neglecting terms of O(ε2):

dā

dt
= ε

1

2π

∫ 2π

0
(1 − ā2 cos2 φ)(ā sin2 φ) dφ = ε

ā

8
(4 − ā2) (93)

dψ̄

dt
= ε

1

2π

∫ 2π

0
cosφ (1 − ā2 cos2 φ)(sinφ) dφ = 0 (94)

Before solving eq.(93), we note that it has nonnegative equilibria at ā = 2, 0. Thus for small
ε the limit cycle is approximately a circle of radius 2 in the x-dx

dt
phase plane. Moreover, the

flow along the ā-line in (93) shows that ā = 2 is attractive, which means that the limit cycle is
asymptotically stable.

Eq.(93) can be solved by separating variables and using partial fractions, giving:

ā(t) =
2 exp

εt

2√
exp εt− 1 +

4

ā(0)2

(95)

As t→ ∞, ā(t) → 2, which confirms the asymptotic stability of the limit cycle. For large t, (95)
becomes

ā(t) ∼ 2 + e−εt
(
−1 +

4

ā(0)2

)
+ · · · (96)

showing that the approach to the limit cycle goes like e−εt.

It is interesting to examine what happens in eq.(95) as time t runs backwards. For ā(0) < 2, we
find that ā(t) → 0 as t→ −∞, that is, motions starting inside the limit cycle in the phase plane
approach the equilibrium point at the origin asymptotically as time runs backwards. However,

for ā(0) > 2, ā(t) blows up when the denominator of (95) vanishes, that is, for t = ln(1−4/ā(0)2)
ε

< 0.
Thus motions starting outside the limit cycle in the phase plane escape to infinity in finite time
as time runs backwards! This escape to infinity in finite time is reminiscent of the behavior of
the simple example

dx

dt
= x2 (97)

which has the general solution

x(t) =
1

1
x(0)

− t
(98)

and which sends a motion starting at x(0) at t = 0 out to infinity as t → 1
x(0)

, that is, in finite
time.
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3.2 Hopf Bifurcations

Before proceeding to further examine the properties of van der Pol’s equation, we pause to
consider how a limit cycle may get born. In particular we consider the following equation, which
is a generalization of van der Pol’s equation:

d2z

dt2
+ z = c

dz

dt
+ α1z

2 + α2z
dz

dt
+ α3

(
dz

dt

)2

+ β1z
3 + β2z

2dz

dt
+ β3z

(
dz

dt

)2

+ β4

(
dz

dt

)3

(99)

where c is the coefficient of linear damping, where the αi are coefficients of quadratic nonlinear
terms, and where the βi are coefficients of cubic nonlinear terms. For some values of these para-
meters, eq.(99) may exhibit a limit cycle, whereas for other values it may not. We are interested
in understanding how such a periodic solution can be born as the parameters are varied.

We shall investigate this question by using Lindstedt’s method. We begin by introducing a small
parameter ε into (99) by the scaling z = εx, which gives:

d2x

dt2
+x = c

dx

dt
+ ε


α1x

2 + α2x
dx

dt
+ α3

(
dx

dt

)2

+ ε2


β1x

3 + β2x
2dx

dt
+ β3x

(
dx

dt

)2

+ β4

(
dx

dt

)3



(100)
There remains the question of how to scale the coefficient of linear damping c. Let us expand c
in a power series in ε:

c = c0 + c1ε+ c2ε
2 + · · · (101)

In order to perturb off of the simple harmonic oscillator, we must take c0 = 0. Next consider
c1. As we shall see, although the quadratic terms are of O(ε), their first contribution to secular
terms in Lindstedt’s method occurs at O(ε2). Thus if c1 were not zero, the perturbation method
would fail to obtain a limit cycle regardless of the values of the αi and βi coefficients. Physically
speaking, the damping would be too strong relative to the nonlinearities for a limit cycle to exist.
Thus we scale the coefficient c to be O(ε2), and we set c = ε2µ:

d2x

dt2
+x = ε


α1x

2 + α2x
dx

dt
+ α3

(
dx

dt

)2

+ε2


µdx

dt
+ β1x

3 + β2x
2dx

dt
+ β3x

(
dx

dt

)2

+ β4

(
dx

dt

)3



(102)
In order to apply Lindstedt’s method to eq.(102), we first set τ = ωt, and then we expand:

ω = 1 + k1ε+ k2ε
2 + · · · , x(τ) = x0(τ) + εx1(τ) + ε2x2(τ) + · · · (103)

Substituting (103) into (102) and collecting terms gives:

d2x0

dτ 2
+ x0 = 0 (104)

d2x1

dτ 2
+ x1 = −2k1

d2x0

dτ 2
+ α1x

2
0 + α2x0

dx0

dτ
+ α3

(
dx0

dτ

)2

(105)

d2x2

dτ 2
+ x2 = 12 terms which are not listed for brevity (106)
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We take the solution to eq.(104) as
x0(τ) = A cos τ (107)

Substituting (107) into (105) and simplifying the trig terms requires us to take k1 = 0 for no
secular terms, and we obtain the following expression for x1(τ):

x1(τ) =
A2

6
(3(α1 + α3) + (α3 − α1) cos 2τ + α2 sin 2τ) (108)

Substituting these results into the x2 equation (106) and requiring the coefficients of both the
sin τ and cos τ to vanish (for no secular terms), we obtain:

A = 2

√ −µ
α2(α1 + α3) + β2 + 3β4

(109)

as well as an expression for k2 which we omit here for brevity.

According to this approximate analysis, a limit cycle will exist if the expression (109) for the
amplitude A is real. This requires that the linear damping coefficient µ have the opposite sign
to the quantity S defined by

S = α2(α1 + α3) + β2 + 3β4 (110)

If we imagine a situation in which S is fixed and µ is allowed to vary (quasistatically), then as µ
goes through the value zero, a limit cycle is either created or destroyed. This situation is called
a Hopf bifurcation. There are two cases, S > 0 and S < 0. In either case, the stability of the
equilibrium point at the origin of the phase plane is influenced only by the sign of µ, and not by
the value of the αi’s or βi’s. This may be seen by rewriting eq.(102) in the form

d2x

dt2
+ x− ε2µ

dx

dt
= nonlinear terms (111)

from which we see that the origin is stable for µ < 0 and unstable for µ > 0. Moreover the
stability of the limit cycle is opposite to the stability of the origin since motions which leave the
neighborhood of the origin must accumulate on the limit cycle because of the two-dimensional
nature of the phase plane. Thus in the case S < 0, the limit cycle exists only when µ > 0, in
which case the origin is unstable and the limit cycle is stable. This case is called a supercritical
Hopf. The other case, in which S > 0 and which involves the limit cycle being unstable, is called

a subcritical Hopf. In both cases the amplitude of the newly born limit cycle grows like
√
|µ|, a

function which has infinite slope at µ = 0, so that the size of the limit cycle grows dramatically
for parameters close to the bifurcation value of µ = 0.

3.3 Relaxation Oscillations

We have seen that for small values of ε, the limit cycle in van der Pol’s equation (73) is nearly
a circle of radius 2 in the phase plane, and its frequency is approximately equal to unity. The
character of the limit cycle gradually changes as ε is increased, until for very large values of ε it
becomes a relaxation oscillation. In this section we obtain an approximation for the limit cycle
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for large ε by using a perturbation technique called matched asymptotic expansions.

We begin by defining a new small parameter, ε0 =
1

ε
<< 1. Substituting this in eq.(73) gives:

ε0
d2x

dt2
+ ε0x− (1 − x2)

dx

dt
= 0 (112)

Next we scale time by setting t = εν0 t1, where ν is to be determined:

ε1−2ν
0

d2x

dt21
+ ε0 x− ε−ν0 (1 − x2)

dx

dt1
= 0 (113)

The idea of the method is to select ν so that we get a distinguished limit, that is, so that two of
the three terms in eq.(113) are of the same order of ε0, and are larger than the other term. The
first and third terms will balance if 1 − 2ν = −ν, that is, if ν = 1. Another distinguished limit
is ν = −1, for which value the second and third terms will balance. We consider each of these
limits separately.

First we set ν = −1 in eq.(113), which gives

x− (1 − x2)
dx

dt1
+ ε0

2 d
2x

dt21
= 0, t1 = ε0t (114)

Note that t1 is slow time. Neglecting terms of O(ε20), we get a first order d.e. which can be solved
by separation of variables:

(1 − x2)

x
dx = dt1 ⇒ ln |x| − x2

2
= t1 + constant (115)

The motion proceeds according to eq.(115) until it reaches x = ±1 where the speed dx/dt1 is
infinite. At this point the motion undergoes a jump, the dynamics of which are given by the
other distinguished limit, as follows. We set ν = 1 in eq.(113), and to avoid confusion of notation,
we use (y, t2) here in place of (x, t1)

d2y

dt22
− (1 − y2)

dy

dt2
+ ε0

2 y = 0, t2 =
t

ε0
(116)

Note that t2 is fast time. Neglecting terms of O(ε20), we get a second order d.e. which has the
following first integral:

d

dt2

(
dy

dt2
− y +

y3

3

)
= 0 ⇒ dy

dt2
− y +

y3

3
= constant (117)

The second equation of (117) gives a flow along the y-line which represents a jump in the relax-
ation oscillation. We wish to choose the constant of integration so that y = 1 is an equilibrium
point of this flow, in which case the motion will proceed from y = 1 to some as yet unknown
second equilibrium point, which will determine the size of the jump. (The value y = 1 is obtained
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from the other distinguished limit, eq.(115), as described above.) For an equilibrium at y = 1,
we find

dy

dt2
= 0 = y − y3

3
+ constant = 1 − 1

3
+ constant ⇒ constant = −2

3
(118)

Using this value of the integration constant in eq.(117), we obtain

dy

dt2
= y − y3

3
− 2

3
= −1

3
(y − 1)2(y + 2) (119)

From (119) we see that the second equilibrium point lies at y = −2. Thus the jump goes from
y = 1 to y = −2. In a similar fashion we would find that a jump starting at y = −1 ends up at
y = 2.

It remains to compute the period of the relaxation oscillation. Since t2 is fast time and t1 is
slow time, the time spent in making the jump is negligible compared to the time spent moving
according to the second equation in (115). That is, half the period is spent in going from x = 2
to x = 1 via eq.(115), then a nearly instantaneous jump occurs from x = 1 to x = −2, then the
other half of the period is spent in going from x = −2 to x = −1, again via eq.(115), and finally
another nearly instantaneous jump occurs from x = −1 to x = 2.

Half-period on t1 time scale =

[
ln |x| − x2

2

]x=1

x=2

=
3

2
− ln 2 (120)

If we let T represent the period of the limit cycle on the original time scale t, we find

T = (3 − 2 ln 2) ε ≈ 1.614 ε (121)

Note that the period T grows without bound as ε→ ∞.

3.4 The van der Pol oscillator at Infinity

Poincare invented a scheme for examining the behavior of a flow on the phase plane “at infin-
ity”, that is, at large distances from the origin. The idea is to map the plane onto a sphere.
The sphere has unit radius and sits on the plane at x = y = 0. The mapping is achieved by
projecting from the center of the sphere. Note that this is in contrast to the Riemann sphere of
complex variables, where the projection is made from the north pole. In the case of Poincare’s
sphere, each point on the plane is mapped to two points on the sphere, and infinity on the plane
corresponds to the equator on the sphere. Because of the 1-to-2 nature of the map, we will be
interested in examining only the lower hemisphere.

Let the origin O of the x-y-z coordinate system lie at the sphere’s center with the z axis pointing
down towards the plane, and with the x and y directions parallel to those of the plane. A point
P located at (x, y) on the plane will have coordinates (x, y, 1) when viewed in three dimensions.

P = (x, y, 1) (122)
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The vector OP will pierce the lower hemisphere at a point, call it P1. Since the vector OP1 lies
along the vector OP , the former must be a multiple of the latter, giving

P1 = k (x, y, 1) (123)

Here k must be chosen so that the length of OP1 is unity, giving k = 1√
x2+y2+1

. The resulting

expression for P1 is nasty:

P1 = (
x√

x2 + y2 + 1
,

y√
x2 + y2 + 1

,
1√

x2 + y2 + 1
) (124)

Since we are interested mainly in the nature of the motion at infinity, that is, in the neighbor-
hood of the equator of the sphere, Poincare came up with a scheme for simplifying the algebra
involved in the transformation. The idea is to project onto the plane x = 1 instead of projecting
onto the sphere. The plane x = 1 is tangent to the sphere at the point (1,0,0), and thus gives
a topologically consistent picture of the flow in the neighborhood of the equator, everywhere
except at points located near (0,1,0). The projection fails at “the ends of the y-axis”. To see
what is going on there, we use the same idea, but project onto the plane y = 1.

Let P2 be the point at which the vector OP pierces the plane x = 1. As before we may write

P2 = k (x, y, 1) (125)

where this time k must be chosen so that the x coordinate of P2 is unity, that is, k = 1/x. This
gives:

P2 = (1,
y

x
,
1

x
) (126)

Now we imagine a coordinate system located on the plane x = 1 with its origin at the point of
tangency with the sphere, (1,0,0), and with coordinates v and z̃. Here v is directed parallel to
the y axis and z̃ is parallel to the z axis. Since no confusion results from identifying z̃ with z,
we drop the tilde. Thus we are led to make the following transformation of coordinates

v =
y

x
, z =

1

x
(127)

Substituting (127) into van der Pol’s equation,

dx

dt
= y,

dy

dt
= −x+ ε(1 − x2)y (128)

we obtain
dv

dt
=

−εv + z2(εv − v2 − 1)

z2
,

dz

dt
= −vz (129)

In order to avoid the singularity at z = 0, we reparametrize time by replacing t with τ , where

dτ =
dt

z2
(130)



R.Rand Nonlinear Vibrations 28

Using (130), eqs.(129) become:

dv

dτ
= −εv + z2(εv − v2 − 1),

dz

dτ
= −vz3 (131)

Note that z = 0 is an exact solution to eqs.(131). An algebraic equation between v and z
which satisfies both differential equations is called an invariant manifold. Flow on the invariant
manifold z = 0 (the line at infinity), is given by:

dv

dτ
= −εv (132)

Thus for ε > 0, trajectories move in towards v = z = 0 along z = 0. In order to determine
what happens in the neighborhood of v = z = 0 off the line z = 0, we look for another invariant
manifold in the form:

v = a1z + a2z
2 + a3z

3 + a4z
4 + · · · (133)

Differentiating (133) with respect to τ , we obtain

dv

dτ
=
(
a1 + 2a2z + 3a3z

2 + 4a4z
3
) dz
dτ

+ · · · (134)

Substituting (131) into (134) gives

−εv + z2(εv − v2 − 1) =
(
a1 + 2a2z + 3a3z

2 + 4a4z
3
)

(−vz3) + · · · (135)

Substituting (133) into (135) and collecting terms gives:

−εa1z − (1 + a2ε)z
2 + (a1 − a3)εz

3 + a2εz
4 + · · · = 0 (136)

Equating to zero the coefficient of zn for n = 1, 2, 3, 4, · · ·, we obtain:

a1 = 0, a2 = −1

ε
, a3 = 0, a4 = −1

ε
(137)

Substituting (137) into (133), we obtain the following expression for the invariant manifold:

v = −z
2

ε
− z4

ε
+ · · · (138)

In order to determine the flow on the invariant manifold (138), we substitute it into the second
of eqs.(131):

dz

dτ
=
z5

ε
+
z7

ε
+ · · · (139)

Thus on the invariant manifold (138) the flow is away from the point v = z = 0, while on the
invariant manifold z = 0 we saw in eq.(132) that the flow was in towards v = z = 0. This permits
us to conclude that the equilibrium v = z = 0 on the line at infinity is a saddle.
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As mentioned above, the foregoing analysis is not valid at the ends of the y axis. To investigate
what happens there, we would repeat the above procedure for the transformation:

u =
x

y
, z =

1

y
(140)

in which x and y have been interchanged and v has been replaced by u relative to the transfor-
mation (127). We omit this analysis here, but state that it reveals that the equilibrium point
u = z = 0 on the line at infinity is a source for ε > 0. See “Perturbation Methods, Bifurcation
Theory and Computer Algebra” by R.Rand and D.Armbruster, Springer, 1987, pp.71-84, for a
complete treatment of this case.

In conclusion, we see that most trajectories coming from infinity approach the limit cycle in
the van der Pol oscillator from a direction along the x axis, i.e. along the invariant manifold
(138). Note that we have not assumed anything about the size of ε in this section (in contrast
to assumptions made in previous sections of this Chapter).

3.5 Example

Consider the following generalization of van der Pol’s equation:

d2x

dt2
+ x− ε


1 − ax2 − b

(
dx

dt

)2

 dx

dt
= 0 (141)

As parameters a and b are varied, this system exhibits a variety of phase portraits and behaviors
at infinity. As shown in the accompanying Figure, there are 6 different cases, numbered I through
VI. In cases II and VI some initial conditions escape to infinity, while others approach the stable
limit cycle. As we cross the boundary from region III to region II, a limit cycle is born out of a
closed loop consisting of 4 saddle-saddle connections bewteen points at infinity. See “Dynamics
of a System Exhibiting the Global Bifurcation of a Limit Cycle at Infinity” by W.L.Keith and
R.H.Rand, Int. J. Non-Linear Mechanics, 20:325-338 (1985), from which the Figure is taken.

3.6 Problems

Problem 3.1
A Degenerate Limit Cycle. This problem concerns the equation

d2x

dt2
+ x+ ε

dx

dt


1 −

(
dx

dt

)2

+ β

(
dx

dt

)4

 = 0

a. Use Lindstedt’s method including terms of O(ε) to find β such that this equation exhibits a
degenerate (semistable, double root) limit cycle.
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b. Using this value of β and the initial conditions x(0) = A, dx
dt

(0) = 0, continue Lindstedt’s
method to include terms of O(ε2).

c. Using the results of parts a and b, continue Lindstedt’s method to include terms of O(ε3).
Something interesting happens at this order. What is this interesting thing, and what can you
do about it?

Hint: β = 9
40

.

