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ABSTRACT 
In a previous paper [61, the authors investigated the dynam- 

ics of the equation: 

[ ( ) ( )  dt ~ b ( 8 - 1 - e c ° s t ) x + e  dx3+Bx- 7h +Cx 7h~ \ d t j  ] = 0  

We used the method of averaging ill the neighborhood of  the 2:1 
resonance in the limit of  small forcing and small nonlinearity. 
We found that a degenerate bifurcation point occurs in the result- 
ing slow flow and some of the bifnrcations near this point were 
looked at. In this work we present additional results concerning 
the bifnrcations around this point using analytic techniques and 
AUTO. An analytic approximation for a heteroclinic bifurcation 
curve is obtained. Additional results on the bifurcations of peri- 
odic orbits in the slow flow are also presented. 

INTRODUCTION 
In a previous paper [6], we looked at tile following equation: 

dt 2 F (8 ~ scos/)x I 8 Ax 3 I Ill 2 . . . . .  pg:,:~dt. ) F D \ d t j  I 0 11) 

Omitting nonlinear terms in Eq.(I)results in tile linear Mathicu 
equation which frequently arises in physics and engineering. The 
additional x 3 term may come from a nonlinear stiffness (E.g. the 

/ d r y 3  vertically-forced pendulum). The ( ~ )  terln could come fi'om 

nonlinear damping (e.g. a model of high speed drag). The x 2 dx ~E 
1 
 

term is a nonlinear position-dependeut damping like the term in 

the Van der Pol equation. The -( dx]2 term may come from a X k dt ) 
nonlinear inertia term (e.g. in systems where the kinetic energy 

T : ½,,,x2 
Some other recent studies involving nonlinear Mathieu 

equations are as follows: Norris [5] studied tile bifurcations in 
a Mathieu equation with x 2 and x 3 terms. Kidachi and Onogi 
[4] looked at the stability o fa  Mathieu equation with only the x 3 
term. EI-Dib [2] analyzed an equation of  the form: 

d2x 
dt~ f + (a~ - 2eql cos 2t)x + (a2 -- 2eq2 cos 4t)x 2 

- } - ( 0 3  - -  2~q3 cos6t)x 3 = 0 (2) 

To detune off tile 2:1 resonance we set: 

1 
8 = g + &s (3) 

Applying the method of  averaging to first order gives the follow- 
ing slow flow: 

dR ( R s i n 2 ~ g _ )  
dt  = e ~R 3 (4) 

. . . .  d t  t; 81 + ~cos2~lt-Fo~R 2 (5) 
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where 

o~= 3-A4 ÷ llo@C and ~ = 1-B8 + -3-D32 (6) 

and where 

R sin (~  + ~ )  (7) 

To explain some of the features observed by numerically integrat- 
ing the system, we found that it was necessary to go to second 
order in the averaging procedure [9], [10]. To make the problem 
more tractable, we arbitrarily fixed the parameters: 

A =  1, B = B  (8) 

and we scaled: 

u =  ~ = ~ ,  (9) 

We also expanded 8 to O(c 2) terms: 

8= ~q--81E@82 g2 (10) 

Substituting Eqs.(8),(9),(10) into Eq.(1) and applying the method 
of avera,,ing to second order results in the simplified slow flow 
equations: 

t [ ( ' dt a ~Rsin2~q +t~ 2 -81Rsin2~v+ ~81 - # +  ~s in2~( l l )  

-F~cos2 ' , )R  3] 

- - -  = B 81+ cos2~" -I-£ 2 82--8 ~ -  81cos2~lJ+(# (12) 
dt 

• 38,-I-. sin 2vg -2cos  2,it ) 17 2 -  15- R 4] 

A combination of analytic and numerical tcchniqucs were used to 
analyze the simplified slow flow equations. The AUTO bifurca- 
tion and continuation software [1] was used to numerically gen- 
erate bifi~rcation diagrams. A degenerate bifurcation point Q was 
found to occur for the parameter values 8j -- - 1/2, 82 -- - 1 
and F = 0. Fig.1 illustrates the biforcations near point Q and 
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Figure 1. Bifurcatiorls near point Q (81 = - 1 / 2 ,  82 = --1~ 
0). Phase portraits along path (dashed line) shown in Fig.2. 

