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ABSTRACT _ ] i
In a previous paper [6], the authors investigated the dynam-
ics of the equation:
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We used the method of averaging in the neighborhood of the 2:1
resonance in the limit of small forcing and small nonlincarity.
We found that a degenerate bifurcation point occurs in the result-
ing slow flow and some of the bifurcations near this point were
looked at. In this work we present additional results concerning
the bifurcations around this point using analytic techniques and
AUTO. An analytic approximation for a heteroclinic bifurcation
curve is obtained. Additional results on the bifurcations of peri-
odic orbits in the slow flow are also presented.

INTRODUCTION

In a previous paper [6], we looked at the following equation:
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Omitting nonlinear terms in Bq.(1) results in the linear Mathicu
cquation which frequently arises in physics and engineering. The

additional x3 term may come from a nonlinear stiffness (e.g. the

vertically-forced pendulum). The (5’5)3[crm could come from

dt
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nonlinear damping (e.g. a model of high speed drag). The x* 4
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term is a nonlinear position-dependent damping like the term in

. 2
the Van der Pol equation. The x(‘(%) term may come from a

nonlincar inertia term (c.g. in systems where the kinctic energy

T= %mx2 (%})2)

Some other recent studies involving nonlinear Mathicu
equations are as follows: Norris [5] studied the bifurcations in
a Mathicu equation with x* and x* terms. Kidachi and Onogi
[4] looked at the stability of a Mathieu equation with only the x*

term. EI-Dib [2] analyzed an equation of the form:
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To detunc off the 2:1 resonance we sct:
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Applying the method of averaging to first order gives the follow-
ing slow flow:
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To explain some of the features observed by numerically integrat-
ing the system, we found that it was necessary to go to second
order in the averaging procedure [9], [10]. To make the problem
more tractable, we arbitrarily fixed the parameters:

A=1, B=3 ®)

and we scaled:

o=p=¢eu 9)

We also expanded & to O(e?) terms:
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Substituting Eqs.(8),(9),(10) into Eq.(1) and applying the method
of averaging to sccond order results in the simplified slow flow
cquations:
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A combination of analytic and numerical techniqucs were used to
analyze the simplified slow flow cquations. The AUTO bifurca-
tion and continuation software [1] was used to numerically gen-
crate bifurcation diagrams. A degenerate bifurcation point Q was
found to occur for the parameter values 8 = —1/2, 8, = —1§

and g = 0. Fig.1 illustrates the bifurcations ncar point Q and

Figure 1. Bifurcations nearpoint Q (8 = —1/2,8, = —1§ andu =
0). Phase portraits along path (dashed line) shown in Fig.2.
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Figure 2. Phase portraits corresponding to Fig.1. Darker line corre-
sponds to a stable periodic orbit.

Fig.2 shows the corresponding phase portraits for the path in pa-
rameter space shown in Fig.1 from () to (e).

In Fig.1, bifurcations occur along the solid curves. The left
transition curve of the 2:1 resonance in the linear Mathieu equa-
tion corresponds to LM1 where a bifurcation of fixed points on
R = 0 occurs in the slow flow. In our previous paper, we refer to
type 1 periodic orbits as those which plot as a topological circle
in the R-y phase space (see Fig.2d) and to type 2 periodic or-
bits as those which are topologically equivalent to R = const (see
Fig.2b). On the curve labelled LC, a type 2 limit cycle is created
at oo, An analytic expression for the LC curve was obtained in
the previous paper. HPF corresponds to a curve of Hopf bifur-
cations where a type 1 periodic orbit is created. HO denotes a
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curve of heteroclinic bifurcations where a periodic orbit changes
from type 1 to type 2. It appears that the HO and HPF curves
meet at a common point Q on the LM1 curve.

In this paper, we are interested in the behavior of
Eqgs.(11),(12) in the neighborhood of the bifurcation point Q. We
shall sec that although Fig.1 is correct, it is incomplete, in the
sense that there is alot of detail (in the form of additional bi-
furcations) occurring near point Q which is omitted from Fig.1.
Since we are interested in the neighborhood of point Q, for which
8 =-12, 8, =-18 andp =0, we will sct §; = —1% in
Egs.(11),(12) throughout this paper, which gives:
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For these equations, we will take x and 8, as unfolding parame-
ters and we will consider € to be small but fixed.