Problem 3.2

How Many Limit Cycles? This problem concerns the equation

d2x

dt2
+ x+ 0.035

dx

dt
+ x3 − 0.6 x2dx

dt
+ 0.1

(
dx

dt

)3

= 0

We are interested in the number and location of any limit cycles which occur in this system.
Investigate this question as follows:

a. Use Lindstedt’s method including terms of O(ε) with the following scaling:

d2x

dt2
+ x+ ε


0.35

dx

dt
+ 10x3 − 6 x2dx

dt
+

(
dx

dt

)3

 = 0, where ε = 0.1

b. Continue Lindstedt’s method to include terms of O(ε2).

c. Use first order averaging.

d. Use second order averaging.

e. Numerically integrate the differential equation.

Compare the number of limit cycles predicted by each of these approximate methods. If they do
not agree, explain why not.

Problem 3.3

Relaxation Oscillations. This problem concerns the equation

d2x

dt2
+ x− ε

(
1 + x− x2

) dx
dt

= 0, ε >> 1
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a. Follow the procedure given in the section on relaxation oscillations to find the period and
amplitude of the limit cycle in this equation.

b. Confirm your result by comparing with numerical integration for ε = 10.
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4 The Forced Duffing Oscillator

The differential equation
d2x

dt2
+ x+ εc

dx

dt
+ εαx3 = εF cosωt (142)

is called the forced Duffing equation. It is used to model the forcing of a damped elastic struc-
ture when the displacements are sufficiently large to make nonlinear elastic effects significant.
In contrast to the unforced Duffing equation (35), eq.(142) is nonautonomous, that is, time t
explicitly appears in the equation in the cosωt term. The phase plane is no longer a suitable
arena in which to investigate this equation since the vector field at a given point changes in
time, allowing a trajectory to return to that point and intersect itself. The system may be made
autonomous, however, by increasing its dimension by one:

dx

dt
= y (143)

dy

dt
= −x− εcy − εαx3 + εF cos z (144)

dz

dt
= ω (145)

This system of three first order o.d.e.’s is defined on a phase space with topology R2 × S, where
the circle S comes from the fact that the vector field of (143)-(145) is 2π-periodic in z.

A convenient scheme for viewing this three-dimensional flow in two dimensions is by way of a
Poincare map M . This map is generated by the flow’s intersection with a surface of section
Σ which may be taken as Σ : z = 0 (mod 2π). The Poincare map M : Σ → Σ is defined as
follows: Let p be a point on Σ, and using it as an initial condition for the flow (143)-(145), let the
resulting trajectory evolve in time until z = 2π, that is until it once again intersects Σ, this time
at some point q. Then M maps p to q. Note that a fixed point of the Poincare map corresponds
to a 2π-periodic motion of the flow.

In the case of eqs.(143)-(145) when F = 0, we could still use this setup, even though in that case
the system would be autonomous and the phase plane would be more appropriate. We use the
three dimensional space instead, in order to draw conclusions about the F > 0 case from the
structure of the F = 0 case. Thus when F = 0, the equilibria that would normally lie in the
x-y phase plane, now become closed loops in the R2 × S phase space, i.e. “periodic” orbits of
period 2π. If we now allow F to be non-zero, a continuity argument may be expected to yield
that each of these periodic orbits continues to persist, giving rise to the conclusion that for each
equilibrium point of the F = 0 system, there is a 2π periodic motion of the F > 0 system, at least
for small enough F . Such a periodic motion would be a limit cycle in the R2 × S phase space,
and a fixed point in the Poincare map. The “continuity argument” is called structural stability
and offers conditions under which this story holds true. The equilibria in the autonomous system
must be hyperbolic, that is the linearized constant coefficient system valid in the neighborhood
of a given equilibrium point must have no eigenvalues with zero real part.
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4.1 Two Variable Expansion Method

In this section we use a perturbation method to investigate the dynamics of eq.(142) for small
values of ε. We could use averaging for this purpose, but instead we use another method which is
equivalent to first order averaging. The idea of the method is that the expected form of solution
of many nonlinear vibration problems involves two time scales: the time scale of the periodic
motion itself, and a slower time scale which represents the approach to the periodic motion.
The method proposes to distinguish between these two time scales by associating a separate
independent (time-like) variable with each one. We will use the notation that ξ represents
stretched time ωt, and η represents slow time εt:

ξ = ωt, η = εt (146)

In order to substitute these definitions into the forced Duffing equation (142), we need expressions
for the first and second derivatives of x with respect to t. We obtain these by using the chain
rule:

dx

dt
=
∂x

∂ξ

dξ

dt
+
∂x

∂η

dη

dt
= ω

∂x

∂ξ
+ ε

∂x

∂η
(147)

d2x

dt2
= ω2∂

2x

∂ξ2
+ 2ωε

∂2x

∂ξ∂η
+ ε2

∂2x

∂η2
(148)

Substituting (147) and (148) into (142) gives the following partial differential equation:

ω2∂
2x

∂ξ2
+ 2ωε

∂2x

∂ξ∂η
+ ε2

∂2x

∂η2
+ x+ εc

(
ω
∂x

∂ξ
+ ε

∂x

∂η

)
+ εαx3 = εF cos ξ (149)

Next we expand x and ω in power series:

x(ξ, η) = x0(ξ, η) + εx1(ξ, η) + · · · , ω = 1 + k1ε+ · · · (150)

Substituting (150) into (149) and neglecting terms of O(ε2), gives, after collecting terms:

∂2x0

∂ξ2
+ x0 = 0 (151)

∂2x1

∂ξ2
+ x1 = −2

∂2x0

∂ξ∂η
− 2k1

∂2x0

∂ξ2
− c

∂x0

∂ξ
− αx3

0 + F cos ξ (152)

We take the general solution to eq.(151) in the form:

x0(ξ, η) = A(η) cos ξ +B(η) sin ξ (153)

Note here that the “constants” of integration A,B are in fact arbitrary functions of slow time η
since (151) is a p.d.e. Substituting (153) into (152) and simplifying the resulting trig terms, we
obtain an equation of the form:

∂2x1

∂ξ2
+ x1 = (· · ·) sin ξ + (· · ·) cos ξ + nonresonant terms (154)
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For no resonant terms, we require the coefficients of sin ξ and cos ξ to vanish, giving the following
slow flow:

2
dA

dη
+ cA+ 2k1B − 3

4
αB(A2 +B2) = 0 (155)

2
dB

dη
+ cB − 2k1A +

3

4
αA(A2 +B2) = F (156)

Equilibrium points of the slow flow (155),(156) correspond to periodic motions of the forced
Duffing equation (142). To determine them, set dA

dη
and dB

dη
to zero. Multiplying (155) by A and

adding it to (156) multiplied by B gives:

R2c = BF, where R2 = A2 +B2 (157)

Similarly, multiplying (155) by B and subtracting it from (156) multiplied by A gives:

−2k1R
2 +

3

4
αR4 = AF (158)

Squaring (157) and adding it to the square of (158) gives:

R2

(
c2 +

(
−2k1 +

3

4
αR2

)2
)

= F 2 (159)

Eq.(159) may be solved for k1 which, with (150) gives the following relation between the response
amplitude R and the frequency ω of the periodic motion:

ω = 1 +
3

8
εαR2 ± ε

1

2

√
F 2

R2
− c2 (160)

Note that if both the forcing F and the damping c are zero, then (160) gives ω to be a single-
valued function of R. If c = 0 but F > 0, then (160) gives ω to be a double-valued function of R
which is valid for every R. On the other hand if both F > 0 and c > 0, then (160) gives ω to be
a double-valued function of R which, however, is only valid for R < F/c.

The slow flow (155),(156) may also be used to determine the stability of these periodic motions
(which correspond to slow flow equilibria). We do so in the special case of zero damping. Setting
c = 0 in (155),(156) we obtain:

dA

dη
= −k1B +

3

8
αB(A2 +B2) (161)

dB

dη
= k1A− 3

8
αA(A2 +B2) +

F

2
(162)

Eqs.(161),(162) have equilibria at

B = 0, A = ±R, where k1 =
3

8
αR2 ∓ F

2R
(163)
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where we use the convention that R > 0. In order to determine the stability of these equilibria,
we set B = u and A = ±R + v and linearize the resulting equations in u, v, giving:

dv

dη
=
(

3

8
αR2 − k1

)
u,

du

dη
=
(
−9

8
αR2 + k1

)
v (164)

From eqs.(164) we see that the equilibrium is a center if

(
3

8
αR2 − k1

)(
9

8
αR2 − k1

)
> 0 (165)

If this same quantity is negative, the equilibrium is a saddle. Eq.(165) can be simplified by using
(163) to eliminate k1, giving that the equilibrium is a center if

± F

2R

(
3

4
αR2 ± F

2R

)
> 0 (166)

Now let’s consider each branch separately. For the upper sign, A = +R > 0 and condition (166)
is satisfied so that the equilibrium is a center. For the lower sign, A = −R < 0 and condition
(166) states that the equilibrium is a center if

3

4
αR2 − F

2R
< 0 (167)

Eq.(167) can be simplified by using eq.(160), which in this case may be written

ω = 1 + k1ε = 1 +
3

8
εαR2 +

Fε

2R
(168)

Differentiating (168) with respect to R, we obtain

dω

dR
= ε

(
3

4
αR− F

2R2

)
(169)

Comparison of (169) with (167) shows that the slow flow equilibrium point corresponding to the

lower sign in eqs.(163) will be a center if
dω

dR
< 0, and a saddle if

dω

dR
> 0.

If we imagine the forcing frequency ω to be varied quasistatically, then as it attains the value at

which
dω

dR
= 0, a saddle-node bifurcation occurs in which the saddle and center (which have been

shown to occur for parameters which satisfy eq.(168)) merge and disappear. The number of slow
flow equilibria will have changed from three to one, and a motion which was circulating around
the bifurcating center would now find itself circulating around the other center. If the system
included some damping, c > 0, the centers would become stable spirals, and a motion which
had been close to the bifurcating spiral would, after the bifurcation, find itself approaching the
remaining spiral. This motion is known as jump phenomenon. Before the bifurcation, each of
the stable spirals had its own basin of attraction, that is, its own set of initial conditions which
would approach it as t→ ∞. As the bifurcation occurs, the basin of attraction of the bifurcating
spiral disappears along with the spiral itself, and a motion originally in that basin of attraction
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now finds itself in the basin of attraction of the remaining spiral. If the forcing frequency were
now to reverse its course (again quasistatically), the bifurcation would occur in reverse and the
saddle and spiral pair would be reborn, and with them the basin of attraction of the spiral
would reappear. However, now the motion which was originally in the basin of attraction of the
bifurcating spiral has been relocated into the basin of attraction of the other spiral, where it
remains. When the value of ω has returned to its original value, the motion in question will have
moved from one basin of attraction to the other. This process is called hysteresis.

4.2 Cusp Catastrophe

The cusp catastrophe is a convenient way of describing a bifurcation sequence which occurs in
many problems, including the forced undamped Duffing equation. Using the condition derived
in the preceding section for equilibria of the slow flow (161),(162) in the case of no damping,
c = 0, we write eq.(163) in the form:

k1 =
3

8
αA2 − F

2A
(170)

Rearranging terms in (170) gives
8k1

3α
A+

4F

3α
= A3 (171)

which may be put into the standard form for the cusp catastrophe surface:

λ1X + λ2 = X3 (172)

where

λ1 =
8k1

3α
, λ2 =

4F

3α
, X = A (173)

Note that the symbol X is a parameter here, unrelated to x in eq.(142). The intersection of
the surface (172) with a plane λ2 =constant is, in general, a pair of curves. This intersection is
singular for λ2 = 0, however, and the resulting curve is called a pitchfork.

The cusp in the cusp catastrophe comes about by asking for the curve in the λ1-λ2 plane which
separates those points which have 3 real X values from those which have only 1. At such points
eq.(172) will have a double root giving a total of 2 distinct real X values. The condition for a
double root is that the partial derivative of (172) with respect to X must vanish, giving:

λ1 = 3X2 (174)

Eliminating X between eqs.(174) and (172) gives the result:

(
λ1

3

)3

=

(
λ2

2

)2

(175)

Solving for λ1, we get a 2/3 power law cusp.
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4.3 Problems

Problem 4.1
Subharmonic Resonance. We studied the forced Duffing oscillator in the form:

d2x

dt2
+ x+ εc

dx

dt
+ εαx3 = εF cosωt, ε << 1 (176)

This problem concerns what happens if the forcing is not small (sometimes called “hard excita-
tion”):

d2x

dt2
+ x+ εc

dx

dt
+ εαx3 = F cosωt, ε << 1 (177)

Note that for small ε, eq.(177) involves perturbing off of the forced harmonic oscillator, whereas
eq.(176) perturbs off of the free harmonic oscillator.

Use the two variable expansion method on eq.(177) to show that to O(ε), the only resonant
parameter values for ω are ω = 1, 3 and 1/3.

Then investigate the excitation of 3:1 subharmonics by setting

ω = 3 + k1ε, where k1 is a detuning parameter. (178)

Proceed as in the text to obtain a slow flow on the x0 coefficients A(η) and B(η). Then transform
to polar coordinates via A(η) = R(η) cos θ(η) and B(η) = R(η) sin θ(η). Look for equilibria of
the resulting slow flow, since these correspond to 3:1 subharmonics. Use the identity

sin2 3θ + cos2 3θ = 1

to eliminate θ in order to find a relation between R2 and the parameters α, c, F and k1 on a 3:1
subharmonic. For parameters α = c = F = 1, solve for k1 and plot R versus k1.
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5 The Forced van der Pol Oscillator

The differential equation
d2x

dt2
+ x− ε(1 − x2)

dx

dt
= εF cosωt (179)

is called the forced van der Pol equation. It is a model for situations in which a system which
is capable of self-oscillation is acted upon by another oscillator, in this case represented by the
εF cosωt term.

When a damped Duffing-type oscillator is driven with a periodic forcing function, we have seen
that the result may be a periodic response at the same frequency as the forcing function. Since
the unforced oscillation is dissipated due to the damping, we are not surprised to find that it
is absent from the steady state forced behavior. In the case of a periodically forced limit cycle
oscillator, however, we may expect that the steady state forced response might include both the
unforced limit cycle oscillation as well as a response at the forcing frequency. If, however, the
forcing is strong enough, and the frequency difference between the unforced limit cycle oscillation
and the forcing function is small enough, then it may happen that the response occurs only at
the forcing frequency. In this case the unforced oscillation is said to have been quenched, the
forcing function is said to have entrained or enslaved the limit cycle oscillator, and the system is
said to be phase-locked or frequency-locked, or just simply locked.

A biological application involves the human sleep-wake cycle, in which a person’s biological clock
is modeled by a van der Pol oscillator, and the daily night-day cycle caused by the earth’s rotation
is modeled as a periodic forcing term. Experiments have shown that the limit cycle of a person’s
biological clock typically has a period which is slightly different than 24 hours. Normal sleep
patterns correspond to the entrainment of a person’s biological clock by the 24 hour night-day
forcing cycle. Insomnia and other sleep disorders may result if the limit cycle of the biological
clock is not quenched, in which case we may expect a quasiperiodic response composed of both
the limit cycle and forcing frequencies.

5.1 Entrainment

In this section we will use the two variable expansion method to derive a slow flow system which
describes the dynamics of eq.(179) for small ε. We replace time t by ξ = ωt and η = εt, giving

ω2∂
2x

∂ξ2
+ 2ωε

∂2x

∂ξ∂η
+ ε2

∂2x

∂η2
+ x− ε(1 − x2)

(
ω
∂x

∂ξ
+ ε

∂x

∂η

)
= εF cos ξ (180)

Next we expand x and ω in power series:

x(ξ, η) = x0(ξ, η) + εx1(ξ, η) + · · · , ω = 1 + k1ε+ · · · (181)

Note that the second of eqs.(181) means that we are restricting the following discussion to cases
where the forcing frequency is nearly equal to the unforced limit cycle frequency, which is called
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1:1 resonance. Substituting (181) into (180) and neglecting terms of O(ε2), gives, after collecting
terms:

∂2x0

∂ξ2
+ x0 = 0 (182)

∂2x1

∂ξ2
+ x1 = −2

∂2x0

∂ξ∂η
− 2k1

∂2x0

∂ξ2
+ (1 − x2

0)
∂x0

∂ξ
+ F cos ξ (183)

We take the general solution to eq.(182) in the form:

x0(ξ, η) = A(η) cos ξ +B(η) sin ξ (184)

Removing resonant terms, we obtain the following slow flow:

2
dA

dη
= −2k1B + A− A

4
(A2 +B2) (185)

2
dB

dη
= 2k1A+B − B

4
(A2 +B2) + F (186)

Eqs.(185),(186) can be simplified by using polar coordinates ρ and θ in the A-B slow flow phase
plane:

A = ρ cos θ, B = ρ sin θ (187)

which produces the following expression for x0, from (184):

x0(ξ, η) = ρ(η) cos(ξ − θ(η)) (188)

Substituting (187) into (185),(186) gives:

dρ

dη
=

ρ

8

(
4 − ρ2

)
+
F

2
sin θ (189)

dθ

dη
= k1 +

F

2ρ
cos θ (190)

We seek equilibrium points of the slow flow (189),(190). These represent locked periodic motions

of (179). Setting
dρ

dη
=
dθ

dη
=0, solving for sin θ and cos θ and using sin2 θ + cos2 θ = 1, we obtain

F 2 = ρ2

(
1 − ρ2

4

)2

+ 4k2
1ρ

2 (191)

Expanding eq.(191),
u3

16
− u2

2
+ (4k2

1 + 1)u− F 2 = 0 (192)

where we have set u = ρ2 in order to simplify the algebraic expressions. Eq.(192) is a cubic
polynomial in u, and application of Descartes’ Rule of Signs gives, in view of its 3 sign changes,
that it has either 3 positive roots, or 1 positive and two complex roots. The transition between
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these two cases occurs when there is a repeated root, and the condition for this transition is that
the partial derivative of (192) should vanish, which gives

3u2

16
− u+ 1 + 4k2

1 = 0 (193)

Eliminating u between eqs.(193) and (192), we obtain:

F 4

16
− F 2

27
(1 + 36k2

1) +
16

27
k2

1(1 + 4k2
1)

2 = 0 (194)

Eq.(194) plots as two curves meeting at a cusp in the k1-F plane. As one of these curves is
traversed quasistatically, a saddle-node bifurcation occurs. At the cusp, a further degeneracy
occurs and there is a triply repeated root. The condition for this is that the partial derivative of
(193) should vanish, which gives

3u

8
− 1 = 0 (195)

Substituting u =
8

3
into (193) and (192) gives the location of the cusp as:

k1 =
1√
12

≈ 0.288, F =

√
32

27
≈ 1.088 (196)

Before we can conclude that the perturbation analysis predicts that the forced van der Pol
equation (179) supports entrainment, we must investigate the stability of the slow flow equilibria.
Let (ρ0, θ0) be an equilibrium solution of eqs.(189),(190). To determine its stability, we set

ρ = ρ0 + v, θ = θ0 + w (197)

where v and w are small deviations from equilibrium. Substituting (197) into (189),(190) and
linearizing in v and w gives the constant coefficient system:

dv

dη
=

v

2
− 3

8
ρ2

0v +
F

2
cos θ0 w (198)

dw

dη
= − F

2ρ2
0

cos θ0 v − F

2ρ0
sin θ0 w (199)

Eqs.(198),(199) may be simplified by using the following expressions from (189),(190) at equilib-
rium:

F

2
sin θ0 = −ρ0

2
+
ρ3

0

8
,

F

2
cos θ0 = −k1ρ0 (200)

Thus stability is determined by the eigenvalues of the following matrix M :

M =




1

2
− 3

8
ρ2

0 −k1ρ0

k1

ρ0

1

2
− 1

8
ρ2

0


 (201)
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The trace and determinant of M are given by:

tr(M) = 1 − ρ2
0

2
, det(M) =

(
−1

2
+

3

8
ρ2

0

)(
−1

2
+

1

8
ρ2

0

)
+ k2

1 (202)

The eigenvalues λ of M satisfy the characteristic equation:

λ2 − tr(M) λ+ det(M) = 0 (203)

For stability, the eigenvalues of M must have negative real parts. This requires that tr(M) < 0
and det(M) > 0, which become, using the notation u = ρ2

0:

tr(M) = 1 − u

2
< 0, det(M) =

1

4

(
3u2

16
− u+ 1 + 4k2

1

)
> 0 (204)

Comparison of this expression for det(M) and eq.(193) shows that det(M) vanishes on the curves
(194) along which there are saddle-node bifurcations. This illustrates a very typical phenomenon
that characterizes nonlinear vibrations, namely that a change in stability is accompanied by a
bifurcation. (This is not true of linear systems, in which a change in stability cannot be accom-
panied by a bifurcation.)