~12 - 
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coordinate 
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(c) (d) (e) 

and ,zz = 

Figure 2. Phase portraits corresponding to Fig.1. Darker line corre- 
sponds to a stable periodic orbit. 

Fig.2 shows the corresponding phase portraits for the path in pa- 
rameter space shown in Fig.l  fiom (a) to (e). 

In Fig. 1, bifurcations occur along the solid curves. The left 
transition curve of the 2:1 resonance in the linear Mathieu equa- 
tion corresponds to LM 1 where a bifurcation of fixed points on 
R = 0 occurs in the slow flow. In our previous paper, we refer to 
type 1 periodic orbits as those which plot as a topological circle 
in the R-~I t phase space (see Fig.2d) and to type 2 periodic or- 
bits as those which are topologically equivalent to R = const (see 
Fig.2b). On the curve labelled LC, a type 2 limit cycle is created 
at ~o. An analytic expression for the LC curve was obtained in 
the previous paper. HPF corresponds to a curve of Hopf bifur- 
cations where a type 1 periodic orbit is created. HO denotes a 
Copyright © 2002 by ASME 



curve of heteroclinic bifnrcations where a periodic orbit changes 
from type 1 to type 2. It appears that the HO and HPF curves 
meet at a common point Q on the LM 1 curve. 

In lhis paper, we are interested in the behavior of 
Eqs.(11),(12) in the neighborhood of the bifurcation point Q. We 
shall see that although Fig.l is com,'ct, it is incomplete, in the 
sense that there is alot of detail (in the form of additional bi- 
furcations) occurring near point Q which is omitted from Fig.1. 
Since we are interested in the neighborhood of point Q, for which 
81 = - 1 ~ ,  8 2 = - 1 ~  a n d l t = 0 ,  w e w i l l s e t  81 = - 1 ~  in 
Eqs.(11),(12) throughout this paper, which gives: 

d~- = c Rsin2~ +c  2 ~Rsin2gt+ -- -It+ ~sin2~ (13) 

1 1 ~ cos2~+ (tt+ 3 d~,it - - c [ - ' ~ + 2 c ° s 2 ' l t ] + ~ 2 1 8 2 - - ~  + ~ (14) 

+ sin 2~ - 2 cos 2~) R2 - ~lSR 4] 

For these equations, we will take It and 82 as unfolding parame- 
ters and we will consider e to be small but fixed. 

ANALYTIC RESULTS OBTAINED IN PART I [6] 
To investigate the bifurcations near point Q, an unfolding 

around Q was performed [6]. We began by using the rescaling: 

R:=0.V~,  11/=0.v, I t=0.Vl:  82=-1/8-1-0.2V2, (15) 
"c = cot, for(y small 

The rescaling was chosen so that when (5 = 0, the system 
is Hamiltonian with a hetcroclinic connection (which will be 
needed in a later calculation). Substituting Eqs.(15) into 
Eqs.(13),(14) and Taylor expanding in 0. gives: 

d u = 2(1 + e)uv-  eu20.- [2(vl - v)eu 2 (16) 
d'~ 

@~(1 E)t/1)3] (I 2 -I- 0(0. 4) -}. _ ~;u21)2 (5 3 

d v  = v2E_ (1 +f:)v 2 E [ - -  - ~ u +  (vl +2v)eu0.+ 4guy 2 (17) 

15~eu2 _1..~(1~ -t- E;) 1)4] (y2-  ~ El/V30. 3 -}-0(0. 4) 

In our previous analysis of the unfolding, we obtained the follow- 
ing approximation of the Hopf bifurcation curve HPF emanating 
out of point Q [6]: 
3

 

3e(82+ 1~ ) 9 e ( l l e + 5 ) ( 8 2 +  1~ )2 
/ t - -  l + e  + 2(1 +~) 2 + . . .  (18) 