ANALYTIC RESULTS OBTAINED IN PART 1 [6]
To investigate the bifurcations near point Q, an unfolding
around Q was performed [6]. We began by using the rescaling:

R:=oyu, y=0v, u=0v), d=—1/8-+0%,, (15)
1=¢ot, foro small

The rescaling was chosen so that when o = 0, the system
is Hamiltonian with a hetcroclinic connection (which will be
needed in a later calculation).  Substituting Eqs.(15) into
Eqs.(13),(14) and Taylor expanding in o gives:
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In our previous analysis of the unfolding, we obtained the follow-

ing approximation of the Hopf bifurcation curve HPF cmanating
out of point Q [6]:
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ANALYTIC APPROXIMATION OF HETEROCLINIC BI-
FURCATION

Although the approximation (18) for the Hopf bifurcation
curve HPF was found in our previous work [6], we did not have
an analytic approximation for the heteroclinic bifurcation curve
HO. In this section, we will derive such an approximation. We
begin by assuming a scries expansion for # of the form:

u(v) = up(v) +ur (v)o + 1 (v)o? + us (v)o® + ... (19)

We then divide Eq.(16) by Eq.(17) and substitute in Eq.(19). Tay-
lor expanding in G, we get:
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Equating like powers of o, we get a scries of first order ODE’s
for u;:
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where the functions N; and D; are too long to be given here.

We can solve for up(v) from the O(1) ODE (21) and then sub-
stitute the solution into the O(c) ODE (22) for u;(v) where
Fy(ug,uy,v) becomes only a function of ) and v which we can
now solve. Similarly, we can substitute our solution for u) (v)
into the ODE (23) for uz(v) and so on. The constants of intcgra-
tion C; that we get when solving ecach ODE for the u; are deter-
mined by requiring the solution go through the two fixed points
of the heteroclinic orbit.

In applying this procedure, we start by finding a series ap-
proximation for the two fixed points on the heteroclinic orbit. We
know that these points occur at #* = 0 and finding a series solu-
tion for v* is straight-forward using regular perturbations. The
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scries approximations for the two fixed points on the heteroclinic
orbit (denoted by + and —) are:

2024,2
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Now to solve for the constants C; obtained from solving cach
ODE, we require that our scries cxpansion for u(v) goes through
the fixed points «’y, v} (valid up to order O(c')). When solving
the O(1) ODE (21), a value for Cp can be chosen so that the
solution goes through both fixed points. The solution of wug(v)
corresponds to the Hamiltonian casc which are perturbing off so
this is expected. We find that this is also the case for Cywhen
solving the O(o) ODE (22). When solving the O(c?) and O(c?)
ODE’s, C; and C3 can no longer be chosen so the solution u(v)
goes through both fixed points for all parameter valucs. At this
order in G, the heteroclinic orbit only exists for specific parameter
values (at the heteroclinic bifurcation). We choose values for C;
and C; so u(v) goes through only onc of the two fixed points. For
u(v) to go through the other of the two fixed points, we obtain a
condition on the parameters of the system for the heteroclinic
otbit to exist.

The result of this calculation is the following cquation for
the heteroclinic bifurcation curve HO (see Ng, Ph.D. thesis, [7]
for details):

_45e(Bat 13 ) 160958%(8 +- 18 )
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CROSSING OF HOPF AND HETEROCLINIC BIFURCA-
TION CURVES

From Fig.1, we see that the HPF bifurcation curve lies above
the HO bifurcation curve away from the point Q (§; = —1/2,
8y = —1¢, w=0)in the 8-y parameter planc. However, using
the analytic approximations we have obtained, valid in the neigh-
borhood of point Q, we find that the opposite is true! The first
term of the HPF approximation (Eq.18) is:

BECCESIRY
= e b 27)

The first term of the HO approximation (Eq.26) is:

_ 45e(8y 18 )
e e (28)

Comparing Eq.(27) and (28), it is clear that the HO curve comes
out of point Q with a steeper slope that the HPF curve. It turns
out that the HO curves lics above the HPF curve only in a very
small region near point Q. As we get farther away from point Q,
the two curves eventually intersect after which the HO curve lies
below the HPF curve and we are back to the situation outlined
in Fig.2. We use AUTO to verify this. Fig.3 shows the HO and
HPF curves obtained using AUTO near the degenerate bifurca-
tion point Q. Here, we hold € = 0.01 fixed and varying 8;a nd
4 since we are concerned with the behavior close the degenerate
bifurcation point.