The condition (204) on the trace(M) requires that u > 2 for stability. Substituting u = 2 in
(192), we obtain

F 2 =
1

2
+ 8k2

1 (205)

Hopf bifurcations occur along the curve represented by eq.(205) (assuming det(M) > 0).

This curve (205) intersects the lower curve of saddle-node bifurcations, eq.(194), at a point we
shall refer to as point P , and it intersects and is tangent to the upper curve of saddle-node
bifurcations at a point we shall refer to as point Q:

P : k1 =

√
5

8
≈ 0.279, F =

3√
8
≈ 1.060, Q : k1 =

1

4
= 0.25, F = 1 (206)

It turns out that the perturbation analysis predicts that the forced van der Pol equation (179)
exhibits stable entrainment solutions everywhere in the first quadrant of the k1-F parameter
plane except in that region bounded by (i) the lower curve of saddle-node bifurcations, eq.(194),
from the origin to the point P , (ii) the curve of Hopf bifurcations, eq.(205), from point P to
infinity, and (iii) the k1 axis. In physical terms this means that for a given detuning k1, there is
a minimum value of forcing F required in order for entrainment to occur. Moreover, as the de-
tuning k1 gets larger, entrainment requires a larger forcing amplitude F . Also note that since k1

always appears in the form k2
1 in the equations of the bifurcation and stability curves, the above

conclusions are invariant under a change of sign of k1, that is, they are independent of whether
we are above or below the 1:1 resonance. (See “Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields” by J.Guckenheimer and P.Holmes, Springer Verlag, 1983, pp.70-74
for a more detailed analysis of the bifurcations involved in this problem.)
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5.2 Problems

Problem 5.1
In this Chapter we have displayed the bifurcation curves in the k1-F parameter plane. Many
texts display the equivalent results as plots in the k1-u plane, with F fixed. In order for you to
be familiar with this representation of the problem, do the following:

a. Plot the curves tr(M)=0 and det(M)=0 in the k2
1-u plane for 0 < k2

1 < 0.2 and 0 < u < 5.
Label stable regions S and unstable regions U.

b. On this same plot, show the slow flow equilibrium condition (192) with F = 1.
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6 Mathieu’s Equation

The differential equation
d2x

dt2
+ (δ + ε cos t) x = 0 (207)

is called Mathieu’s equation. It is a linear differential equation with variable (periodic) coeffi-
cients. It commonly occurs in nonlinear vibration problems in two different ways: (i) in systems
in which there is periodic forcing, and (ii) in stability studies of periodic motions in nonlinear
autonomous systems.

As an example of (i), take the case of a pendulum whose support is periodically forced in a
vertical direction. The governing differential equation is

d2x

dt2
+

(
g

L
− Aω2

L
cosωt

)
sin x = 0 (208)

where the vertical motion of the support is A cosωt, and where g is the acceleration of gravity,
L is the pendulum’s length, and x is its angle of deflection. In order to investigate the stability
of one of the equilibrium solutions x = 0 or x = π, we would linearize (208) about the desired
equilibrium, giving, after suitable rescaling of time, an equation of the form of (207).

As an example of (ii), we consider a system known as “the particle in the plane”. This consists
of a particle of unit mass which is constrained to move in the x-y plane, and is restrained by two
linear springs, each with spring constant of 1

2
. The anchor points of the two springs are located

on the x axis at x = 1 and x = −1. Each of the two springs has unstretched length L. This
autonomous two degree of freedom system exhibits an exact solution corresponding to a mode
of vibration in which the particle moves along the x axis:

x = A cos t, y = 0 (209)

In order to determine the stability of this motion, one must first derive the equations of motion,
then substitute x = A cos t+ u, y = 0 + v, where u and v are small deviations from the motion
(209), and then linearize in u and v. The result is two linear differential equations on u and v.
The u equation turns out to be the simple harmonic oscillator, and cannot produce instability.
The v equation is:

d2v

dt2
+

(
1 − L− A2 cos2 t

1 − A2 cos2 t

)
v = 0 (210)

Expanding (210) for small A and setting τ = 2t, we obtain

d2v

dτ 2
+

(
2 − 2L− A2L

8
− A2L

8
cos τ +O(A4)

)
v = 0 (211)

which is, to O(A4), in the form of Mathieu’s eq.(207) with δ =
2 − 2L− A2L

8
and ε = −A

2L

8
.

The chief concern with regard to Mathieu’s equation is whether or not all solutions are bounded
for given values of the parameters δ and ε. If all solutions are bounded then the corresponding
point in the δ-ε parameter plane is said to be stable. A point is called unstable if an unbounded
solution exists.
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6.1 Perturbations

In this section we will use the two variable expansion method to look for a general solution to
Mathieu’s eq.(207) for small ε. Since (207) is linear, there is no need to stretch time, and we set
ξ = t and η = εt, giving

∂2x

∂ξ2
+ 2ε

∂2x

∂ξ∂η
+ ε2

∂2x

∂η2
+ (δ + ε cos ξ) x = 0 (212)

Next we expand x in a power series:

x(ξ, η) = x0(ξ, η) + εx1(ξ, η) + · · · (213)

Substituting (213) into (207) and neglecting terms of O(ε2), gives, after collecting terms:

∂2x0

∂ξ2
+ δ x0 = 0 (214)

∂2x1

∂ξ2
+ δ x1 = −2

∂2x0

∂ξ∂η
− x0 cos ξ (215)

We take the general solution to eq.(214) in the form:

x0(ξ, η) = A(η) cos
√
δ ξ +B(η) sin

√
δ ξ (216)

Substituting (216) into (215), we obtain

∂2x1

∂ξ2
+ δ x1 = 2

√
δ
dA

dη
sin

√
δ ξ − 2

√
δ
dB

dη
cos

√
δ ξ

−A cos
√
δ ξ cos ξ − B sin

√
δ ξ cos ξ (217)

Using some trig identities, this becomes

∂2x1

∂ξ2
+ δ x1 = 2

√
δ
dA

dη
sin

√
δ ξ − 2

√
δ
dB

dη
cos

√
δ ξ

−A
2

(
cos(

√
δ + 1)ξ + cos(

√
δ − 1)ξ

)

−B
2

(
sin(

√
δ + 1)ξ + sin(

√
δ − 1)ξ

)
(218)

For a general value of δ, removal of resonance terms gives the trivial slow flow:

dA

dη
= 0,

dB

dη
= 0 (219)

This means that for general δ, the cos t driving term in Mathieu’s eq.(207) has no effect. However,
if we choose δ = 1

4
, eq.(218) becomes

∂2x1

∂ξ2
+

1

4
x1 =

dA

dη
sin

ξ

2
− dB

dη
cos

ξ

2

−A
2

(
cos

3ξ

2
+ cos

ξ

2

)

−B
2

(
sin

3ξ

2
− sin

ξ

2

)
(220)
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Now removal of resonance terms gives the slow flow:

dA

dη
= −B

2
,

dB

dη
= −A

2
⇒ d2A

dη2
=
A

4
(221)

Thus A(η) and B(η) involve exponential growth, and the parameter value δ = 1
4

causes insta-
bility. This corresponds to a 2:1 subharmonic resonance in which the driving frequency is twice
the natural frequency.

This discussion may be generalized by “detuning” the resonance, that is, by expanding δ in a
power series in ε:

δ =
1

4
+ δ1ε+ δ2ε

2 + · · · (222)

Now eq.(215) gets an additional term:

∂2x1

∂ξ2
+

1

4
x1 = −2

∂2x0

∂ξ∂η
− x0 cos ξ − δ1x0 (223)

which results in the following additional terms in the slow flow eqs.(221):

dA

dη
=
(
δ1 − 1

2

)
B,

dB

dη
= −

(
δ1 +

1

2

)
A ⇒ d2A

dη2
+
(
δ2
1 −

1

4

)
A = 0 (224)

Here we see that A(η) and B(η) will be sine and cosine functions of slow time η if δ2
1 −

1

4
> 0,

that is, if either δ1 >
1

2
or δ1 < −1

2
. Thus the following two curves in the δ-ε plane represent

stability changes, and are called transition curves:

δ =
1

4
± ε

2
+O(ε2) (225)

These two curves emanate from the point δ = 1
4

on the δ axis and define a region of instability
called a tongue. Inside the tongue, for small ε, x grows exponentially in time. Outside the
tongue, from (216) and (224), x is the sum of terms each of which is the product of two periodic
(sinusoidal) functions with generally incommensurate frequencies, that is, x is a quasiperiodic
function of t.

6.2 Floquet Theory

In this section we present Floquet theory, that is, the general theory of linear differential equa-
tions with periodic coefficients. Our goal is to apply this theory to Mathieu’s equation (207).

Let x be an n×1 column vector, and let A be an n×n matrix with time-varying coefficients which
have period T . Floquet theory is concerned with the following system of first order differential
equations:

dx

dt
= A(t) x, A(t+ T ) = A(t) (226)
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Notice that if the independent variable t is replaced by t+T , the system (226) remains invariant.
This means that if x(t) is a solution (vector) of (226), and if in the vector function x(t), t is
replaced everywhere by t + T , then new vector, x(t + T ), which in general will be completely
different from x(t), is also a solution of (226). This observation may be stated conveniently in
terms of fundamental solution matrices.

Let X(t) be a fundamental solution matrix of (226). X(t) is then an n× n matrix, with each of
its columns consisting of a linearly independent solution vector of (226). In particular, we choose
the ith column vector to satisfy an initial condition for which each of the scalar components of
x(0) is zero, except for the ith scalar component of x(0), which is unity. This gives X(0) = I,
where I is the n × n identity matrix. Since the columns of X(t) are linearly independent, they
form a basis for the n-dimensional solution space of (226), and thus any other fundamental so-
lution matrix Z(t) may be written in the form Z(t) = X(t) C, where C is a nonsingular n × n
matrix. This means that each of the columns of Z(t) may be written as a linear combination of
the columns of X(t).

From our previous observations, replacing t by t+T in X(t) produces a new fundamental solution
matrix X(t + T ). Each of the columns of X(t + T ) may be written as a linear combination of
the columns of X(t), so that

X(t+ T ) = X(t) C (227)

Note that at t = 0, (227) becomes X(T ) = X(0)C = IC = C, that is,

C = X(T ) (228)

Eq.(228) says that the matrix C (about which we know nothing up to now) is in fact equal to
the value of the fundamental solution matrix X(t) evaluated at time T , that is, after one forcing
period. Thus C could be obtained by numerically integrating (226) from t = 0 to t = T , n times,
once for each of the n initial conditions satisfied by the ith column of X(0).

Eq.(227) is a key equation here. It has replaced the original system of o.d.e.’s with an iterative
equation. For example, if we were to consider eq.(227) for the set of t values t = 0, T, 2T, 3T, · · ·,
we would be generating the successive iterates of a Poincare map corresponding to the surface
of section Σ : t = 0 (mod2π). This immediately gives the result that X(nT ) = Cn, which shows
that the question of the boundedness of solutions is intimately connected to the matrix C.

In order to solve eq.(227), we transform to normal coordinates. Let Y (t) be another fundamental
solution matrix, as yet unknown. Each of the columns of Y (t) may be written as a linear
combination of the columns of X(t):

Y (t) = X(t) R (229)

where R is an as yet unknown n × n nonsingular matrix. Combining eqs.(227) and (229), we
obtain

Y (t+ T ) = Y (t) R−1CR (230)

Now let us suppose that the matrix C has n linearly independent eigenvectors. If we choose
the columns of R as these n eigenvectors, then the matrix product R−1CR will be a diagonal
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matrix with the eigenvalues λi of C on its main diagonal. With R−1CR diagonal, the matrix Y (t)
satisfying (230) will also be diagonal. This can be shown by construction: Let yi(t) represent
the ith scalar component on the main diagonal of Y (t). Then assuming Y (t) is diagonal, (230)
can be written:

yi(t+ T ) = λi yi(t) (231)

Eq.(231) is a linear functional equation. Let us look for a solution to it in the form

yi(t) = λkti pi(t) (232)

where k is an unknown constant and pi(t) is an unknown function. Substituting (232) into (231)
gives:

yi(t+ T ) = λ
k(t+T )
i pi(t+ T ) = λi(λ

kt
i pi(t)) = λi yi(t) (233)

Eq.(233) is satisfied if we take k = 1/T and pi(t) a periodic function of period T :

yi(t) = λ
t/T
i pi(t), pi(t+ T ) = pi(t) (234)

Here eq.(234) is the general solution to eq.(231). The arbitrary periodic function pi(t) plays the
same role here that an arbitrary constant plays in the case of a linear first order o.d.e.

Since we are interested in the question of boundedness of solutions, we can see from eq.(234)
that if |λi| > 1, then yi → ∞ as t → ∞, whereas if |λi| < 1, then yi → 0 as t → ∞. Thus we
see that the original system (226) will be stable (all solutions bounded) if every eigenvalue λi
of C = X(T ) has modulus less than unity. If any one eigenvalue λi has modulus greater than
unity, then (226) will be unstable (an unbounded solution exists).

Note that our assumption that C has n linearly independent eigenvectors could be relaxed,
in which case we would have to deal with Jordan canonical form. The reader is referred to
“Asymptotic Behavior and Stability Problems in Ordinary Differential Equations” by L.Cesari,
Springer Verlag, 1963, section 4.1 for a complete discussion of this case.

6.3 Hill’s Equation

In this section we apply Floquet theory to a generalization of Mathieu’s equation (207), called
Hill’s equation:

d2x

dt2
+ f(t) x = 0, f(t+ T ) = f(t) (235)

Here x and f are scalars, and f(t) represents a general periodic function with period T . Eq.(235)
includes examples such as eq.(210).

We begin by defining x1 = x and x2 =
dx

dt
so that (235) can be written as a system of two first

order o.d.e.’s:
d

dt

[
x1

x2

]
=

[
0 1

−f(t) 0

] [
x1

x2

]
(236)
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Next we construct a fundamental solution matrix out of two solution vectors,

[
x11(t)
x12(t)

]
and[

x21(t)
x22(t)

]
, which satisfy the initial conditions:

[
x11(0)
x12(0)

]
=

[
1
0

]
,

[
x21(0)
x22(0)

]
=

[
0
1

]
(237)

As we saw in the previous section, the matrix C is the evaluation of the fundamental solution
matrix at time T :

C =

[
x11(T ) x21(T )
x12(T ) x22(T )

]
(238)

From Floquet theory we know that stability is determined by the eigenvalues of C:

λ2 − (trC)λ+ detC = 0 (239)

where trC and detC are the trace and determinant of C. Now Hill’s eq.(235) has the special
property that detC=1. This may be shown by defining W (the Wronskian) as:

W (t) = detC = x11(t) x22(t) − x12(t) x21(t) (240)

Taking the time derivative of W and using eq.(236) gives that
dW

dt
= 0, which implies that

W (t) = constant = W (0) = 1. Thus eq.(239) can be written:

λ2 − (trC)λ+ 1 = 0 (241)

which has the solution:

λ =
trC ±√

trC2 − 4

2
(242)

Floquet theory showed that instability results if either eigenvalue has modulus larger than unity.

Thus if |trC| > 2, then (242) gives real roots. But the product of the roots is unity, so if one
root has modulus less than unity, the other has modulus greater than unity, with the result that
this case is UNSTABLE and corresponds to exponential growth in time.

On the other hand, if |trC| < 2, then (242) gives a pair of complex conjugate roots. But since
their product must be unity, they must both lie on the unit circle, with the result that this case
is STABLE. Note that the stability here is neutral stability not asymptotic stability, since Hill’s
eq.(235) has no damping. This case corresponds to quasiperiodic behavior in time.