ANALYTIC APPROXIMATION OF HETEROCLINIC BI- 
FURCATION 

Although the approximation (18) for the Hopf bifurcation 
curve HPF was found in our previous work [6], we did not have 
an analytic approximation for the heteroclinic bifurcation curve 
HO. In this section, we will derive such an approximation. We 
begin by assuming a series expansion for u of the form: 

~t(V) = llO(V) -k Zll (V)0. "4"/,/2(1))O .2 +/,I 3 (12)O -3 Jr" ... (19) 

We then divkle Eq.(l 6) by Eq.(l 7) and substitute in Eq.(l 9). Tay- 
lor expanding in 0., we get: 

duo du115 du22 du3 3 - -a" " " F I (uO,ul ,v )~  
,z~ + 7l~- + - ~  + 7 ~  ~ + ...... ~o~.o,,,) + 

-I- t'~(u0, u~ ~ ~ 3 , t t2,v)(5--FP3(Uo,ltl , t t2,u3,v)G +. . .  (20) 

Equating like powers of 0., we get a series of first order ODE's 
for zti: 

O(1): duo =F0(u0,v ) =  4(l+E)u0v (21) 
d v  2(1 + e)v 2 + eu0 - 2E:V2 

d"l = tq (u0, u 1, v) - NI (u0, < ,  v) 
O(o) : d~- Dl(u0,ul,v) (22) 

N2 (u0,u 1, u2, v) 
du2 = F2(uO,Ul,U2,v) = D2(uo,Ul ,u2,v)  (23) °(~2) : 7 ¢  

N3(uo,ul ,u2,u3, v) 
du3 =l"3(uO,Ul,U2,u3,v )= D3(t,o,t.l,t,2,u3,v ) (24) 0(°3): 7~  

where tile functions N,. and Di are too long to be given here. 
We can solve :for u0(v) fi'om the O(1) ODE (21) and then sub- 
stitute the solution into the 0(0.) ODE (22) for ul (v) where 
F1 (u0, u~, 1)) becomes only a fimction of ul and v which we can 
now solve. Similarly, we can substitute our solution for ul (v) 
into the ODE (23) for u2(v) and so on. The constants of integra- 
tion Ci that we get when solving each ODE for the ui are deter- 
mined by requiring the solution go through the two fixed points 
of the heteroclinic orbit. 

hr applying this procedure, we start by finding a series ap- 
proximation for the two fixed points on the heteroclinic orbit. We 
know that these points occur at u* = 0 and finding a series solu- 
tion for v* is straight-forward using regular perturbations. The 
 Copyright © 2002 by ASME 



series approximations for the two fixed points on the heteroclinic 
orbit (denoted by +ancl - )  are: 

E / ~ 7 2  - -  (j2C2V2 / g ~  1 -[-O(~ 4) (25) 
u~ =: 0, v_~ = :k v ~ ± 6(e.-F 1) 2 V EV2 

Now to solve for the constants C~ obtained from solving each 
ODE, we require that our series expansion for u(v) goes through 
the fixed points t* v* (valid up to order O(oi)). Wben solving l =k, :t. 
the O(1) ODE (21), a value for C0 can be chosen so that the 
solution goes through both fixed points. The solution of uo(v) 
corresponds to the Hamiltonian case which are perturbing off so 
this is expected. We find that this is also the case for Clwhen 
solving the O(0) ODE (22). When solving the 0 ( o  2) and 0 ( o  3) 
ODE's, Ca and (73 can no longer be chosen so the solution u(v) 
goes through both fixed points for all paratneter values. At this 
order in o, the heteroclinic orbit only exists for specific parameter 
values (at the heteroclinic bifurcation). We choose values for C2 
and (23 so u(v) goes through only one of  the two fixed points. For 
u(v) to l;o through the othcr of the two fixed points, we obtain a 
condition on the parameters of  the system for the heteroclinic 
orbit to exist. 