%107 Bifurcation Diagram for A=1, B=3, £¢=0.01
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Figure 3. HPFandHOcurvesforA = 1,8=3,e=0.0l,00=f =¢u
obtained by using AUTO for Eqs.(13),(14) near the degenerate bifurcation
point Q (1 = 0,6, = —%). Solid line is HPF curve, dashed line is HO
curve.

BIFURCATION DIAGRAM ABOUT POINT Q

We now present a complete picture of the bifurcations that
occur near the degenerate bifurcation point Q. We first summa-
rize our results. Tig.4 shows the bifurcation diagram near point
Q and Fig.5 shows the phasc portraits corresponding to differ-
cnt regions in Fig.4. Note that in Fig.4 the features have been
exaggerated to make them more visible.

We find that there are threc additional bifurcation curves in-
volving the bifurcation of periodic orbits: SPO1 which corre-
sponds to a saddle-node bifurcation of type | periodic orbits,
SPO2 which corresponds to a saddle-node bifurcation of type
2 periodic orbits and a curve of degencrate Hopf bifurcations
DHPF which corresponds to a type 2 periodic orbit emerging
from R = 0 (to be discussed in a following section). The point S
denotes where the SPOI curve appears to cmanatc from the HPF
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curve and the point T denotes a point on the HO curve where the
both SPO1 and SPO2 curves appear to come out from. AUTO
was again used to obtain numerical data for thesc new bifurca-
tion curves.

LM1

DHPF LC

Figure 4. Bifurcation Diagram for 4 = 1, B =3, 8; = —1Z near point
Q. Regions denoted by lower case letters in () have corresponding phase
portraits shown in Fig.5. See Table 1.

Table 1. Labels for Bifurcation Curves used in Fig.4

Label Curve

LM1 | Transition Curve of Linear Mathicu Equation

LC Limit Cycle created at oo

HO Heteroclinic Bifurcation

HPE Hopf Bifurcation

SPO1 Saddle-node of Type 1 Period Orbits
SPO2 Saddle-node of Type 2 Period Orbits
DHPF Degencrate Hopf Bifurcation

APPROXIMATION OF SADDLE-NODE BIFURCATION
OF PERIODIC ORBITS AND DEGENERATE HOPF BI-
FURCATION CURVES USING AUTO

To obtain an approximation for the SPOIL curve, we use
AUTO to continue periodic orbits from points on the Hopf bi-
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Figure 5. Phase portraits for different regions near point Q (see Fig.4).
Darker lines correspond to stable periodic orbits. Dashed lines corre-
spond to unstable periodic orbits.

furcation curve HPF. Holding §; fixed, we continue in yx from
points on the HPI curve ncar the intersection of the HO and HPF
curves where we expect to find the SPO1 curve. When we start
the continuation, 4 initially decreascs because we have chosen to
continuc from a point on the HPF curve where the periodic or-
bits grow out of the equilibrium point as u decreases. At some
point AUTO will detect a fold and g starts to increase. This cor-
responds to a point on the SPO1 curve. If we continuc after the
fold, we will eventually rcach the HO curve in a heteroclinic bi-
fucation. This procedure can be repeated for different starting
points on the HPF curve to obtain the SPO1 curve. Fig.6 shows
an illustration of this procedure. Fig.7 shows the SPO1 curve
obtained along with the HO and HPF curves in a region zoomed
in around where the HO and HPF curves cross.

To mvestigate the SPO2 and DHPF curves, it is more con-
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HPE

SPO1

u

(a)

Figure 6. Continuation procedure to obtain points on the SPO1 curve.
Top shows continuation path in parameter space (dashed line). Bottom
shows the evolution of the periodic orbit along the path (in polar coordi-
nates). Point (a) corresponds to a point on the HPF curve where a Hopf
bifurcation occurs, (b) is a point on the SPO1 curve and (c) is on the HO
curve where a heteroclinic bifurcation occurs (straight-fine segment of the
heteroclinic orbit corresponds to R = 0). Between {b) and (c), there are
two periodic orbits.