Thus the transition from stable to unstable corresponds to those parameter values which give
|trC| = 2. From (242), if trC = 2 then λ = 1, 1, and from eq.(234) this corresponds to a periodic
solution with period T . On the other hand, if trC = −2 then λ = −1,−1, and from eq.(234) this
corresponds to a periodic solution with period 2T . This gives the important result that on the
transition curves in parameter space between stable and unstable, there exist periodic motions of
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period T or 2T .

The theory presented in this section can be used as a practical numerical procedure for deter-
mining stability of a Hill’s equation. Begin by numerically integrating the o.d.e. for the two
initial conditions (237). Carry each numerical integration out to time t = T and so obtain
trC = x11(T ) + x22(T ). Then |trC| > 2 is unstable, while |trC| < 2 is stable. Note that this
approach allows you to draw conclusions about large time behavior after numerically integrating
for only one forcing period. Without Floquet theory you would have to numerically integrate out
to large time in order to determine if a solution was growing unbounded, especially for systems
which are close to a transition curve, in which case the asymptotic growth is very slow.

The reader is referred to “Nonlinear Vibrations in Mechanical and Electrical Systems” by J.Stoker,
Wiley, 1950, Chapter 6, for a brief treatment of Floquet theory and Hill’s equation. See “Hill’s
Equation” by W.Magnus and S.Winkler, Dover, 1979 for a complete treatment.

6.4 Harmonic Balance

In this section we apply Floquet theory to Mathieu’s equation (207). Since the period of the
forcing function in (207) is T = 2π, we may apply the result obtained in the previous section to
conclude that on the transition curves in the δ-ε parameter plane there exist solutions of period
2π or 4π. This motivates us to look for such a solution in the form of a Fourier series:

x(t) =
∞∑
n=0

an cos
nt

2
+ bn sin

nt

2
(243)

This series represents a general periodic function with period 4π, and includes functions with
period 2π as a special case (when aodd and bodd are zero). Substituting (243) into Mathieu’s
equation (207), simplifying the trig and collecting terms (a procedure called harmonic balance)
gives four sets of algebraic equations on the coefficients an and bn. Each set deals exclusively
with aeven, beven, aodd and bodd, respectively. Each set is homogeneous and of infinite order, so for
a nontrivial solution the determinants must vanish. This gives four infinite determinants (called
Hill’s determinants):

aeven :

∣∣∣∣∣∣∣∣∣

δ ε/2 0 0
ε δ − 1 ε/2 0 · · ·
0 ε/2 δ − 4 ε/2

· · ·

∣∣∣∣∣∣∣∣∣
= 0 (244)

beven :

∣∣∣∣∣∣∣∣∣

δ − 1 ε/2 0 0
ε/2 δ − 4 ε/2 0 · · ·
0 ε/2 δ − 9 ε/2

· · ·

∣∣∣∣∣∣∣∣∣
= 0 (245)

aodd :

∣∣∣∣∣∣∣∣∣

δ − 1/4 + ε/2 ε/2 0 0
ε/2 δ − 9/4 ε/2 0 · · ·
0 ε/2 δ − 25/4 ε/2

· · ·

∣∣∣∣∣∣∣∣∣
= 0 (246)
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bodd :

∣∣∣∣∣∣∣∣∣

δ − 1/4 − ε/2 ε/2 0 0
ε/2 δ − 9/4 ε/2 0 · · ·
0 ε/2 δ − 25/4 ε/2

· · ·

∣∣∣∣∣∣∣∣∣
= 0 (247)

In all four determinants the typical row is of the form:

· · · 0 ε/2 δ − n2/4 ε/2 0 · · ·
(except for the first one or two rows).

Each of these four determinants represents a functional relationship between δ and ε, which plots
as a set of transition curves in the δ-ε plane. By setting ε = 0 in these determinants it is easy
to see where the associated curves intersect the δ axis. The transition curves obtained from the
aeven and beven determinants intersect the δ axis at δ = n2, n = 0, 1, 2, · · ·, while those obtained

from the aodd and bodd determinants intersect the δ axis at δ =
(2n+ 1)2

4
, n = 0, 1, 2, · · ·. For

ε > 0, each of these points on the δ axis gives rise to two transition curves, one coming from
the associated a determinant, and the other from the b determinant. Thus there is a tongue of
instability emanating from each of the following points on the δ axis:

δ =
n2

4
, n = 0, 1, 2, 3, · · · (248)

The n = 0 case is an exception as only one transition curve emanates from it, as a comparison
of eq.(244) with eq.(245) will show.

Note that the transition curves (225) found earlier in this Chapter by using the two variable
expansion method correspond to n = 1 in eq.(248). Why did the perturbation method miss the
other tongues of instability? It was because we truncated the perturbation method, neglecting
terms of O(ε2). The other tongues of instability turn out to emerge at higher order truncations
in the various perturbation methods (two variable expansion, averaging, Lie transforms, nor-
mal forms, even regular perturbations). In all cases these methods deliver an expression for a
particular transition curve in the form of a power series expansion:

δ =
n2

4
+ δ1ε+ δ2ε

2 + · · · (249)

As an alternative method of obtaining such an expansion, we can simply substitute (249) into any
of the determinants (244)-(247) and collect terms, in order to obtain values for the coefficients
δi. As an example, let us substitute (249) for n = 1 into the aodd determinant (246). Expanding
a 3 × 3 truncation of (246), we get (using computer algebra):

−ε
3

8
− δ ε2

2
+

13 ε2

8
+
δ2 ε

2
− 17 δ ε

4
+

225 ε

32
+ δ3 − 35 δ2

4
+

259 δ

16
− 225

64
(250)

Substituting (249) with n = 1 into (250) and collecting terms gives:

(12 δ1 + 6) ε+

(
24 δ2 − 16 δ1

2 − 8 δ1 + 3
)
ε2

2
+ · · · (251)
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Requiring the coefficients of ε and ε2 in (251) to vanish gives:

δ1 = −1

2
, δ2 = −1

8
(252)

This process can be continued to any order of truncation. Here are the expansions of the first
few transition curves:

δ = −ε
2

2
+

7 ε4

32
− 29 ε6

144
+

68687 ε8

294912
− 123707 ε10

409600
+

8022167579 ε12

19110297600
+ · · · (253)

δ =
1

4
− ε

2
− ε2

8
+
ε3

32
− ε4

384
− 11 ε5

4608
+

49 ε6

36864
− 55 ε7

294912
− 83 ε8

552960

+
12121 ε9

117964800
− 114299 ε10

6370099200
− 192151 ε11

15288238080
+

83513957 ε12

8561413324800
+ · · · (254)

δ =
1

4
+
ε

2
− ε2

8
− ε3

32
− ε4

384
+

11 ε5

4608
+

49 ε6

36864
+

55 ε7

294912
− 83 ε8

552960

− 12121 ε9

117964800
− 114299 ε10

6370099200
+

192151 ε11

15288238080
+

83513957 ε12

8561413324800
+ · · · (255)

δ = 1 − ε2

12
+

5 ε4

3456
− 289 ε6

4976640
+

21391 ε8

7166361600

− 2499767 ε10

14447384985600
+

1046070973 ε12

97086427103232000
+ · · · (256)

δ = 1 +
5 ε2

12
− 763 ε4

3456
+

1002401 ε6

4976640
− 1669068401 ε8

7166361600

+
4363384401463 ε10

14447384985600
− 40755179450909507 ε12

97086427103232000
+ · · · (257)

6.5 Effect of Damping

In this section we investigate the effect that damping has on the transition curves of Mathieu’s
equation by applying the two variable expansion method to the following equation, known as the
damped Mathieu equation:

d2x

dt2
+ c

dx

dt
+ (δ + ε cos t) x = 0 (258)

In order to facilitate the perturbation method, we scale the damping coefficient c to be O(ε):

c = εµ (259)
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We can use the same setup that we did earlier in this Chapter, whereupon eq.(212) becomes:

∂2x

∂ξ2
+ 2ε

∂2x

∂ξ∂η
+ ε2

∂2x

∂η2
+ εµ

(
∂x

∂ξ
+ ε

∂x

∂η

)
+ (δ + ε cos ξ) x = 0 (260)

Now we expand x as in eq.(213) and δ as in eq.(222), and we find that eq.(223) gets an additional
term:

∂2x1

∂ξ2
+

1

4
x1 = −2

∂2x0

∂ξ∂η
− x0 cos ξ − δ1x0 − µ

∂x0

∂ξ
(261)

which results in two additional terms appearing in the slow flow eqs.(224):

dA

dη
= −µ

2
A+

(
δ1 − 1

2

)
B,

dB

dη
= −

(
δ1 +

1

2

)
A− µ

2
B (262)

Eqs.(262) are a linear constant coefficient system which may be solved by assuming a solution
in the form A(η) = A0 exp(λη), B(η) = B0 exp(λη). For nontrivial constants A0 and B0, the
following determinant must vanish:

∣∣∣∣∣∣∣
−µ

2
− λ −1

2
+ δ1

−1
2
− δ1 −µ

2
− λ

∣∣∣∣∣∣∣ = 0 ⇒ λ = −µ
2
±
√
−δ2

1 +
1

4
(263)

For the transition between stable and unstable, we set λ = 0, giving the following value for δ1:

δ1 = ±
√

1 − µ2

2
(264)

This gives the following expressions for the n = 1 transition curves:

δ =
1

4
± ε

√
1 − µ2

2
+O(ε2) =

1

4
±

√
ε2 − c2

2
+O(ε2) (265)

Eq.(265) predicts that for a given value of c there is a minimum value of ε which is required
for instability to occur. The n = 1 tongue, which for c = 0 emanates from the δ axis, becomes
detached from the δ axis for c > 0. This prediction is verified by numerically integrating eq.(258)
for fixed c, while δ and ε are permitted to vary.

6.6 Effect of Nonlinearity

In the previous sections of this Chapter we have seen how unbounded solutions to Mathieu’s
equation (207) can result from resonances between the forcing frequency and the oscillator’s
unforced natural frequency. However, real physical systems do not exhibit unbounded behavior.
The difference lies in the fact that the Mathieu equation is linear. The effects of nonlinearity
can be explained as follows: as the resonance causes the amplitude of the motion to increase, the
relation between period and amplitude (which is a characteristic effect of nonlinearity) causes
the resonance to detune, decreasing its tendency to produce large motions.
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A more realistic model can be obtained by including nonlinear terms in the Mathieu equation.
For example, in the case of the vertically driven pendulum, eq.(208), if we expand sin x in a
Taylor series, we get:

d2x

dt2
+

(
g

L
− Aω2

L
cosωt

)(
x− x3

6
+ · · ·

)
= 0 (266)

Now if we rescale time by τ = ωt and set δ =
g

ω2L
and ε =

A

L
, we get:

d2x

dτ 2
+ (δ − ε cos τ)

(
x− x3

6
+ · · ·

)
= 0 (267)

Next, if we scale x by x =
√
ε y and neglect terms of O(ε2), we get:

d2y

dτ 2
+ (δ − ε cos τ) y − ε

δ

6
y3 +O(ε2) = 0 (268)

Motivated by this example, in this section we study the following nonlinear Mathieu equation:

d2x

dt2
+ (δ + ε cos t) x+ εαx3 = 0 (269)

We once again use the two variable expansion method to treat this equation. Using the same
setup that we did earlier in this Chapter, eq.(212) becomes:

∂2x

∂ξ2
+ 2ε

∂2x

∂ξ∂η
+ ε2

∂2x

∂η2
+ (δ + ε cos ξ) x+ εαx3 = 0 (270)

We expand x as in eq.(213) and δ as in eq.(222), and we find that eq.(223) gets an additional
term:

∂2x1

∂ξ2
+

1

4
x1 = −2

∂2x0

∂ξ∂η
− x0 cos ξ − δ1x0 − αx3

0 (271)

where x0 is of the form:

x0(ξ, η) = A(η) cos
ξ

2
+B(η) sin

ξ

2
(272)

Removal of resonant terms in (271) results in the appearance of some additional cubic terms in
the slow flow eqs.(224):

dA

dη
=
(
δ1 − 1

2

)
B +

3α

4
B(A2 +B2),

dB

dη
= −

(
δ1 +

1

2

)
A− 3α

4
A(A2 +B2) (273)

In order to more easily work with the slow flow (273), we transform to polar coordinates in the
A-B phase plane:

A = R cos θ, B = R sin θ (274)

Note that eqs.(274) and (272) give the following alternate expression for x0:

x0(ξ, η) = R(η) cos

(
ξ

2
− θ(η)

)
(275)
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Substitution of (274) into the slow flow (273) gives:

dR

dη
= −R

2
sin 2θ,

dθ

dη
= −δ1 − cos 2θ

2
− 3α

4
R2 (276)

We seek equilibria of the slow flow (276). From (275), a solution in which R and θ are constant
in slow time η represents a periodic motion of the nonlinear Mathieu equation (269) which has
one-half the frequency of the forcing function, that is, such a motion is a 2:1 subharmonic. Such
slow flow equilibria satisfy the equations:

−R
2

sin 2θ = 0, − δ1 − cos 2θ

2
− 3α

4
R2 = 0 (277)

Ignoring the trivial solution R = 0, the first eq. of (277) requires sin 2θ = 0 or θ = 0,
π

2
, π or

3π

2
.

Solving the second eq. of (277) for R2, we get:

R2 = − 4

3α

(
cos 2θ

2
+ δ1

)
(278)

For a nontrivial real solution, R2 > 0. Let us assume that the nonlinearity parameter α > 0.

Then in the case of θ = 0 or π, cos 2θ = 1 and nontrivial equilibria exist only for δ1 < −1

2
. On

the other hand, for θ =
π

2
or

3π

2
, cos 2θ = −1 and nontrivial equilibria require δ1 <

1

2
.

Since δ1 = ±1

2
corresponds to transition curves for the stability of the trivial solution, the analy-

sis predicts that bifurcations occur as we cross the transition curves in the δ-ε plane. That is,
imagine quasistatically decreasing the parameter δ while ε is kept fixed, and moving through the

n = 1 tongue emanating from the point δ =
1

4
on the δ axis. As δ decreases across the right

transition curve, the trivial solution x = 0 becomes unstable and simultaneously a stable 2:1
subharmonic motion is born. This motion grows in amplitude as δ continues to decrease. When
the left transition curve is crossed, the trivial solution becomes stable again, and an unstable 2:1
subharmonic is born. This scenario can be pictured as involving two pitchfork bifurcations.

If the nonlinearity parameter α < 0, a similar sequence of bifurcations occurs, except in this case
the subharmonic motions are born as δ increases quasistatically through the n = 1 tongue.

6.7 Problems

Problem 6.1
Alternatives to Floquet theory. As we saw in this Chapter, Floquet theory offers an approach
to determining the stablity (that is the boundedness of all solutions) of the n-dimensional linear
system with periodic coefficients:

dx

dt
= A(t) x, A(t+ T ) = A(t) (279)
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where x is an n-vector and A(t) is an n× n matrix.

This problem involves three alternative approaches. For each one, decide whether or not it is
valid. If you think a method is valid, offer a line of reasoning showing why it works. If you think
it is wrong, explain why it doesn’t work or find a counterexample.

1. Set x = Ty where y is an n-vector and T is an n × n matrix. Then dy
dt

= T−1ATy. Choose
T such that T−1AT = D is diagonal (or more generally in Jordan canonical form). Then study
the uncoupled system dy

dt
= Dy.

2. Consider dx
dt

= A(t∗) x for t∗ a fixed value of t. Examine the eigenvalues of A(t∗). If the real
parts of these eigenvalues remain negative for all positive t∗, then the solutions are asymptotically
stable.

3. Replace the given equations by the averaged equations, dx
dt

= B x, where B = 1
T

∫ T
0 A(t)dt.

Note that B is a constant coefficient matrix. Use the usual stability criteria on dx
dt

= B x.

Problem 6.2
Nonlinear parametric resonance. This problem concerns the following differential equation:

d2x

dt2
+
(

1

4
+ εk1

)
x+ εx3 cos t = 0, ε << 1 (280)

a) Use the two variable expansion method to derive a slow flow, neglecting terms of O(ε2).

b) Analyze the slow flow. In particular, determine all slow flow equilibria and their stability.
Make a sketch of the slow flow phase portrait for k1 = 0 and for k1 = 0.1.

Problem 6.3
The particle in the plane. Earlier in this Chapter we showed that the stability of the x-mode of
the particle in the plane is governed by eq.(210) which may be written in the form:

d2v

dt2
+

(
δ − ε cos2 t

1 − ε cos2 t

)
v = 0 (281)

where δ = 1 − L and ε = A2. Using the method of harmonic balance, obtain an approximate
expression for the transition curve in the δ-ε plane which passes through the origin (δ = 0, ε = 0).
Neglect terms of O(ε4).
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Problem 6.4
Nonlinear Mathieu equation. This question concerns eq.(269) for α > 0:

d2x

dt2
+ (δ + ε cos t)x+ εαx3 = 0, α > 0 (282)

We saw in section 6.6 that the periodic motions in this equation decrease in frequency as the
amplitude increases. See the Figure in section 6.6, where the pitchforks bend to the left. The
explanation given for these motions was that “as the resonance causes the amplitude of the mo-
tion to increase, the relation between period and amplitude (which is a characteristic effect of
nonlinearity) causes the resonance to detune, decreasing its tendency to produce large motions.”
However, periodic motions in the unforced equation (which is an undamped Duffing equation)
have been shown in section 4.1 to increase in frequency as the amplitude increases. See Figure
in section 4.1, where the F = 0 backbone curve bends to the right. Explain.