The result of this calculation is the following equation for 
the heteroclinic bifurcation curve HO (see Ng, Ph.D. thesis, [7] 
for details): 

45a(82 + 1~ ) 16095e2(82-F 1~ )2 
F.. .  (26) 

/t -- 14(1 +e )  392(1 + e )  2 

CROSSING OF HOPF AND HETEROCLINIC BIFURCA- 
TION CURVES 

From Fig. 1, we see that the ttPF bifurcation curve ties above 
the HO bifurcation curve away fiom the point Q (81 = - 1 / 2 ,  
~52 = - l~l, / / -  O) in the 82-/* parameter plane. However, using 
the analytic approximations we have obtained, valid in the neigh- 
borhood of  point Q, we find that the opposite is true! The first 
term of the HPF approximation (Eq. 18) is: 

3a(~2+ 1~ 
It -- F. . .  (27) 

1 + ~  

The first term of the HO approximation (Eq.26) is: 

45e(62 + l ~ ) 
F... (28) 

/t = 14(1 -ke) 
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Comparing Eq.(27) and (28), it is clear that the HO curve comes 
out of  point Q with a steeper slope that the HPF curve. It turns 
out that the HO curves lies above the HPF curve only in a very 
small region near point Q. As we get farther away from point Q, 
the two curves eventually intersect after which the HO curve lies 
below the HPF curve and we are back to the situation outlined 
in Fig.2. We use AUTO to verify this. Fig.3 shows the HO and 
HPF curves obtained using AUTO near the degenerate bifurca- 
tion point Q. Here, we hold a = 0.01 fixed and varying 82a nd 
/t since we are concerned with the behavior close the degenerate 
bifnrcation point. 

1 0 - a  Bifurcation Diagram for A=I, B=3, e=0.01 
1.5 

1 

0.5 

k . L L k ] L ~ _ _  

-0.12 -0.11 -0.1 -0109 -0.08 -007  -0.06 

8 2 

Figure& HPgandHOeurvesforA=l ,B=3,~;=0.01,OC=I~=e,u  
obtained by using AUTO for Eqs.(13),(34) near the degenerate bifurcation 
point Q (,u 0,(32 = :  --~). {Solid line is HPF curve, daslmd line is HO 
curve. 

BIFURCATION DIAGRAM ABOUT POINT Q 
We now present a complete picture of the bifurcations that 

occur neat" the degenerate bifurcation point Q. We first summa- 
rize our results. Fig.4 shows the bifurcation diagram near point 
Q and Fig.5 shows the phase portraits corresponding to differ- 
ent regions in Fig.4. Note that in Fig.4 the features have been 
exaggerated to make them more visible. 

We find that there are three additional bifurcation curves in- 
volving the bifurcation of periodic orbits: SPOI which corre- 
sponds to a saddle-node bifi~rcation of  type 1 periodic orbits, 
SPO2 which corresponds to a saddle-node bifurcation of type 
2 periodic orbits and a curve of  degenerate Hopf bifin'cations 
DHPF which corresponds to a type 2 periodic orbit emerging 
from R = 0 (to be discussed in a following section). The point S 
denotes where the SPO1 curve appears to emanate fi'om the HPF 
Copyright © 2002 by ASME 



curve and the point T denotes a point on the HO curve where the 
both SPO1 and SPO2 curves appear to come out from. AUTO 
was again used to obtain numerical data for these new bifurca- 
tion curves. 

LM1 

tt 

62 

d) 

DHPF 

J 
J HPF~(< j 

(e) (g) . / - / ~  [ ~  HO 

Figure4. Bifurcation Diagram forA = l,/~ = 3, 81 = -17~ near point 
Q. Regions denoted by lower case letters in 0 have corresponding phase 
portraits shown in Fig.5. See Table 1. 