X 10—4 Zoom-—in of region close to intersection of HO, HPF curves
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Figure 7. Zoom-in of region close to intersection of HO, HPF cuvres. HO
is dashed line. HPF is solid line. SPO1 is dashed-dotted line.

venient to look at the slow flow equations around point Q,
Eqs.(13),(14), if we transform to cartesian coordinates. We do
this for the following reasons:

(1) The resulting equations are polynomial equations and do not
contain trigonometric terms which are more difficult to deal with
computationally.

(2) The origin x = 0, £ = 0 in the original equation is singular in
polar coordinates (for R = 0, y is undefined). This is not the casc
in cartesian coordinates where the origin in the original cquation
is now w = 0, z = 0. In cartesian coordinates, the type 1 periodic
orbits encircle non-origin equilibria and the type 2 periodic orbits
encircle the origin. Also, the bifurcation we refer to as a hetero-
clinic bifurcation in polar coordinates is a homoclinic bifurcation
with two loops in cartesian coordinates. Fig.8 shows some phase
portraits in both polar R-y and cartesian w-z coordinates.

2 z

~i2}

polar coordinates cartesian coordinates

J——

S~

T

©
-

\

Figure 8. Phase portraits in polar and cartesian coordinates. Darker
lines correspond to stable periodic orbits. Dashed lines correspond to
unstable periodic orbits.
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To transform to cartesian coordinates we set w = Rcosy, z =
—Rsiny in Egs.(13),(14) and take k = &, + 1§ which gives:

dw 2 7\ 3 5 3\
7= €z+¢ [(,u }—2>z (+3)wz -I—(u 2>wz (29)
e By (e Dy
+(K—1)z 8(w b z°)z ;t-}-z w]

dz _ 3 AT 3V .2
E_S [*(;H-l)z ~<;¢+§)wz g w (30)

N\ 3 15, 2 22]
(,u 2)w Ku}—g(w b z4) w

Obtaining an approximation for the SPO2 curve is more difficult
because we cannot continue solutions from the HPF curve to the
SPO2 curve. This is because in between the two curves is the het-
croclinic bifurcation curve and AUTO cannot continue a periodic
orbit through a heteroclinic trajectory. However, AUTO can per-
form continuation starting from numerical data which specifics a
periodic orbit. Thus, we can use numerical integration to obtain
a starting point for AUTO to continue type 2 periodic orbits.

A mumerical approximation for a type 2 limit cyclc was ob-
tained by numerically integrating £q.(29),(30). To get a point on
the SPO2 curve, we continue the type 2 periodic orbit decreas-
ing &; holding p fixed. At some point AUTO will detect a fold
and &, will start to increase. This corresponds to a point on the
SPO2 curve and if we continue after the fold, we will eventually
reach the HO curve in a heteroclinic bifurcation. Fig.9 shows an
illustration of the procedure to obtain a point on the SPO2 curve.

We could have just as easily performed the same procedure
holding &, fixed and varying y as long as we choose an appro-
priate starting point. As was done for the SPO1 curve, this pro-
cedure is repeated starting at different parameter values to obtain
the SPO2 curve.

In the degenerate Hopf bifurcation, a type 2 limit cycle
grows out of the origin. Although AUTO is normally able to con-
tinue Hopf bifurcation curves, the DHPF curve is degenerate and
we cannot usc AUTO to continue this curve directly. To see why
this bifurcation is degenerate we look at the slow flow equations
in cartesian coordinates. Note that if we lincarize about the ori-
gin (w =0, z = 0), the trace of the Jacobian is always zero. This
is the condition for a non-degenerate Hopf bifurcation. We can
obtain an approximation for the DHPF curve indircctly by con-
tinuing the type 2 periodic orbit down to a point where it shrinks
to the origin which corresponds to the degenerate Hopf bifurca-
tion. In a proccdure similar to those used to obtain the SPO1 and
SPO2 curves, we can get an approximation for the DHPF curve.

Finally, Fig.10 shows the completed bifurcation diagram
near point Q obtained using AUTO. In Fig.10, it is difficult to
sce the crossing of the HO and HPF curves and the SPO1 curve
because they occur for a narrow band of paramcter values. How-
ever, these features are distinguishable if we zoom into a region

Figure 9. Continuation procedure to obtain points on the SPO2 curve.
Top shows continuation path in parameter space (dashed line). Bottom
shows the evolution of the periodic orbit along the path (in cartesian coor-
dinates). Point (a) corresponds to the trajectory obtained from numerical
integration, (b) is a point on the SPO2 curve and (c) is on the HO curve.
Between (b) and (c), there are two periodic orbits.

as was shown in Fig.7.