Problem 6.5
Damped Mathieu equation and Floquet theory. This question concerns eq.(258) for δ=1/4, exact
2:1 resonance (no detuning):

d2x

dt2
+ c

dx

dt
+ (

1

4
+ ε cos t) x = 0 (283)

a. Find an approximate expression for the transition curve separating stable regions from unsta-
ble regions in the c-ε parameter plane, valid for small ε.
b. Compare your answer with results obtained by numerically integrating eq.(283) in conjunction
with Floquet theory.
Hint: For a given pair of parameters (c, ε), numerically integrate (283) twice, respectively for
initial conditions x=1, dx/dt=0 and x=0, dx/dt = 1. Evaluate the two resulting solution vectors
at time t = 2π, and use them as the columns in the fundamental solution matrix X(T ) referred
to in eq.(228). Compute the eigenvalues λ1, λ2 of this matrix. As discussed in the text, stability
requires that both eigenvalues satisfy |λi| < 1.
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7 Ince’s Equation

The equation

(1 + a cos 2t)
d2x

dt2
+ b sin 2t

dx

dt
+ (c+ d cos 2t) x = 0 (284)

which is called Ince’s equation, occurs in a variety of mechanics problems. It includes Mathieu’s
equation as a special case (for which a = b = 0). However because Ince’s equation contains 4
parameters instead of only 2 for Mathieu’s equation, a certain phenomenon called coexistence
can occur in Ince’s equation, but not in Mathieu’s equation. The phenomenon of coexistence
involves the disappearance of tongues of instability which would ordinarily be there.

As an example, consider the equation

(1 +
ε

2
cos 2t)

d2x

dt2
+
ε

2
sin 2t

dx

dt
+ c x = 0 (285)

which is Ince’s equation with a = b = ε/2 and d = 0. We are interested in the location
of the transition curves of (285) in the c − ε plane, which separate regions of stability (all
solutions bounded) from regions of instability (an unbounded solution exists). A straightforward
line of reasoning leads us to expect tongues of instability to emanate from the points c = n2,
n = 1, 2, 3, · · · on the c−axis. Let us examine this reasoning. We have seen that Floquet theory
tells us that equations of the form of Hill’s equation,

d2z

dt2
+ f(t) z = 0, f(t+ T ) = f(t) (286)

have periodic solutions of period T or 2T on their transition curves. However, eq.(285) is not of
the form of Hill’s equation (286). Nevertheless, if we set

x = (1 +
ε

2
cos 2t)

1
4 z (287)

then it turns out that eq.(285) becomes a Hill’s equation (286) on z(t), with the following
coefficient f(t):

f(t) =
ε2 cos 4t+ 16ε(c− 1) cos 2t+ 32c− 9ε2

4(ε2 cos 4t+ 8ε cos 2t+ 8 + ε2)
(288)

Here f(t) is periodic with period π. Thus Floquet theory tells us that the resulting Hill’s equa-
tion on z(t) will have solutions of period π or 2π on its transition curves. Now from eq.(287),
the boundedness of z(t) is equivalent to the boundedness of x(t), so transition curves for the z
equation occur for the same parameters as do those for the x equation (285). Also, since the

coefficient (1+ ε
2
cos 2t)

1
4 in eq.(287) has period π, we may conclude that eq.(285) has solutions of

period π or 2π on its transition curves. Now when ε = 0, eq.(285) is of the form d2x
dt2

+c x = 0, and
has solutions of period 2π√

c
. These will correspond to solutions of period π or 2π when 2π√

c
= 2π

n
,

since a solution with period 2π
n

may also be thought of as having period π (n even) or 2π (n
odd), which gives c = n2, n = 1, 2, 3, · · · as claimed above.
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To reiterate, the purpose of the preceding long-winded paragraph was to show that we can expect
eq.(285) to have tongues of instability emanating from the points c = n2, n = 1, 2, 3, · · · on the
c−axis. While this would be true in general for an equation of the type (284), the coefficients
in eq.(285) have been especially chosen to illustrate the phenomenon of coexistence. In fact,
eq.(285) has only one tongue of instability which emanates from the point c = 1 on the c−axis!
See Figure.

7.1 Coexistence

In order to understand what happened to all the tongues of instability which we expected to occur
in eq.(285), we use the method of harmonic balance. Since the transition curves are characterized
by the occurrence of a periodic solution of period π or 2π, we expand the solution x in a Fourier
series:

x(t) =
∞∑
n=0

an cosnt+ bn sinnt (289)

This series represents a general periodic function of period 2π, and includes functions of period π
as a special case (when aodd and bodd are zero). Substituting (289) into eq.(285), simplifying the
trig and collecting terms, we obtain four sets of algebraic equations on the coefficients an and bn.
Each set deals exclusively with aeven, beven, aodd and bodd, respectively. Each set is homogeneous
and of infinite order, so for a nontrivial solution the determinants must vanish. This gives four
infinite determinants:

aeven :

∣∣∣∣∣∣∣∣∣∣∣∣

c −3ε
2

0 0 0
0 c− 4 −5ε 0 0 · · ·
0 − ε

2
c− 16 −21ε

2
0

0 0 −3ε c− 36 −18ε
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (290)

beven :

∣∣∣∣∣∣∣∣∣

c− 4 −5ε 0 0
− ε

2
c− 16 −21ε

2
0 · · ·

0 −3ε c− 36 −18ε
· · ·

∣∣∣∣∣∣∣∣∣
= 0 (291)

aodd :

∣∣∣∣∣∣∣∣∣

c− 1 − ε
2

−3ε 0 0
0 c− 9 −15ε

2
0 · · ·

0 −3ε
2

c− 25 −14ε
· · ·

∣∣∣∣∣∣∣∣∣
= 0 (292)

bodd :

∣∣∣∣∣∣∣∣∣

c− 1 + ε
2

−3ε 0 0
0 c− 9 −15ε

2
0 · · ·

0 −3ε
2

c− 25 −14ε
· · ·

∣∣∣∣∣∣∣∣∣
= 0 (293)

If we represent by ∆0 the determinant (291) of the beven coefficients, then the determinant (290)
of the aeven coefficients may be written c∆0, a result obtainable by doing a Laplace expansion
down the first column. This gives us that c = 0 is the exact equation of a transition curve.
Examination of (290) shows that on c = 0 we have the exact solution x(t) = a0, the other aeven
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coefficients vanishing on c = 0. Note that x(t) = a0(= 1 say) may be considered a π-periodic
solution.

On the other hand, we may also satisfy eq.(290) by taking ∆0 = 0, which corresponds to taking
a0 = 0 while the other aeven coefficients do not in general vanish. Note that this same condition
∆0 = 0 gives a nontrivial solution for the beven coefficients. Thus on the transition curves cor-
responding to ∆0 = 0 we have the coexistence of two linearly independent π-periodic solutions,
one even and the other odd. Now a region of instability usually lies between two such transi-
tion curves, one of which has an even π-periodic solution on it, and the other of which has an
odd π-periodic solution. In the case where two such periodic functions coexist, the instability
region disappears (or rather has zero width). In the case of eq.(285), all of the even coefficient
(π-periodic) tongues disappear.

Let us turn now to eqs.(292),(293) on the coefficients aodd and bodd, respectively. The determinant
(292) may be written (c−1− ε/2)∆1 and the determinant (293) may be written (c−1+ ε/2)∆1,
where ∆1 is the infinite determinant:

∆1 =

∣∣∣∣∣∣∣
c− 9 −15ε

2
0

−3ε
2

c− 25 −14ε · · ·
· · ·

∣∣∣∣∣∣∣ (294)

We may satisfy eq.(292) by taking c = 1 + ε
2
. This corresponds to taking a1 nonzero, and all

the other aodd = 0. Similarly we may satisfy eq.(293) by taking c = 1 − ε
2
, which corresponds

to taking b1 nonzero, and all the other bodd = 0. Thus we have obtained the following exact
expressions for two transition curves emanating from c = 1 on the c-axis:

c = 1 +
ε

2
on which x(t) = cos t (295)

c = 1 − ε

2
on which x(t) = sin t (296)

All the other transition curves correspond to the vanishing of ∆1. This condition guarantees
a nontrivial solution for both the aodd and the bodd coefficients, respectively. Since the same
relation between c and ε produces two linearly independent 2π−periodic solutions, we have
another instance of coexistence, and the associated tongues of instability do not occur.

7.2 Ince’s Equation

Let us now apply the foregoing approach to the general version of Ince’s equation (284). We
substitute the Fourier series (289) into eq.(284), perform the usual trig simplifications and collect
terms, thereby obtaining four sets of algebraic equations on the coefficients an and bn. For a
nontrivial solution, these require that the following four infinite determinants vanish:

aeven :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c d
2
− b− 2a 0 0 0

d c− 4 d
2
− 2b− 8a 0 0

0 d
2

+ b− 2a c− 16 d
2
− 3b− 18a 0 · · ·

0 0 d
2

+ 2b− 8a c− 36 d
2
− 4b− 32a

0 0 0 d
2

+ 3b− 18a c− 64
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (297)
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beven :

∣∣∣∣∣∣∣∣∣∣∣∣

c− 4 d
2
− 2b− 8a 0 0

d
2

+ b− 2a c− 16 d
2
− 3b− 18a 0

0 d
2

+ 2b− 8a c− 36 d
2
− 4b− 32a · · ·

0 0 d
2

+ 3b− 18a c− 64
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (298)

aodd :

∣∣∣∣∣∣∣∣∣∣∣∣

c− 1 + d−b−a
2

d−3b−9a
2

0 0
d+b−a

2
c− 9 d−5b−25a

2
0

0 d+3b−9a
2

c− 25 d−7b−49a
2

· · ·
0 0 d+5b−25a

2
c− 49

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (299)

bodd :

∣∣∣∣∣∣∣∣∣∣∣∣

c− 1 − d−b−a
2

d−3b−9a
2

0 0
d+b−a

2
c− 9 d−5b−25a

2
0

0 d+3b−9a
2

c− 25 d−7b−49a
2

· · ·
0 0 d+5b−25a

2
c− 49

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (300)

The notation in these determinants may be simplified by setting (after Magnus and Winkler,
“Hill’s Equation”):

Q(m) =
d

2
+ bm− 2am2 (301)

P (m) = Q(m− 1

2
) =

d+ 2b(m− 1
2
) − 4a(m− 1

2
)2

2
=
d+ b(2m− 1) − a(2m− 1)2

2
(302)

Using the notation of eqs.(301),(302), the determinants (297)-(300) become:

aeven :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c Q(−1) 0 0 0
2Q(0) c− 4 Q(−2) 0 0

0 Q(1) c− 16 Q(−3) 0 · · ·
0 0 Q(2) c− 36 Q(−4)
0 0 0 Q(3) c− 64

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (303)

beven :

∣∣∣∣∣∣∣∣∣∣∣∣

c− 4 Q(−2) 0 0
Q(1) c− 16 Q(−3) 0

0 Q(2) c− 36 Q(−4) · · ·
0 0 Q(3) c− 64

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (304)

aodd :

∣∣∣∣∣∣∣∣∣∣∣∣

c− 1 + P (0) P (−1) 0 0
P (1) c− 9 P (−2) 0

0 P (2) c− 25 P (−3) · · ·
0 0 P (3) c− 49

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (305)
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bodd :

∣∣∣∣∣∣∣∣∣∣∣∣

c− 1 − P (0) P (−1) 0 0
P (1) c− 9 P (−2) 0

0 P (2) c− 25 P (−3) · · ·
0 0 P (3) c− 49

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (306)

Comparison of determinants (303) and (304) shows that if the first row and first column of (303)
are removed, then the remainder of (303) is identical to (304). The significance of this observa-
tion is that if any one of the off-diagonal terms vanishes, that is if Q(m) = 0 for some integer
m (positive, negative or zero), then coexistence can occur and an infinite number of
possible tongues of instability will not occur.

In order to understand how this works, suppose that Q(2) = 0. Then we may represent
eqs.(303),(304) symbolically as follows:

aeven :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X X 0 0 0
X X X 0 0
0 X X X 0 · · ·
0 0 Q(2) X X
0 0 0 X X

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (307)

beven :

∣∣∣∣∣∣∣∣∣∣∣∣

X X 0 0
X X X 0
0 Q(2) X X · · ·
0 0 X X

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (308)

where we have used the symbol X to represent a term which is non-zero. The vanishing of Q(2)
“disconnects” the lower (infinite) portion of these equations from the upper (finite) portion.
There are now two possible ways in which to satisfy these equations with Q(2) = 0:

1. For a nontrivial solution to the lower (infinite) portion, the (disconnected, infinite) determi-
nant must vanish. Since this determinant is identical for both the a’s and the b’s, coexistence is
present and the associated tongues emanating from c = 36, 64, ... do not occur. The coefficients
a6, a8, a10, ... and b6, b8, b10, ... will not in general vanish. In this case the upper portion of the
determinant will not vanish in general, and the coefficients a0, a2, a4, b2 and b4 will not be zero
because they depend respectively on a6 and b6.

2. Another possibility is that the infinite determinant of the lower portion is not zero, requiring
that the associated aeven and beven coefficients vanish. With these a’s and b’s zero, the upper
portion of the system beomes independent of the lower. For a nontrivial solution for a0, a2, a4,
the upper portion of determinant (307) must vanish, whereas for a nontrivial solution for b2
and b4, the upper portion of determinant (308) must vanish. For eq.(307) this involves a 3 × 3
determinant and yields a cubic on c, while for eq.(308) this involves a 2 × 2 determinant and
gives a quadratic on c. Together these yield 5 expressions for c in terms of the other parameters
of the problem, which, if real, correspond to 5 transition curves. One of these passes through
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the c−axis at c = 0, and the other 4 produce tongues of instability emanating from c = 4 and
c = 16 respectively.

A similar story holds for equations (305) and (306). If P (m) = 0 for some integer m (posi-
tive, negative or zero), then only a finite number of tongues will occur from amongst
the infinite set of tongues which emanate from the points c = (2n− 1)2, n = 1, 2, 3, · · ·
on the c−axis.

As an example, let us return to eq.(285) for which a = b = ε/2 and d = 0. The polynomials
Q(m) and P (m) become, from eqs.(301),(302):

Q(m) =
d

2
+ bm− 2am2 =

ε

2
(m− 2m2) = 0 =⇒ Q(0) = 0, Q(

1

2
) = 0 (309)

P (m) =
d+ b(2m− 1) − a(2m− 1)2

2
=
ε

4
[(2m− 1) − (2m− 1)2] =⇒ P (1) = 0, P (

1

2
) = 0

(310)
The important results here are that Q(0) = 0 and P (1) = 0. When Q(0) = 0 is substituted into
eqs.(303),(304), we see that the element c in the upper left corner of (303) becomes disconnected
from the rest of the infinite determinant, which is itself identical to the infinite determinant in
(304). From this we may conclude that all the “even” tongues disappear.

And when P (1) = 0 is substituted into eqs.(305),(306), we see that the element in the upper left
corner of both (305) and (306) becomes disconnected from the rest of the infinite determinant,
which itself is the same for both (305) and (306). From this we may conclude that only one
“odd” tongue survives. It is bounded by the transition curves c = 1 ± P (0) = 1 ± ε

2
.

7.3 Designing a System with a Finite Number of Tongues

By choosing the coefficients a, b, and d in eq.(284) such that both Q(m) and P (m) have integer
zeros, we may design a system which possesses a finite number of tongues of instability. For
example let us take Q(−2) = 0 and P (3) = 0. Since P (m) = Q(m − 1/2) from eq.(302),
P (3) = Q(5/2) = 0, and we require a function Q(m) which has zeros m = −2, 5/2, i.e.
Q(m) = (m+ 2)(m− 5/2) = m2 −m/2− 5. Now since Q(m) = d/2 + bm− 2am2 from eq.(301),
we may choose a = −ε/2, b = −ε/2, and d = −10ε, producing the ode:

(1 − ε

2
cos 2t)

d2x

dt2
− ε

2
sin 2t

dx

dt
+ (c− 10ε cos 2t) x = 0 (311)

From the reasoning presented above, we see from eqs.(303) and (304) that Q(−2) = 0 produces a
single tongue emanating from the point c = 4, ε = 0. Similarly we see from eqs.(305) and (306)
that P (3) = 0 produces 3 tongues emanating from the points c = 1, 9, 25, ε = 0. Thus eq.(311)
has 4 tongues of instability.

This result may be checked by generating series expansions for the transition curves and verifying
that the tongue widths are zero for all tongues except for the 4 stated tongues. See Problem 1.



R.Rand Nonlinear Vibrations 63

7.4 Application 1

In the Chapter on Mathieu’s equation we saw that the stability of the x-mode of the particle in
the plane was governed by the equation (see (210)):

d2v

dt2
+

(
1 − L− A2 cos2 t

1 − A2 cos2 t

)
v = 0 (312)

Multiplying (312) by 1 − A2 cos2 t and using a trig identity, we obtain:

(
1 − A2

2
− A2

2
cos 2t

)
d2v

dt2
+

(
1 − L− A2

2
− A2

2
cos 2t

)
v = 0 (313)

Eq.(313) may be put in the form of Ince’s equation (284) by dividing by 1 − A2

2
, in which case

we obtain the following expressions for the parameters a, b, c, d:

a = d =
−A2

2

1 − A2

2

, b = 0, c =
1 − L− A2

2

1 − A2

2

(314)

Next we use eqs.(301) and (302) to compute Q(m) and P (m):

Q(m) =
d

2
+ bm− 2am2 = a(−2m2 +

1

2
) =⇒ Q(

1

2
) = 0, Q(−1

2
) = 0 (315)

P (m) =
d+ b(2m− 1) − a(2m− 1)2

2
=
a

2
(−(2m− 1)2 + 1) =⇒ P (0) = 0, P (1) = 0 (316)

The important result here is that P (0) = 0 and P (1) = 0. Inspection of eqs.(305) and (306)
shows that the resulting linear algebraic equations on the coefficients aodd are identical to those
on bodd, so that coexistence occurs for all solutions of period 2π. Thus all the “odd” tongues
are absent. On the other hand, since the zeros of Q(m) are not integers, we see that eq.(312)
exhibits an infinite number of “even” tongues which are bounded by transition curves on which
there exist solutions of period π.