Table 1. Labels for Bifurcation Curves used in Fig.4 

Label Curve 

LM 1 

LC 

ltO 

HP F 

SPOI 

SPO2 

DHI'F 

Transition Curve of  Linear Mathicu Equation 

Limit Cycle created at co 

Heteroclinic 13ifurcation 

Hopf Bifurcation 

Saddle-node of  Type 1 Period Orbits 

Saddle-node of  Type 2 Period Orbits 

Degenerate Hopf Bifl~rcation 

APPROXIMATION OF SADDLE-NODE BIFURCATION 
OF PERIODIC ORBITS AND DEGENERATE HOPF BI- 
FURCATION CURVES USING AUTO 

To obtain an approximation for the SPO1 curve, we use 
AUTO to continue periodic orbits from points on the Hopf bi- 
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el2 l'- tls 

R 

.... el27 
coordinate 
system 

f®>) 
/<. 

(d) 

(g) 

(J) 

(a) (b) 

(e) (f) 

(h) (i) 

(k) 0) 

Figure 5. Phase portraits for different regions near point Q (see Fig.4). 
Darker lines correspond to stable periodic orbits. Dashed lines corre- 
spond to unstable periodic orbits. 

furcation curve HPE Holding 82 fixed, we continue in tt from 
points on the I-fPF curve near the intersection of the HO and HPF 
curves where we expect to find the SPOI curve. When we start 
the continuation, # initially decreases because we have chosen to 
continue fi'om a point on the HPF curve where the periodic or- 
bits grow out of the equilibrimn point as/z decreases. At some 
point AUTO will detect a fold and/l starts to increase. This cor- 
responds to a point on the SPOI curve. If we continue after the 
fold, we will eventually reach the HO curve in a heteroclinic bi- 
fucation. This procedure can be repeated for different starting 
points oll the HPF curve to obtain the SPO 1 cmwe. Fig.6 shows 
an illustration of this procedure. Fig.7 shows the SPOI curve 
obtained along with the HO and HPF curves in a region zoomed 
in around where the HO and HPF curves cross. 

To investigate the SPO2 and DHPF curves, it is more con- 
Copyright © 2002 by ASME 
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/ 
HO 

P01 

Y / 

/ (a) 

---~-4--- 

/ J 

/ 
/ /  

,(c) / 

.... hy~'i .... 

.... I U /  .... 

Y 

2" 
/ I 

. . . .  . . . . . . .  

f 
Figure 6. Continuation procedure to obtain points on the SPO1 curve.
Top shows continuation path in parameter space (dashed line). Bottom
shows the evolution of the periodic orbit along the path (in polar coordi-
nates). Point (a) corresponds to a point on the HPF curve where a Hopf
bifurcation occurs, (b) is a point on the SPO1 curve and (c) is on the HO
curve where a heteroclinic bifurcation occurs (straight-line segment of the
heteroclinic orbit corresponds to R = 0). Between (b) and (c), there are
two periodic orbits. 

x 1_0-4 .Z°0mH ~ '  of r e g i o n  close to intersection of HQ,~II~F cu~es 

9.9 - . " " - " 

9.7 . ' "  

_90P08 s - - C ~  8J,5 . . . . . . . . . .  7(j~0~ 84 - -  -0.O835- 70.083 

82 

Figure 7. Zoom-in of region close to intersection of HO, HPF cuvres. HO
is dashed line. HPF is solid line. SPOI is dashed-dotted line. 
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venient to look at the slow flow equations around point Q, 
Eqs.(13),(14), if  we transform to cartesian coordinates. We do 
this for the following reasons: 

(1) The resulting equations are polynomial equations and do not 
contain trigonometric terms which are more difficult to deal with 
computationally. 

(2) The origin x = 0, k = 0 in the original equation is singular in 
polar coordinates (forR = 0, ~ is undefined). This is not the case 
in cartesian coordinates where the origin in the original equation 
is now w = 0, z = 0. In cartesian coordinates, the type 1 periodic 
orbits encircle non-origin equilibria and the type 2 periodic orbits 
encircle the origin. Also, the bifilrcation we refer to as a hetero- 
clinic bifurcation in polar coordinates is a homoclinic bifurcation 
with two loops in cartesian coordinates. Fig.8 shows some phase 
portraits in both polar R-~ and cartesian w - z  coordinates. 