ANALYTIC EXPRESSION FOR DEGENERATE HOPF BI-
FURCATION

To obtain an expression for the degenerate Hopf bifurcation
curve, we start by looking at the normal form for a Hopf bifurca-
tion. In polar coordinates, the normal form of a Hopf bifurcation
is:

= (duort 0t ) 6D
0 = (w—}-c,u+[)r2+,..) (32)

When x changes sign a limit cycle is created or destroyed at the
origin and the sign of the cubic coefficient ¢ in the 7 equation
(31) determines whether the Hopf bifurcation is supercritical or
subcritical. In the non-degenerate case, i = 0 defines the curve in
parameter space for a Hopf bifurcation. In our system (29),(30),
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%107 Bifurcation Diagram for A=1, B=3, £=0.01 near point Q
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Figure 10. Bifurcation diagram obtained using AUTO near point Q. Bi-
furcation curves involving fixed points (LM1, HPF, DHF) are solid lines.
HO curve is a dashed line. SPO1, SPO2 curves are dashed-dotted lines.
Note, it is difficult to see the crossing of the HO and HPF curves and the
SPO1 curve because they occur for a narrow band of parameter values.
However, these features are distinguishable if we zoom into a region as
was shown in Fig.7.

however, the trace of the Jacobian is identically zero for all pa-
rameter values. Thus g = 0 and we have a degenerate Hopf.
When = 0 Lq.(31) becomes, neglecting terms of O(#7):

F= (oG (33)

Now, when o changes sign a limit cycle is created or destroyed
at the origin and  determines if the bifurcation is supercritical or
subcritical. Thus, the condition for the degenerate Hopf bifurca-
tion is ¢ = 0. Guckenheimer and Holmes [3] provide a formula
for this coefficient 6. For our calculations, we find it easier to
usc an alternative form for ¢ given by Perko [8] and found by
Andronov for a general planar analytic system with Taylor sc-
ries:

X = amx+ao]y+agox2 +apnxy-+ 002)/2 (G4
+a30x3 + (t21x2y + a12x2y2 + [103)/3 +...

y = biox+bo1y+ 1)20262 +byyxy+ bozyz
+b30x° + bo1x’y - bix®y + boay® + ...

C = T ([(llob]o((l%, +aynboy + ugab 1) (35)

+ ajpag (b%l + aaobny + ay1bo2)
+ g (ar1a0 + 2apbor) — 2ar0bi0 (b, — axnacy)
— 2a0a01 (459 — baoboz) — afy (2az0bag - b1 o)
+ (ao1b1o — 2(1%0)(1)“1)02 —ajay))

f(a%o +a01510)[3(b1obos — avraze) + 2aip(azy + b12)

+ (broa1y ~ a1 by )]>

where, A = aipbgy — ao1b10. In general, it is not easy to derive ex-
plicit cxpressions for the coefficients in the normal form. How-
ever, there are symbolic computer algebra programs which can
be used to find explicit formula for the coefficients (sce |11] and
[10]).

Substituting the values for the cocfficients a;;, b;; from
Eqs.(29),(29), we obtain an expression for the degenerate Hopf
bifurcation curve DHPF. After simplifying and factoring the re-
sulting cxpression we obtain:

2eb5(ex - € — 1) (dexu — 281 — 2u+3ex) = 0 (36)

Taking the last factored term in Eq.(36), solving for 1 and substi-
tuting K = &, — 1§ gives:

_ o 3@-1g)
P a8~ 18 ) =262 B7)

[iq.(37) agrees with numerical results obtained by usc of AUTO.

CONCLUSIONS

We have presented a complete picture of the bifurcations that
occur near a degencrate bifurcation point Q for the second order
slow flow cquations from a Mathieu equation with cubic non-
linearities. An analytic approximation for the heteroclinic bifur-
cation curve ncar point Q was obtained. Additional bifurcation
curves for periodic orbits were also investigated numerically us-
ing AUTO. An expression for a curve of degencrate Hopf bifur-
cations was also obtained analytically. The sccond order analysis
was motivated by featurcs observed from numerical integrations
(sce [6]) that first order averaging could not explain. It is possible
that going to third order in the averaging procedure may uncover
even more dynamical behavior.
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