7.5 Application 2

This example is taken from a paper by Pak, Rand and Moon, Nonlinear Dynamics 3:347-364
(1992). A two degree of freedom system consists of a particle of mass m and a disk having
moment of inertia J , which are respectively restrained by two linear springs and a linear torsion
spring. As shown in the Figure, the equations of motion can be written in the form:

(1 + εy2)
d2x

dt2
+ 2εy

dy

dt

dx

dt
+ p2x = 0 (317)

d2y

dt2
− ε

(
dx

dt

)2

y + y = 0 (318)
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This system has an exact solution called the y−mode:

y = A sin t, x = 0 (319)

The stability of the y−mode is governed by the following linear variational equation:

(1 +
εA2

2
− εA2

2
cos 2t)

d2u

dt2
+ εA2 sin 2t

du

dt
+ p2u = 0 (320)

Eq.(320) can be put in the form of Ince’s equation (284) by dividing by 1 + εA2

2
. The parameters

a, b, c, d are found to be:

b = −2a =
εA2

1 + εA2

2

, c =
p2

1 + εA2

2

, d = 0 (321)

Next we use eqs.(301) and (302) to compute Q(m) and P (m):

Q(m) =
d

2
+ bm− 2am2 = −2a(m2 +m) =⇒ Q(0) = 0, Q(−1) = 0 (322)

P (m) =
d+ b(2m− 1) − a(2m− 1)2

2
=

−2a(2m− 1) − a(2m− 1)2

2
) =⇒ P (±1

2
) = 0

(323)
The important result here is that Q(0) = 0 and Q(−1) = 0. Inspection of eqs.(303) and (304)
shows that c = 0 is a transition curve, and that the linear equations on the other aeven coefficients
are identical to those on the beven coefficients, so that coexistence occurs for all solutions of period
π. Thus all the “even” tongues are absent. On the other hand, since the zeros of P (m) are not
integers, we see that eq.(320) exhibits an infinite number of “odd” tongues which are bounded
by transition curves on which there exist solutions of period 2π.

7.6 Application 3

This example involves an elastic pendulum, that is, a plane pendulum consisting of a mass m
suspended under gravity g by a weightless elastic rod of unstretched length L and having spring
constant k. Let the position of the mass be given by the polar coordinates r and φ. Then the
kinetic energy T and the potential energy V are given by:

T =
m

2


(dr

dt

)2

+ r2

(
dφ

dt

)2

 (324)

V =
k

2
(r − L)2 −mgr cosφ (325)

Lagrange’s equations for this system are:

m
d2r

dt2
−mr

(
dφ

dt

)2

+ k(r − L) −mg cosφ = 0 (326)
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mr2d
2φ

dt2
+ 2mr

dr

dt

dφ

dt
+mgr sin φ = 0 (327)

Eqs.(326),(327) have an exact solution, the r−mode:

r = A cosωt+ L+
mg

k
, φ = 0, where ω =

√
k

m
(328)

The stability of the r−mode is governed by the following linear variational equation:

(Ak cosωt+mg + kL)
d2u

dt2
− 2Akω sinωt

du

dt
+ gku = 0 (329)

In order to put eq.(329) in the form of Ince’s equation (284), we set

ωt = 2τ (330)

which gives

(Ak cos 2τ +mg + kL)
d2u

dτ 2
− 4Akω sin 2τ

du

dτ
+

4gk

ω2
u = 0 (331)

Eq.(331) can be put in the form of Ince’s equation (284) by dividing by mg+kL. The parameters
a, b, c, d are found to be:

a = − b
4

=
Ak

mg + kL
, c =

4ag

Aω2
, d = 0 (332)

Next we use eqs.(301) and (302) to compute Q(m) and P (m):

Q(m) =
d

2
+ bm− 2am2 = −2a(m2 + 2m) =⇒ Q(0) = 0, Q(−2) = 0 (333)

P (m) =
d+ b(2m− 1) − a(2m− 1)2

2
= −2a(2m− 1) − a

2
(2m− 1)2

=⇒ P (
1

2
) = 0, P (−3

2
) = 0 (334)

The important result here is that Q(0) = 0 and Q(−2) = 0. Inspection of eqs.(303) and (304)
shows that c = 0 is a transition curve, and that the linear equations on the other aeven coeffi-
cients are identical to those on the beven coefficients, so that coexistence occurs for all solutions of
period π. Thus all the “even” tongues are absent. Note that c = 4 is an exact transition curve,
but because of coexistence there is no associated tongue. On the other hand, since the zeros of
P (m) are not integers, we see that eq.(331) exhibits an infinite number of “odd” tongues which
are bounded by transition curves on which there exist solutions of period 2π.
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7.7 Problems

Problem 7.1

In the following matrix equation, the elements x and y stand for generic real numbers:




x x
x x x

x x a
b y y

y y y · · ·
y y y

y y y
y y y

· · ·







u1

u2

u3

v1

v2

v3

v4

v5

· · ·




= 0 (335)

Note that this equation can be written as the two equations:

X u =



x x
x x x

x x





u1

u2

u3


 =




0
0

−av1


 (336)

Y v =




y y
y y y

y y y · · ·
y y y

y y y
· · ·







v1

v2

v3

v4

v5

· · ·




=




−bu3

0
0
0
0
· · ·




(337)

Note that if a = 0 and b 
= 0 then the X equation (336) is uncoupled from the Y equation (337),
but the Y equation still depends on the solution u3 of the X equation. In this case there are two
ways to satisfy these equations:

First way: If detX = 0 then we will have a nontrivial solution for the {ui}. Assuming detY 
= 0
and that u3 
= 0, we obtain a nontrivial solution for {vi}.

Second way: If detX 
= 0 then we will have a trivial solution for the {ui}. The vanishing of u3

then requires that detY = 0 in order to obtain a nontrivial solution for {vi}.

Note that in both ways we obtain a nontrivial solution for the {vi}, that is, the solution of the
original equation (335) will not have finite order. (A solution of an infinite system (335) is said
to have finite order if all the solution elements {ui, vi} are zero except for a finite number of them.)

The opposite situation occurs if b = 0 and a 
= 0. In that case it is the Y equation (337) which
is uncoupled from the X equation (336). There are again two ways of satisfying the resulting
equations:
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First way: If det Y = 0 then we will have a nontrivial solution for the {vi}. Assuming detX 
= 0
and that v1 
= 0, we obtain a nontrivial solution for {ui}.

Second way: If detY 
= 0 then we will have a trivial solution for the {vi}. The vanishing of v1

then requires that detX = 0 in order to obtain a nontrivial solution for {ui}.

Note that in the second way we obtain a solution of finite order.

Answer the following questions by referring to the equations (303)-(306):

i. Show that coexistence will occur if Q(m) = 0 or if P (m) = 0 for some integer m (positive,
negative or zero).

ii. Show that a π−periodic or 2π−periodic solution to Ince’s equation (284) will not have a fi-
nite number of terms in its Fourier series (289) if m of the preceding question is a negative integer.

Problem 7.2

In the text, we designed the following differential equation (311) so that it had 4 tongues:

(1 − ε

2
cos 2t)

d2x

dt2
− ε

2
sin 2t

dx

dt
+ (c− 10ε cos 2t) x = 0 (338)

Our purpose here is to verify that this is true (at least for small ε) by directly computing series
expansions for the various transition curves by the use of a perturbation method.

In the following explanation, we will, for clarity of presentation, focus on the transition curves
through the point c = 4, ε = 0. However, the treatment is easiy generalized to any of the tran-
sition curves.

We expand c and x(t) in power series in ε:

c = 4 + c1 ε+ c2 ε
2 + c3 ε

3 + · · · (339)

x(t) = cos 2t+ x1(t) ε+ x2(t) ε
2 + x3(t) ε

3 + · · · (340)

Substituting (339),(340) into (338) and collecting terms, we obtain a series of equations of the
xi(t), the first two of which are:

d2x1

dt2
+ 4 x1 + sin2 (2 t) − 8 cos2 (2 t) + c1 cos (2 t) = 0 (341)

d2x2

dt2
+ 4 x2 − cos (2 t) d2x1

dt2

2
− sin (2 t) dx1

dt

2
− 10 cos (2 t) x1 + c1 x1 + c2 cos (2 t) = 0 (342)

Trigonmetrically reducing eq.(341) gives

d2x1

dt2
+ 4 x1 =

9 cos (4 t)

2
− c1 cos (2 t) +

7

2
(343)
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For no secular terms in x1(t), we must set c1 = 0. Then we may obtain the following particular
solution for x1(t):

x1(t) =
7

8
− 3 cos (4 t)

8
(344)

Next we substitute (344) and c1 = 0 into (342) and trigreduce the resulting equation to get:

d2x2

dt2
+ 4 x2 = −3 cos (6 t)

4
− c2 cos (2 t) +

35 cos (2 t)

4
(345)

For no secular terms in x2(t), we must set c2 = 35
4
. Thus we have found the transition curve to

have the form:

c = 4 +
35

4
ε2 +O(ε3) (346)

In order to find a similar approximation for the other transition curve which emanates from
c = 4, ε = 0, we repeat the above procedure except we replace eq.(340) by

x(t) = sin 2t+ x1(t) ε+ x2(t) ε
2 + x3(t) ε

3 + · · · (347)

This turns out to give the following result for the transition curve:

c = 4 +O(ε3) (348)

Incidentally, it turns out that in this case c = 4 is the exact expression for the transition curve.
Why?

Since the two expressions (346) and (348) are distinct, the tongue emanating from c = 4 on the
c−axis has not disappeared, in agreement with how we designed equation (338).

Proceed in this way and compute series expansions for the first 11 transition curves (6 even and 5
odd) out to O(ε10). This problem is best done using computer algebra. You should find that the
pairs of transition curves emanating from c = 1, 4, 9 and 25 are distinct, while the pairs coming
from c = 16, 36, 49, 64, 81 and 100 are identical (no tongues due to coexistence).

As a check on your work, here is the series which we computed, eq.(346), extended out to O(ε10):

c = 4 +
35 ε2

4
− 1225 ε4

64
+

42875 ε6

512
− 7503125 ε8

16384
+

367653125 ε10

131072
+ · · · (349)
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8 Two Coupled Conservative Oscillators

This Chapter concerns the dynamics of a system of two coupled conservative oscillators. As an
example, imagine a system consisting of two unit masses constrained to move on a straight line
and restrained by two springs. One mass (coordinate x) is restrained by an anchor spring. The
second mass (coordinate y) is connected to the first mass by a second spring. The system is
driven by a force F cosωt applied to the second mass (coordinate y).

If the springs were linear, the problem would be solvable by the method of normal modes. This
involves a coordinate transformation to normal coordinates which uncouples the unforced system
into two simple harmonic oscillators. The independent motion of each of these uncoupled oscilla-
tors is called a normal mode, and the general solution of the linear system is a linear combination
of the normal modes. To solve the forced system, one adds a particular solution to the general
solution of the unforced system. If the normal modes of the unforced system have frequencies
ω1 and ω2, then the driven system exhibits resonances when the driving frequency ω is close to
either ω1 or ω2.

If either or both of the springs are nonlinear, the foregoing scenario no longer works. In particular
the general solution of the unforced system can no longer be written as a linear combination of
normal modes because the principle of superposition no longer applies to the nonlinear system.
Nevertheless, resonance in the forced nonlinear system occurs when the driving frequency is close
to the frequency of one of the periodic motions of the unforced system, called nonlinear normal
modes. We will use the abbreviation NNM for nonlinear normal mode.

NNM = nonlinear normal mode

The general motion of both the linear and nonlinear versions of the unforced example system is
quasiperiodic. The NNMs of the nonlinear system are therefore special periodic motions which
are analogous to the linear normal modes of the linear system. As the amplitude of the NNM
becomes smaller, the nonlinear effects decrease and the motion approaches that of the linear
normal mode. Thus the NNM can be thought of as an analytic continuation of the linear normal
mode with the motion’s amplitude as parameter.

8.1 Nonlinear Normal Modes

In order to see how this works, we study the example previously given. We assume the anchor
spring is nonlinear with force-displacement relation:

f = δ + δ3 (350)

The second spring is assumed to be linear with characteristics f = δ. The equations of motion
are given by:

d2x

dt2
+ 2x− y + x3 = 0,

d2y

dt2
+ y − x = F cosωt (351)
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We are interested in a response at the forcing frequency. The method of harmonic balance offers
an expedient approach here. Since there is no damping in this system, we expect no phase lag
between the x and y motions, and we set:

x = A cosωt, y = B cosωt (352)

Substituting (352) into (351), trigreducing x3, and setting the coefficients of cosωt to zero, we
obtain the following equations on A and B:

−ω2A+ 2A− B +
3

4
A3 = 0, − ω2B +B − A = F (353)

Solving the second eq. of (353) for B and substituting the result in the first eq. of (353), we get:

ω4 +
(
−3 − 3

4
A2
)
ω2 + 1 +

3

4
A2 − F

A
, B =

A+ F

1 − ω2
(354)

The first eq. of (354) can be used to make an amplitude-frequency plot of A versus ω for a fixed
value of F . A similar plot of B versus ω can be obtained by solving the second eq. of (353) for
A and substituting the result in the first eq. of (353). Such plots are the two degree of freedom
version of the amplitude-frequency plot we saw previously in connection with the forced Duffing
equation.

In the amplitude-frequency plots, the NNMs are obtained by setting F = 0 in eqs.(354). For
small values of A, the first eq. of (354) becomes

ω4 − 3ω2 + 1 = 0 (355)

which gives the linear normal modal frequencies ω2
1 =

3 −√
5

2
, ω2

2 =
3 +

√
5

2
. Examination of the

amplitude-frequency plots shows that resonance in the forced system occurs in the neighborhood
of the NNMs.

The NNMs can be pictured as curves in the x-y plane. If in the second eq. of (354) we set
F = 0 and let ω take on one of the frequencies (355), we see that B is proportional to A for a
linear normal mode. Eq.(352) shows that y/x is a constant that is independent of amplitude for
a linear normal mode. Geometrically, this means that linear normal modes plot as straight line
segments through the origin. In the case of a NNM, ω depends on the amplitude A, and the
second eq. of (354) predicts that the slope of the line segment corresponding to a NNM depends
on the amplitude of vibration. Of course the assumed form of the solution (352), although exact
for linear normal modes, is only an approximation for NNMs. The presence of higher harmonics
will in general cause a NNM to plot as a curved line segment through the origin. The shape
of the curved line segment which represents the NNM will typically change with amplitude of
vibration. The endpoints of the line segments, curved or straight, represent places where the
kinetic energy is zero.
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Both linear normal modes and NNMs share the following features:
1) Both x and y vanish simultaneously twice per cycle (corresponding to passage through the
origin in the x-y plane), and
2) Both dx/dt and dy/dt vanish simultaneously twice per cycle (corresponding to the endpoints
of the line segments).
These observations led Rosenberg in the 1960’s to define NNMs as vibrations-in-unison. See
R.M.Rosenberg, “On Nonlinear Vibrations of Systems with Many Degrees of Freedom”, in Ad-
vances in Applied Mechanics, Academic Press, 1966, pp.155-242.

If the amplitude is allowed to vary, then the locus of the endpoints of the line segments of the
NNMs will form a curve in the x-y plane. Points on this curve correspond to initial conditions
on x and y such that a NNM results when the system is released from rest at one of these points.
This curve is called a Grenzkurve after H.Kauderer’s “Nichtlineare Mechanik”, Springer, 1958,
pp.593-612.

A recent reference on NNMs is “Normal Modes and Localization in Nonlinear Systems” by
Vakakis, Manevitch, Mikhlin, Pilipchuk and Zevin, Wiley, 1996.

8.2 The Modal Equation

Since a NNM plots as a simple curve in the x-y plane, we are motivated to seek this curve by
considering y as a function of x, without direct reference to time t. In order to generalize the
treatment, we begin with a conservative system in the form:

d2x

dt2
= −∂V

∂x
,

d2y

dt2
= −∂V

∂y
(356)

where V = V (x, y) is the potential energy. Eqs.(356) possess the first integral:

1

2



(
dx

dt

)2

+

(
dy

dt

)2

+ V (x, y) = h (357)

where h is the total energy and is determined by the initial conditions. We are interested in
transforming from x(t) and y(t) to y(x). To do so we use the chain rule:

dy

dt
=
dy

dx

dx

dt
,

d2y

dt2
=
d2y

dx2

(
dx

dt

)2

+
dy

dx

d2x

dt2
(358)

Substituting (356) into the second of (358),

−∂V
∂y

=
d2y

dx2

(
dx

dt

)2

− dy

dx

∂V

∂x
(359)

Next we substitute the first of (358) into (357):

1

2

(
dx

dt

)2

1 +

(
dy

dx

)2

+ V (x, y) = h (360)
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Finally we solve (360) for

(
dx

dt

)2

and substitute into (359), giving the equation:

2(h− V )
d2y

dx2
+


1 +

(
dy

dx

)2

(∂V

∂y
− dy

dx

∂V

∂x

)
= 0 (361)

Eq.(361) is a second order nonlinear o.d.e. on y as a function of x and is called the modal equation.

As an example of its use, we take a system consisting of two unit masses constrained to move
along a straight line and restrained by two anchor springs and a coupling spring. We assume the
identical anchor springs to be nonlinear with force-displacement relation:

f = δ +Kδ3 (362)

where K is a parameter. The coupling spring is assumed to be strictly nonlinear with character-
istic f = δ3. If the masses have coordinates x and y, the potential energy V becomes:

V (x, y) =
1

2
x2 +

1

4
Kx4 +

1

4
(x− y)4 +

1

2
y2 +

1

4
Ky4 (363)

As we have stated above, NNMs generally plot as curved line segments in the x-y plane. Never-
theless, some problems exhibit NNMs which plot as straight line segments, called similar normal
modes by Rosenberg. We may look for such similar normal modes by substituting y = Cx in the
model equation (361), with V as in (363). This gives:

∂V

∂y
− dy

dx

∂V

∂x
= −x3(1 − C)3 + Cx+KC3x3 − C(x+Kx3 + x3(1 − C)3) = 0 (364)

which simplifies to:
C4 + (K − 2)(C3 − C) − 1 = 0 (365)

Solving (365) for C, we find:

C = 1,−1, 1 − K

2
±
√
K(K − 4)

2
(366)

When K ≤ 4 there are only two similar normal modes, y = ±x. An additional pair of similar
normal modes exists when K > 4, having bifurcated out of the y = −x mode at K = 4.