~t2 "I'- ~F 

R 

--~/2-l- 

polar coordinates 

__t" w 
cartesian coordinates 

Figure 8. Phase portraits in polar and cartesian coordinates. Darker 
lines correspond to stable periodic orbits. Dashed lines correspond to 
unstable periodic orbits. 
Copyright © 2002 by ASME 
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To transforln to cartesian coordinates we set w = Rcos~ ,  z =
- R  sin ~ in Eqs.(13),(14) and take tc = 62 + 1 ~ which gives: 

w2z (29)

t (30)

Obtaining an approximation for the SPO2 curve is more difficul
because we cannot continue solutions from the HPF curve to the
SPO2 curve. This is because in between the two curves is the het-
eroclinic bifurcation curve and AUTO cannot continue a periodic
orbit through a heteroclinic trajectory. However, AUTO can per-
form continuation starting from numerical data which specifies a
periodic orbit. Thus, we can use numerical integration to obtain
a starting point for AUTO to continue type 2 periodic orbits. 

A numerical approximation for a type 2 limit cycle was ob-
tained by numerically integrating Eq.(29),(30). To get a point on
the SPO2 curve, we continue the type 2 periodic orbit decreas-
ing ~32 holding t t  fixed. At some point AUTO will detect a fold
and 62 will start to increase. This corresponds to a point on the
SPO2 cuwe and if  we continue after the fold, we will eventually
reach the HO curve in a heteroclinic bifurcation. Fig.9 shows an
illustration of the procedure to obtain a point on the SPO2 curve.

We could have just as easily performed the same procedure
holding 82 fixed and varying i~ as long as we choose an appro-
priate starting point. As was done for the SPOI curve, this pro-
cedure is repeated starting at different parameter values to obtain
the SPO2 curve. 

In the degenerate Hopf bifurcation, a type 2 limit cycle
grows out of  the origin. Altbough AUTO is normally able to con-
tinue Hopfbifurcat ion curves, the DHPF curve is degenerate and
we cannot use AUTO to continue this curve directly. To see why
this bifurcation is degenerate we look at the slow flow equations
in cartesian coordinates. Note that if  we linearize about the ori-
gin (w = 0, z = 0), the trace of the Jacobian is always zero. This
is the condition for a non-degenerate Hopf bifurcation. We can
obtain an approximation for the DHPF curve indirectly by con-
tinuing the type 2 periodic orbit down to a point where it shrinks
to the origin which corresponds to the degenerate Hopf  bifnrca-
tion. In a procedure similar to those used to obtain the SPO 1 and
SPO2 curves, we can get an approximation for the DHPF curve.

Finally, Fig.10 shows the completed bifurcation diagram
near point Q obtained using AUTO. In Fig.10, it is difficult to
see the crossing of  the HO and HPF curves and the SPO1 curve
because they occur for a narrow band of parameter values. How-
ever, these features are distinguishable if we zoom into a region
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, . % . . - -  
- - /  

SPO2 f ~  I / .  

A . . J  - .  

?Zl 

Figure 9. Continuation procedure to obtain points on the SPO2 curve. 

Top shows continuation path in parameter space (dashed line). Bottom 

shows the evolution of the periodic orbit along the path (in cartesian coor- 

dinates). Point (a) corresponds to the trajectory obtained from numerical 

integration, (b) is a point on the SPO2 curve and (c) is on the HO curve. 

Between (b) and (c), there are two periodic orbits. 

as was shown in Fig.7. 

ANALYTIC EXPRESSION FOR DEGENERATE HOPF BI- 
FURCATION 

To obtain an expression for the degenerate Flopfbifnrcation 
curve, we start by looking at the normal form for a Hopf bifurca- 
tion. In polar coordinates, the normal form of  a Hopf  bifurcation 
is: 

i" = ( d / l  -}- GY 2 -}- ~F 4 -Jr-...)r 

6 = (w-} -c~ l -FDr2-~ . . . )  

(31) 
(32) 

When/ t  changes sign a limit cycle is created or destroyed at the 
origin and the sign of the cubic coefficient c; in the b equation 
(31) determines whether the Hopf  bifurcation is supercritical or 
subcritical. I11 the non-degenerate case, it = 0 defines the curve in 
parameter space for a Hopf  bifurcation. In our system (29),(30), 
Copyright © 2002 by ASME 
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x 10 -4 Bifurcation Diagram for A=I, B=3, E=0,01 near point Q 
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Figure 10. Bifurcation diagram obtained using AUTO near point Q. B

furcation curves involving fixed points (LM1, HPF, DHF) are solid line

HO curve is a dashed line. SPO1, SPO2 curves are dashed-dotted line

Note, it is difficult to see the crossing of the HO and HPF curves and th

SPO1 curve because they occur for a narrow band of parameter value

However, these features are distinguishable if we zoom into a region a

was shown in Fig.7. 

however, the trace of the Jacobian is identically zero for all pa
rameter values. Thus tz = 0 and we have a degenerate Hop
When/l  := 0 Eq.(31) becomes, neglecting terms of  O(r7): 

;- = (,J + 0 . 2 ) ?  (33

Now, when ~ changes sign a limit cycle is created or destroye
at the origin and ~ determines if the bifnrcation is supelcritical o
subcritical. Thus, the condition for the dEgeneratE Hopfbifurca
tion is c~ = 0. Guckenheimer and ttotmes [3] provide a forlnul
for this coefficient c~. For our calculations, we find it easier t
use an alternative form for cy given by Perko [8] and found b
Andronov for a general planar analytic system with Taylor se
ries: 

2 = a lox + ao IY + a20x 2 + a I ~ xv -t- ao2y 2 

-t-(t30 X3 4 - -  a21x2y -I- a l2x2y  2 4- a03Y 3 + . . .  

)) = b m x + b o l y + b 2 0 x  2 + b l i x y + b o 2 y  2 

+b30x 3 4- b21x2y + b j2x2y  2 + bo3y 3 -F . . .  

(34

( ~ - -  2aolA3;1 [ a m b l o ( a ~ 1 4 a l l b o 2 + u o 2 b l l )  (35
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Faloao l (b~ l  +a20bll +allb02) 

}- b~o(al la02 -t- 2ao2b02) - 2amblo(b202 - a20a02) 

- 2aloaol  (a~o - b20b02) - a~l (2a20b20-I- bllb?.o) 

-t- (aol bjo - 2a~o)(b l lbo2 - al la20)] 

(a~o + aolb lo)[3(b lobo3 - aola30) + 2am(a2t + b12) 

-F (bloal2 - aolb21 )]~ 
/ 

where, A = al0b01 - a01 bl0. In general, it is not easy to derive ex- 
plicit expressions for the coefficients in the normal form. How- 
Ever, there are symbolic computer algebra programs which can 
be used to find explicit formula for the coefficients (see [ 1 1 ] and 
[10]). 

Substituting the values for the coefficients aq ,  bij l iom 
Eqs.(29),(29), we obtain an expression for the degenerate Hopf 
bifurcation curve DHPE After simplifying and factoring the le- 
suiting expression we obtain: 

2a6~(eK- -  f .--1)(4e~<ll  -- 2elL -- 2tt + 3elc) = O (36) 

Taking the last factored term in Eq.(36), solving for/~ and substi- 
tuting ~c = 82 - 1 ~ gives: 

3e(82 - 1~ ) 
l / =  4~;(52 -- 1~ ) - 2 e - 2  (37) 

Eq.(37) agrees with munerical results obtained by use of AUTO. 

CONCLUSIONS 
We have presented a complete picture of the bifurcations that 

occur near a degenerate bifurcation point Q for the second order 
slow flow equations from a Mathieu equation with cubic non- 
linearities. An analytic approximation for the heteroclinic bifur- 
cation curve near point Q was obtained. Additional bifurcation 
curves for periodic orbits were also investigated numerically us- 
ing AUTO. An expression for a curve of  degenerate Hopf bifur- 
cations was also obtained analytically. The second order analysis 
was motivated by features observed from numerical integrations 
(see [6]) that first order averaging could not explain. It is possible 
that going to third order in the averaging procedure may uncover 
even more dynanfical behavior. 
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