Each of these similar normal modes is a two dimensional invariant manifold in the four dimen-
sional phase space. That is, if the initial conditions on x, y, dx/dt and dy/dt satisfy the equation
of a similar normal mode, then the motion stays on that invariant manifold for all time. This
feature can be used to reduce the dimension of the system and simplify the analysis of such mo-
tions. For example, take the case of the in-phase mode y = x. The frequency of this mode may
be obtained by treating the flow on the two dimensional invariant manifold. This is accomplished
by writing out the x differential equation and substituting y = x to get a single second order
equation on x only:

d2x

dt2
= −∂V

∂x
= −x−Kx3 − (x− y)3, or

d2x

dt2
+ x+Kx3 = 0 on y = x (367)
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This is a Duffing equation which we have seen has the approximate frequency-amplitude relation
(valid for small A):

ω = 1 +
3

8
KA2 + · · · (368)

where ω is the motion’s frequency and A is its amplitude.

8.3 Problems

Problem 8.1
Modal equation in a rotating coordinate system. If the x-y coordinate system is rotating relative
to a Newtonian frame with angular speed ω, the presence of Coriolis and centripetal accelerations
produces the following differential equations (comparable to eqs.(356)):

d2x

dt2
− 2ω

dy

dt
− ω2x = −∂V

∂x
,

d2y

dt2
+ 2ω

dx

dt
− ω2y = −∂V

∂y
(369)

For this system, obtain a first integral, comparable to (357), and using it, obtain a modal equa-
tion for the orbits in x-y configuration space which does not involve time t. This will be an
equation for y as a function of x, comparable to (361).
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9 Two Coupled Limit Cycle Oscillators

A limit cycle oscillator, such as the van der Pol oscillator, is capable of autonomously generat-
ing an attractive periodic motion. This Chapter concerns what happens if we couple two such
oscillators together. A contemporary example involves the interaction of two lasers. A laser is
an oscillator that produces a coherent beam of light. If two lasers operate physically near one
another, the light from either one of them can influence the behavior of the other. Although
both oscillators will in general have different frequencies, the effect of the coupling may be to
produce a motion which is phase and frequency locked.

We will distinguish between three states of a system of two coupled limit cycle oscillators: strongly
locked, weakly locked and unlocked. The motion will be said to be strongly locked if it is both
frequency locked and phase locked. If the motion is frequency locked (on the average) but the
relative phase of the oscillators is not constant, we will say the system is weakly locked. If the
frequencies are different (on the average) then we will say the system is unlocked or drifting.

9.1 Two Coupled van der Pol Oscillators

In this section we investigate the dynamics of a pair of coupled van der Pol oscillators in the
small ε limit:

d2x

dt2
+ x− ε(1 − x2)

dx

dt
= εα(y − x) (370)

d2y

dt2
+ (1 + ε∆)y − ε(1 − y2)

dy

dt
= εα(x− y) (371)

where ε is small, where ∆ is a parameter relating to the difference in uncoupled frequencies, and
where α is a coupling constant.

We use the two variable expansion method to obtain a slow flow. Working to O(ε), we set
ξ = (1 + k1ε)t, η = εt and we expand x = x0 + εx1 and y = y0 + εy1 giving:

∂2x0

∂ξ2
+ x0 = 0 (372)

∂2y0

∂ξ2
+ y0 = 0 (373)

∂2x1

∂ξ2
+ x1 = −2

∂2x0

∂ξ∂η
− 2k1

∂2x0

∂ξ2
+ (1 − x2

0)
∂x0

∂ξ
+ α(y0 − x0) (374)

∂2y1

∂ξ2
+ y1 = −2

∂2y0

∂ξ∂η
− 2k1

∂2y0

∂ξ2
− ∆y0 + (1 − y2

0)
∂y0

∂ξ
+ α(x0 − y0) (375)

We take the general solution to eqs.(372),(373) in the form:

x0(ξ, η) = A(η) cos ξ +B(η) sin ξ, y0(ξ, η) = C(η) cos ξ +D(η) sin ξ (376)
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Removing resonant terms in eqs.(374),(375), we obtain the following slow flow:

2
dA

dη
= −2k1B + A− A

4
(A2 +B2) + α(B −D) (377)

2
dB

dη
= 2k1A+B − B

4
(A2 +B2) + α(C −A) (378)

2
dC

dη
= −2k1D + ∆D + C − C

4
(C2 +D2) + α(D −B) (379)

2
dD

dη
= 2k1C − ∆C +D − D

4
(C2 +D2) + α(A− C) (380)

Eqs.(377)-(380) can be simplified by using polar coordinates Ri and θi:

A = R1 cos θ1, B = R1 sin θ1, C = R2 cos θ2, D = R2 sin θ2 (381)

which gives the following expressions for x0 and y0, from (376):

x0(ξ, η) = R1(η) cos(ξ − θ1(η)) y0(ξ, η) = R2(η) cos(ξ − θ2(η)) (382)

Substituting (381) into (377)-(380) gives:

2
dR1

dη
= R1

(
1 − R2

1

4

)
+ αR2 sin(θ1 − θ2) (383)

2
dR2

dη
= R2

(
1 − R2

2

4

)
− αR1 sin(θ1 − θ2) (384)

2
dθ1
dη

= 2k1 − α +
αR2 cos(θ1 − θ2)

R1
(385)

2
dθ2
dη

= 2k1 − ∆ − α +
αR1 cos(θ1 − θ2)

R2
(386)

This system of 4 slow flow o.d.e.’s can be reduced to a system of 3 o.d.e.’s by defining φ to be
the phase difference between the x and y oscillators, φ = θ1 − θ2:

2
dR1

dη
= R1

(
1 − R2

1

4

)
+ αR2 sinφ (387)

2
dR2

dη
= R2

(
1 − R2

2

4

)
− αR1 sin φ (388)

2
dφ

dη
= ∆ + α cos φ

(
R2

R1

− R1

R2

)
(389)

We seek equilibrium points of the slow flow (387)-(389). These represent strongly locked periodic
motions of the original system (370),(371). We multiply eq.(387) by R1 and (388) by R2 and
add to get

R2
1 +R2

2 −
(
R4

1 +R4
2

4

)
= 0 (390)
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Next we multiply eq.(387) by R2 and (388) by R1 and subtract to get

sin φ =
R1R2(R

2
1 −R2

2)

4α(R2
1 +R2

2)
(391)

Now we use (389) to solve for cos φ:

cos φ =
R1R2∆

α(R2
1 −R2

2)
(392)

Using the identity sin2 φ+ cos2 φ = 1 in (391),(392) and setting

P = R2
1 +R2

2, and Q = R2
1 − R2

2 (393)

we get:
Q6 − P 2Q4 +

(
16 ∆2 + 64α2

)
P 2Q2 − 16 ∆2 P 4 = 0 (394)

Using the P and Q notation of (393), eq.(390) becomes:

Q2 = 8P − P 2 (395)

Substituting (395) into (394), we get

P 3 − 20 P 2 + P (16 ∆2 + 32 α2 + 128) − (64 ∆2 + 256 α2 + 256) = 0 (396)

Using Descartes’ Rule of Signs, we see that (396) has either 1 or 3 positive roots for P . At
bifurcation, there will be a double root which corresponds to requiring the derivative of (396) to
vanish:

3 P 2 − 40 P + 16 ∆2 + 32 α2 + 128 = 0 (397)

Eliminating P from eqs.(396) and (397) gives the condition for saddle-node bifurcations as:

∆6 +
(
6α2 + 2

)
∆4 +

(
12α4 − 10α2 + 1

)
∆2 + 8α6 − α4 = 0 (398)

Eq.(398) plots as two curves intersecting at a cusp in the ∆-α plane. At the cusp, a further
degeneracy occurs and there is a triple root in eq.(396). Requiring the derivative of (397) to
vanish gives P = 20/3 at the cusp, which gives the location of the cusp as:

∆ =
1√
27

≈ 0.1924, α =
2√
27

≈ 0.3849 (399)

Next we look for Hopf bifurcations in the slow flow system (387)-(389). The presence of a stable
limit cycle in the slow flow surrounding an unstable equilibrium point, as occurs in a supercritical
Hopf, represents a weakly locked quasiperiodic motion in the original system (370),(371). Let
(R10, R20, φ0) be an equilibrium point. The behavior of the system linearized in the neighborhood
of this point is determined by the eigenvalues of the Jacobian matrix:

1

2




−3 R10
2−4

4
α sinφ0 α cos φ0 R20

−α sinφ0 −3 R20
2−4

4
−α cosφ0 R10

−α cosφ0 (R20
2+R10

2)
R10

2 R20

α cosφ0 (R20
2+R10

2)
R10 R20

2 −α sinφ0 (R20
2−R10

2)
R10 R20


 (400)
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This matrix may be simplified by using eqs.(391) and (392) to replace sinφ0 and cosφ0, and then
using eqs.(393) to replace R10 and R20 by P and Q, and then using eq.(395) to replace Q. This
turns out to give the following cubic equation on the eigenvalues λ of the matrix (400):

λ3 + C2λ
2 + C1λ + C0 = 0 (401)

where C2 =
P − 4

2
(402)

C1 =
7P 3 − 112P 2 + (−16 ∆2 + 512) P − 512

64P − 512
(403)

C0 =
P 4 − 22P 3 + 160P 2 − (32 ∆2 + 384) P

128P − 1024
(404)

For a Hopf bifurcation, the eigenvalues λ will include a pure imaginary pair, ±iβ, and a real
eigenvalue, γ. This requires the characteristic equation to have the form:

λ3 − γλ2 + β2λ− β2γ = 0 (405)

Comparing eqs.(400) and (405), we see that a necessary condition for a Hopf is:

C0 = C1 C2 ⇒ 3P 4 − 59P 3 +
(
−8 ∆2 + 400

)
P 2 +

(
48 ∆2 − 1088

)
P + 1024 = 0 (406)

Eliminating P between eqs.(406) and (398) gives the condition for a Hopf as:

49 ∆8 +
(
266α2 + 238

)
∆6 +

(
88α4 + 758α2 + 345

)
∆4

+
(
−1056α6 + 1099α4 + 892α2 + 172

)
∆2 − 1152α8 − 2740α6 − 876α4 + 16 = 0 (407)

This curve (407) intersects the lower curve of saddle-node bifurcations, eq.(398), at a point we
shall refer to as point P , and it intersects and is tangent to the upper curve of saddle-node
bifurcations at a point we shall refer to as point Q:

P : ∆ ≈ 0.1918, α ≈ 0.3846, Q : ∆ ≈ 0.1899, α ≈ 0.3837 (408)

We may obtain the asymptotic behavior of the curve (407) for large ∆ and large α by keeping
only the highest order terms in (407):

49 ∆8 + 266α2 ∆6 + 88α4 ∆4 − 1056α6 ∆2 − 1152α8 = 0 (409)

which may be factored to give:

(
∆2 − 2α2

) (
∆2 + 4α2

) (
7 ∆2 + 12α2

)2
= 0 (410)

which gives the asymptotic behavior:
∆ ∼

√
2 α (411)

So far the story is very similar to that of the forced van der Pol oscillator discussed in Chapter
5. However, there is an additional bifurcation here which did not occur in the forced problem.
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There is a homoclinic bifurcation which occurs along a curve emanating from point Q. This
involves the destruction of the limit cycle which was born in the Hopf. The limit cycle grows in
size until it gets so large that it hits a saddle, and disappears in a saddle connection. For points
on this curve far from point Q, we find that the limit cycle changes its topology into a closed
curve in which φ changes by 2π each time around. Such a motion represents drift or unlocked
behavior in the original system (370),(371). Unfortunately we do not have an analytic expression
for the curve of homoclinic bifurcations.

In summary, we see that the transition from strongly locked behavior to unlocked behavior in-
volves an intermediate state in which the system is weakly locked. In the three dimensional
slow flow space, we go from a stable equilibrium point (strongly locked), to a stable limit cy-
cle (weakly locked), and finally to a periodic motion which is topologically distinct from the
original limit cycle (unlocked). As in the case of the forced van der Pol oscillator, in order for
strongly locked behavior to occur, we need either a small difference in uncoupled frequencies
(small ∆), or a large coupling constant α. (The interested reader is referred to the doctoral
thesis of T.Chakraborty,“Bifurcation Analysis of Two Weakly Coupled van der Pol Oscillators”,
Cornell University, 1987, for more information. See also “The Transition from Phase Locking to
Drift in a System of Two Weakly Coupled van der Pol Oscillators” by Chakraborty and Rand
in International J. Non-Linear Mechanics, 1988, pp.369-376.)
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10 Center Manifolds

Imagine a situation in which a system of coupled oscillators has an asymptotically stable equi-
librium point which becomes unstable as a parameter is tuned. This would happen, for example,
if a pair of eigenvalues of the linearized system were to cross the imaginary axis. In the case of
a single oscillator this would produce a Hopf bifurcation in which a limit cycle would typically
be born as the equilibrium changes its stability. In the system of coupled oscillators, we might
expect a similar bifurcation to occur, localized to the part of the space spanned by the eigenvec-
tors corresponding to the pair of unstable eigenvalues. The intuitive reason for expecting this
is that the motion in the other directions near the equilibrium point corresponds to eigenvalues
with negative real parts and hence damps out.

This expectation can be justified by means of the center manifold theorem which states that
there exists a (generally curved) subspace (the center manifold) which is tangent to the (flat)
subspace spanned by the eigenvectors corresponding to those eigenvalues with zero real part, and
which is invariant under the flow generated by the nonlinear equations. All solutions starting
sufficiently close to the equilibrium point will tend asymptotically towards the center manifold.
The stability of the equilibrium point in the full nonlinear equations will be the same as its stabil-
ity in the flow on the center manifold. Any bifurcations which occur in the neighborhood of the
equilibrium point on the center manifold are guaranteed to also occur in the full nonlinear system.

This theorem is the basis of a calculation in which we obtain an approximate expression for
center manifold in the form of a power series, and then use this result to reduce the dimension of
the system which we need to study. This can be an important alternative to the direct approach,
especially if the system consists of many equations.

The reader interested in a proof of the center manifold theorem is referred to “Applications of
Centre Manifold Theory” by J.Carr, Springer Verlag, 1981.

10.1 Example

As an example we take the following system of two coupled oscillators:

d2x

dt2
− c

dx

dt
+ x+ x2dx

dt
= αxy (412)

d2y

dt2
+
dy

dt
+ y = x2 (413)

Eqs.(412),(413) may be described as a limit cycle oscillator x which is quadratically coupled to
a damped linear oscillator y. Here α is a coupling parameter.

Note that the x oscillator, when uncoupled from the y oscillator, exhibits a Hopf bifurcation at
c = 0:

d2x

dt2
− c

dx

dt
+ x+ x2dx

dt
= 0 (414)
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We may use the results obtained in Chapter 3 to determine the nature of the Hopf in eq.(414).
Let us rewrite eq.(99) in the form:

d2z

dt2
+ z = c

dz

dt
+ β1 z

3 + β2 z
2dz

dt
+ β3 z

(
dz

dt

)2

+ β4

(
dz

dt

)3

(415)

Then we saw in eq.(109) that eq.(415) exhibits a limit cycle if the following expression for its
amplitude A is real:

A = 2

√ −c
β2 + 3β4

(416)

Eq.(414) is of the form of eq.(415) with β2 = −1 and β1 = β3 = β4 = 0. Thus eq.(416) predicts
that

the uncoupled x oscillator, eq.(414), exhibits a limit cycle of amplitude 2
√
c for c > 0.

Since the equilibrium in (414) is unstable when c > 0, the limit cycle is predicted to be stable
and the Hopf is supercritical.

Now the question that we are interested in investigating here is: what is the effect of coupling
the limit cycle x oscillator to the damped linear y oscillator in eqs.(412),(413)? We begin by
rewriting these equations as a first order system:

dx1

dt
= x2 (417)

dx2

dt
= −x1 + cx2 − x2

1x2 + αx1y1 (418)

dy1

dt
= y2 (419)

dy2

dt
= −y1 − y2 + x2

1 (420)

Linearization in a neighborhood of the equilibrium point at the origin shows that at c = 0 there
is a center manifold tangent to the x1-x2 plane. However, restricting c to the value zero is
undesirable here because we want to see the Hopf as c moves through zero. There is a standard
trick for using the center manifold theorem for nonzero values of c, and it is based on the idea
of treating the term cx2 as nonlinear, so it doesn’t enter into the linearization at the origin.
The trick is to consider c as another phase variable by appending the following equation to
eqs.(417)-(420):

dc

dt
= 0 (421)

Now in the 5 dimensional x1-x2-y1-y2-c phase space, the center manifold is 3 dimensional and is
tangent to the x1-x2-c hyperplane. We may obtain an approximation for the center manifold by
expanding y1 and y2 in power series of x1, x2 and c. Keeping terms of quadratic order only, we
write:

y1 = a1x
2
1 + a2x1x2 + a3x1c+ a4x

2
2 + a5x2c + a6c

2 + · · · (422)

y2 = b1x
2
1 + b2x1x2 + b3x1c+ b4x

2
2 + b5x2c+ b6c

2 + · · · (423)
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When we say that the center manifold is an invariant manifold, we mean that the vector field
is tangent to it at all points. This means that the coefficients in eqs.(422),(423) must be cho-
sen so as to satisfy the differential equations (417)-(421). The process may be outlined as follows:

1. Substitute the power series expressions for y1 and y2, eqs.(422),(423), into the d.e.’s on dy1/dt
and dy2/dt, eqs.(419) and (420).
2. The resulting equations will involve the derivatives dx1/dt and dx2/dt. Replace these deriva-
tives by the d.e.’s on dx1/dt and dx2/dt, eqs.(417) and (418).
3. Since eq.(418) depends on y1, the resulting equations will contain y1. Replace y1 with the
power series (422).
4. Now collect terms and set to zero the coefficients of the quadratic terms x2

1, x1x2, x1c, x
2
2, x2c, c

2

in both equations, giving a total of 12 linear simultaneous algebraic equations on the 12 coeffi-
cients ai, bi of eqs.(422),(423).
5. Solve these equations and substitute the result into the power series expressions for y1 and
y2, eqs.(422),(423), to obtain a quadratic approximation for the center manifold.

This process is computationally intensive and is best accomplished using computer algebra. The
approximation can be extended to any order of truncation. Using this approach, we obtain the
following approximate expression for the center manifold:

y1 =
8 x2

2

13
− 2 x1 x2

13
+

5 x1
2

13
+ · · · (424)

y2 = −2 x2
2

13
− 6 x1 x2

13
+

2 x1
2

13
+ · · · (425)

The next step is to obtain the flow on the center manifold. Since the center manifold is tangent
to the x1-x2-c hyperplane, we may use x1 and x2 as coordinates on the center manifold. The flow
may therefore be obtained by substituting eq.(424) into eq.(418). This gives the equivalent one
degree of freedom system:

d2x

dt2
− c

dx

dt
+ x+ x2dx

dt
− αx


 8

13

(
dx

dt

)2

− 2 x

13

dx

dt
+

5 x2

13


+ · · · = 0 (426)

Eq.(426) is of the form of eq.(415) with β2 = −1 − 2α

13
and β4 = 0, giving the limit cycle amplitude

from eq.(416):

A =
2
√
c√

1 +
2α

13

(427)

Note that for α = 0, eq.(427) recovers the uncoupled limit cycle amplitude of A = 2
√
c. Thus

eq.(427) predicts the influence of the y oscillator on the limit cycle of the x oscillator. For example,
for c = 0.01 and α = 5, eq.(427) gives A = 0.150, whereas the uncoupled limit cycle amplitude
of the x oscillator for c = 0.01 is A = 0.2. These values agree with numerical integrations of the
original system (412),(413).



R.Rand Nonlinear Vibrations 82

10.2 Problems

Problem 10.1

Center Manifold Analysis. It is desired to make the equilibrium of the oscillator
d2x

dt2
+ x = 0

asymptotically stable by coupling it to a damped oscillator
d2z

dt2
+
dz

dt
+ z = 0 via the nonlinear

coupling:

d2x

dt2
+ x =

dx

dt
z,

d2z

dt2
+
dz

dt
+ z = γ

(
dx

dt

)2

+ x2 (428)

For some values of γ the origin x = dx
dt

= z = dz
dt

= 0 is asymptotically stable, while for others it
is unstable.

Find γc, the critical value of γ which separates asymptotic stability from instability.

Hint: Look for a center manifold in z-dz
dt

-x-dx
dt

space which is tangent to the x-dx
dt

plane at the
origin. Then use the two variable expansion method to study the flow on the center manifold.
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11 N Coupled Limit Cycle Oscillators

There are numerous biological applications which involve a system of N coupled limit cycle os-
cillators. For example, swimming in lamprey consists of a sequence of traveling waves which pass
down the body and propel the fish through the water. The muscular contractions which produce
this movement are controlled by neural activity along the spinal cord. The spinal cord consists
of about 100 individual segments, each of which is thought to be able to oscillate independently.
This leads to a model of 100 coupled limit cycle oscillators, each of which may have a slightly dif-
ferent uncoupled frequency. The expected behavior involves frequency locked motion with phase
differences between neighboring oscillators, corresponding to waves moving along the spinal cord.

Other biological examples include waves of peristalsis in the intestines, and waves of stomatal
opening on the surface of a leaf.

How shall we model this kind of system of coupled oscillators? We cannot hope to derive the gov-
erning equations from basic principles of physics, since little may be known about the underlying
mechanisms which produce the oscillation, including even the dimension of the phase space. On
the other hand, it is reasonable to model such a biological oscillator as being structually stable
and exhibiting a unique attracting limit cycle. One way to proceed would be to choose a standard
model of a limit cycle oscillator, such as a van der Pol oscillator, and to consider the dynam-
ics of a coupled system of these. This would certainly produce a mathematically difficult problem.

An alternative approach is to model the individual limit cycle oscillator as being characterized
only by its phase θi. The limit cycle is pictured as a closed curve in an unknown phase space,
coordinatized by its phase which we parameterize so that it runs uniformly in time from 0 to 2π
in each cycle. If ωi represents its frequency, then the individual oscillator may be modeled by
the equation:

dθi
dt

= ωi (429)

We shall refer to this model as a phase-only oscillator. A system of N coupled phase-only
oscillators takes the form:

dθi
dt

= ωi + fi(θ1, ..., θN ) (430)

where fi models the effect of the other oscillators on θi.

In this Chapter we will look at a one dimensional array of such oscillators with nearest-neighbor
coupling.

11.1 Two Phase-Only Oscillators

To begin with, let us look at a system of two phase-only oscillators:

dθ1
dt

= ω1 + f1(θ1, θ2),
dθ2
dt

= ω2 + f2(θ1, θ2) (431)

How shall we choose the coupling functions fi? We approach this by positing a series of assump-
tions:
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1. We require that the coupling functions fi be zero when both oscillators are at the same point
in their cycles, that is, when θ1 = θ2. This assumption allows the oscillators to move in phase.
This can be accomplished by requiring that fi depends only on the difference between the phases,
that is, fi(θ1, θ2) = αi g(θj − θi) such that g(0) = 0. (Here αi is a coupling constant.)

2. We assume that the coupling functions depend only on the current values of θ1 and θ2, and not
upon how many cycles have already passed. This means that fi should be a 2π-periodic function
of θ1 and θ2, or in view of the previous assumption, that g should be a 2π-periodic function of
θj − θi.

3. We have now that g(θj − θi) should be a 2π-periodic function for which g(0) = 0. We take
the simplest choice, g(θj − θi) = sin(θj − θi).

With these assumptions, eqs.(431) become:

dθ1
dt

= ω1 + α1 sin(θ2 − θ1),
dθ2
dt

= ω2 + α2 sin(θ1 − θ2) (432)

In order to study eqs.(432), we define a quantity φ = θ1 − θ2 which represents the phase lag of
oscillator 2 relative to oscillator 1. Subtracting the second of (432) from the first, we obtain a
d.e. on φ:

dφ

dt
= ω1 − ω2 − (α1 + α2) sinφ (433)

Like θ1 and θ2, φ is defined on a circle. An equilibrium point of the circle flow (433) corresponds
to a phase-locked motion of the system (432). Setting dφ/dt = 0 we obtain:

sinφ =
ω1 − ω2

α1 + α2

(434)

Since | sinφ| ≤ 1, the condition for real roots to eq.(434), and hence for phase-locked motions to
eqs.(432), becomes:

condition for phase locked motions:

∣∣∣∣ω1 − ω2

α1 + α2

∣∣∣∣ ≤ 1 (435)

Note that this condition is in qualitative agreement with the results found in Chapter 8 for two
coupled van der Pol oscillators, namely that phase locking requires the difference in uncoupled
frequencies to be small relative to the sum of the coupling constants. Substituting the expression
for sin φ in (434) into eqs.(432), we obtain a value for the common locked frequency, which is a
weighted average of the uncoupled frequencies ω1, ω2:

dθ1
dt

=
dθ2
dt

=
α1ω2 + α2ω1

α1 + α2

(436)

If condition (435) does not hold, the system undergoes drift, and the two oscillators operate at
different average frequencies. The bifurcation which accompanies the transition between phase-
lock and drift is a saddle-node. Of the two roots for sin φ given by eq.(434) in the phase-locked
case, one is stable and one is unstable.



R.Rand Nonlinear Vibrations 85

11.2 N Phase-Only Oscillators

In this section we generalize the system of two phase-only oscillators (432) by considering a line
of N such oscillators with nearest neighbor coupling:

dθ1
dt

= ω1 + α sin(θ2 − θ1) (437)

dθi
dt

= ωi + α (sin(θi+1 − θi) + sin(θi−1 − θi)) , i = 2, 3, ..., N − 1 (438)

dθN
dt

= ωN + α sin(θN−1 − θN ) (439)

where we have taken all the coupling constants α to be equal, but have allowed the frequencies
ωi to be independent. Following the treatment of the 2 oscillator case, we set

φi = θi − θi+1, i = 1, 2, ..., N − 1 (440)

Using the variables φi, eqs.(437)-(439) can be written in matrix form:

dφ̄

dt
= Ω̄ + Ā S̄ (441)

where φ̄, Ω̄ and S̄ are N − 1 vectors:

φ̄ =




φ1

· · ·
φN−1


 , Ω̄ =




ω1 − ω2

· · ·
ωN−1 − ωN


 , S̄ =




sin φ1

· · ·
sin φN−1


 (442)

and where Ā is a tri-diagonal N − 1 × N − 1 matrix:

Ā = α




−2 1
1 −2 1

1 −2 1
· · ·
1 −2




(443)

As in the two oscillator case, equilibria of (443) correspond to phase locked motions of eqs.(437)-
(439). Setting dφ̄/dt = 0 we obtain:

S̄ = −Ā−1 Ω̄ (444)

Note that in order for eq.(444) to have a real solution, each of the components of Ā−1 Ω̄ must
not be larger than unity, since the components of S̄ are sines.

Now it turns out that the matrix Ā in (443) can be inverted in closed form! The inverse Ā−1 is
a symmetric matrix, with elements:

Ā−1
ij =

j(N − i)

−Nα , (i ≥ j) (445)
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where the elements for i < j are obtained from the symmetry of the matrix. For example when
N = 6, Ā−1 is the 5×5 matrix:

Ā−1 = − 1

6α




5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5




(446)

As an example of the kind of calculation we can do with this model, suppose that the uncoupled
frequencies ωi decreased uniformly along the chain of oscillators:

ω1 = ω, ω2 = ω − ∆, ω3 = ω − 2∆, ω4 = ω − 3∆, etc. (447)

Then the column vector Ω̄ defined in eq.(442) becomes:

Ω̄ =




ω1 − ω2

ω2 − ω3

· · ·
ωN−1 − ωN


 = ∆




1
1
· · ·
1


 (448)

where ∆ is the uncoupled frequency difference between two adjacent oscillators. Using eqs.(444)
and (445), the values of φi for equilibrium are given by:

sinφi =
∆

α

i(N − i)

2
, i = 1, ..., N − 1 (449)

For example, in the case of N = 6 this gives (see eq.(446)):

S̄ =




sinφ1

sinφ2

sinφ3

sinφ4

sinφ5




=
∆

2α




5
8
9
8
5




(450)

Requiring each of the sine terms to remain ≤ 1 gives the following condition for phase locking:

∣∣∣∣∆α
∣∣∣∣ ≤ 8

N2
(451)

Note that once again the key quantity for phase locking is the ratio of frequency difference to
coupling strength.

The models presented in this Chapter originally appeared in the paper “The Nature of the Cou-
pling Between Segmental Oscillators of the Lamprey Spinal Generator for Locomotion: A Math-
ematical Model” by A.H.Cohen, P.J.Holmes and R.H.Rand, J.Math.Biology 13:345-369 (1982).
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11.3 Problems

Problem 11.1
Plane array of coupled oscillators. In this problem you are to investigate the dynamics of a
plane rectangular array of n2 identical phase-only oscillators with nearest neighbor coupling.
We associate a phase θi,j with an oscillator located at position (i, j) in the plane, where i, j =
1, 2, · · · , n. The d.e. governing a typical oscillator is:

dθi,j
dt

= ω + α [sin(θi,j+1 − θi,j) + sin(θi,j−1 − θi,j) + sin(θi+1,j − θi,j) + sin(θi−1,j − θi,j)] (452)

(Here we use the boundary convention that those sin terms which involve θi,j for i, j = 0 or N+1
are to be omitted.)

The problem is to simulate a system of up to 400 (n = 20) such oscillators. For convenience take
ω = α = 1. Since the oscillators are all identical, we might expect there to be a stable steady
state in which all the oscillators have the same phase. However, there may be other stable steady
states as well. The goal of this work is to investigate statistically how robust the in-phase steady
state is, for random initial conditions, as a function of the number of oscillators.

Write a computer program which numerically integrates the d.e.’s (452) for random initial con-
ditions. It should display the pattern which the square array of oscillators makes at a given time
by using two colors, one for sin θi,j > 0 and the other for sin θi,j < 0. The in-phase steady state
will then show up as the entire field of oscillators being of the same color, and “blinking” in time.

On a given run, you should start the simulation and allow the transients to die out. Observe
the steady state dynamics and classify it in words (for example, “in-phase, phase-locked motion”.)

Make a large number of runs for each of n = 5, 10, 15, 20. Count the number of runs which lead
to each type of steady state which you have identified. Use your results to address the following
question: Is the relative occurrence of the in-phase steady state a function of the number of
oscillators?

Problem 11.2
In the treatment of N phase-only oscillators with uniformly decreasing uncoupled frequencies,
eq.(447), suppose that the condition (451) for phase-locking is satisfied. Show that all N oscil-
lators frequency-lock at a frequency equal to the average of their uncoupled frequencies.

Problem 11.3
Consider a line of N identical phase-only oscillators with nearest neighbor coupling, i.e. eqs.(437)-
(439) with ω1=ω2=· · ·=ωN . The equilibrium condition (449) becomes sin φi = 0 for i=1,...,N -1.
Each of these N -1 equations has two possible solutions, φi = 0 and φi = π. The system therefore
has a total of 2N−1 equilibrium points. Show that the only stable equilibrium is the “in-phase
mode” for which φ1 = φ2 = · · · = φN−1 = 0.
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12 Continuum of Coupled Conservative Oscillators

In the previous Chapters we have viewed an oscillator as a discrete entity. However, for some
problems the most appropriate model is a continuum. Examples include the vibration of plates
and shells and waves in fluids. Such models take the form of partial differential equations, in
contrast to the o.d.e. models which we have studied so far.

In this Chapter we consider the nonlinear dynamics of a continuous line of conservative oscillators.
We begin by deriving the governing equations of motion of a system of discrete particles restrained
by nonlinear springs. Then we take the continuum limit and obtain a p.d.e. Finally, we investigate
traveling wave solutions in the p.d.e.

12.1 Derivation

The system consists of a line of unit masses, each one coupled to its two nearest neighbors by
nonlinear springs which have force-displacement characteristics F = δ + δ2. When the springs
are in unstretched equilibrium, the masses are a distance h apart. If ui = ui(t) represents the
displacement of the ith mass, the equations of motion become:

d2ui
dt2

= [ui+1 − ui + (ui+1 − ui)
2] − [ui − ui−1 + (ui − ui−1)

2] (453)

Now we wish to pass from the system of o.d.e.’s (453) to a p.d.e. via the continuum limit. We
define a displacement field u = u(x, t) in which x plays the role that the subscript i plays in
(453). The two schemes may be related by thinking of ui(t) as corresponding to u(xi, t):

ui(t) = u(xi, t), ui+1(t) = u(xi+1, t), where xi+1 − xi = h (454)

Thus we may expand ui+1 in a Taylor series about x = xi:

ui+1 = u(xi+1, t) = ui +
∂u

∂x
h+

∂2u

∂x2

h2

2
+
∂3u

∂x3

h3

6
+
∂4u

∂x4

h4

24
+O(h5) (455)

where the partial derivatives are to be evaluated at x = xi. Similarly we may expand ui−1 in a
Taylor series about x = xi:

ui−1 = u(xi−1, t) = ui − ∂u

∂x
h+

∂2u

∂x2

h2

2
− ∂3u

∂x3

h3

6
+
∂4u

∂x4

h4

24
+O(h5) (456)

Now we substitute eqs.(455) and (456) into (454) and expand the algebra, giving the p.d.e.:

∂2u

∂t2
= h2 ∂

2u

∂x2
+ 2h3 ∂u

∂x

∂2u

∂x2
+
h4

12

∂4u

∂x4
+O(h5) (457)

Next we neglect terms of O(h5) and define x̃ = x/h, giving (dropping the tildes):

∂2u

∂t2
=
∂2u

∂x2
+ 2

∂u

∂x

∂2u

∂x2
+

1

12

∂4u

∂x4
(458)

Eq.(458) may be thought of as governing the longitudinal vibrations of a nonlinearly elastic rod.
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12.2 Traveling Wave Solution

In order to study any solutions of the p.d.e. (458) which represent traveling waves, that is,
solutions whose shape does not change in a coordinate system which is uniformly translating
along the x axis at speed c, we set u(x, t) = f(ξ), where ξ = x− ct, giving the o.d.e.:

c2
d2f

dξ2
=
d2f

dξ2
+ 2

df

dξ

d2f

dξ2
+

1

12

d4f

dξ4
(459)

Defining v =
df

dξ
, eq.(459) becomes:

c2
dv

dξ
=
dv

dξ
+ 2 v

dv

dξ
+

1

12

d3v

dξ3
(460)

Eq.(460) may be written in the form:

d

dξ

[
(1 − c2)v + v2 +

1

12

d2v

dξ2

]
= 0 (461)

Eq.(461) may be integrated to give:

(1 − c2)v + v2 +
1

12

d2v

dξ2
= k1 (462)

where k1 is a constant of integration. Multiplying eq.(462) by
dv

dξ
and integrating gives:

d

dξ


(1 − c2)

v2

2
+
v3

3
+

1

24

(
dv

dξ

)2

= k1v


 (463)

Introducing another constant of integration k2, eq.(463) may be written in the form:

(1 − c2)
v2

2
+
v3

3
+

1

24

(
dv

dξ

)2

= k1v + k2 (464)

So far we have not discussed boundary conditions. Now we impose the conditions that v and its
derivatives vanish as ξ → ±∞. From eqs.(462) and (464), this requires that k1 = k2 = 0, giving:

1

24

(
dv

dξ

)2

= (c2 − 1)
v2

2
− v3

3
(465)

Eq.(465) is separable and may be integrated to give the solution:

v(ξ) =
β

2 cosh2 √β(ξ − ξ0)
, β = 3(c2 − 1) (466)

where ξ0 is a constant of integration. Since v =
df

dξ
, we may obtain an expression for f by

integrating (466):

f(ξ) =

√
β

2
tanh

√
β(ξ − ξ0) + f0, β = 3(c2 − 1) (467)
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where f0 is a constant of integration. Finally, this may written in terms of the original displace-
ment field u(x, t):

u(x, t) =

√
β

2
tanh

√
β(x− ct− ξ0) + f0, β = 3(c2 − 1) (468)

Eq.(468) is an exact solution to the p.d.e. (458). It represents a family of traveling waves with
wavespeed c ≥ 1 as parameter. Note that the wave’s amplitude is dependent on it’s wavespeed,
a typical nonlinear effect.




