
p

Proceedings of DETC 2003
2003 ASME Design Engineering Technical Conferences

September 2-6, 2003, Chicago, Illinois, USA

DETC2003-48446

NONLINEAR DYNAMICS OF A SYSTEM OF COUPLED OSCILLATORS WITH
ESSENTIAL STIFFNESS NONLINEARITIES

Alexander F. Vakakis

Division of Mechanics
School of Applied Mathematical and Physical Sciences

National Technical University of Athens
P.O.Box 64042, GR-157 10 Zografos, Greece

Email:vakakis@central.ntua.gr
and

Department of Mechanical and Industrial Engineering
University of Illinois

1206 W. Green Street
Urbana, IL 61801

Email:avakakis@uiuc.edu

Richard H. Rand

Department of Theoretical and Applied Mechanics,
Cornell University, Ithaca, NY 14853, USA

Email: rhr2@cornell.edu

ABSTRACT
We study the resonant dynamics of a two-degree-of-freedom

system composed a linear oscillator weakly coupled to a strongly
nonlinear one, with an essential (nonlinearizable) cubic stiffness
nonlinearity. For the undamped system this leads to a series of
internal resonances, depending on the level of (conserved) total
energy of oscillation. We study in detail the 1:1 internal res-
onance, and show that the undamped system possesses stable
and unstable synchronous periodic motions (nonlinear normal
modes - NNMs), as well as, asynchronous periodic motions (el-
liptic orbits - EOs). Furthermore, we show that when damping
is introduced certain NNMs produce resonance capture phenom-
ena, where a trajectory of the damped dynamics gets ‘captured’
in the neighborhood of a damped NNM before ‘escaping’ and
becoming an oscillation with exponentially decaying amplitude.
In turn, these resonance captures may lead to passive nonlinear
energy pumping phenomena from the linear to the nonlinear os-
cillator. Thus, sustained resonance capture appears to provide a
dynamical mechanism for passively transferring energy from one
part of the system to another, in a one-way, irreversible fashion.
Numerical integrations confirm the analytical predictions.

INTRODUCTION

We consider the dynamics of a two degree-of-freedom
(DOF) system of weakly coupled oscillators with cubic stiff-

ness nonlinearities. In the limit of zero coupling the system
decomposes into two single-DOF subsystems: A linear os-
cillator with normalized natural frequency equal to unity,
and a nonlinear oscillator possessing a nonlinearizable cu-
bic stiffness. We are interested in studying the dynamics of
the weakly coupled system.

Previous works (for example (Nayfeh and
Mook,1985),(Rand and Armbruster,1987)) analyzed the dy-
namics of systems with internal, external and combination
resonances, by partitioning the dynamics into ’slow’ and
’fast’ components and reducing the analysis to a small set
of modulation equations governing the slow-flow, i.e., the
evolution of the ’slow’ dynamics of the system. Generally,
internal resonances introduce interesting bifurcations to the
free and forced dynamics, and lead to essentially nonlinear
dynamical phenomena that have no counterparts in linear
theory. In recent works, a comprehensive classification of
the possible internal resonances in discrete nonlinear oscil-
lators was performed by (Luongo et al.,2002a),(Luongo et
al.,2002b).

In this work we focus in the 1:1 internal resonance be-
tween the linear and nonlinear oscillators and apply asymp-
totic techniques to study the free dynamics when no damp-
ing exists. Depending on the system parameters, stable and
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unstable synchronous periodic solutions (nonlinear normal
modes - NNMs) or asynchronous periodic motions are de-
tected, along with homoclinic loops in the ’slow’ flow dy-
namics. Numerical simulations confirm the analytical pre-
dictions. When damping is introduced, certain of these ho-
moclinic loops can be transformed to domains of attraction
for resonance capture (Quinn,1997),(Quinn,2002). In turn,
resonance capture leads to passive energy pumping (Vakakis
and Gendelman,2001),(Vakakis,2001) from the linear to the
nonlinear oscillator. Following (Quinn,2002) we provide a
direct link between resonance capture and passive nonlin-
ear energy pumping in the damped system of coupled os-
cillators. We utilize analytical and numerical techniques to
analyze these interesting dynamical phenomena.

STATEMENT OF THE PROBLEM

We are interested in the dynamics of a system of two
oscillators, one of which is strictly nonlinear with cubic non-
linearity. The oscillators are assumed to be coupled by small
nonlinear (cubic) terms. If we neglect damping, the prob-
lem is defined by the following equations:

d2x

dt2
+ x = −ε∂V

∂x
(1)

d2y

dt2
+ y3 = −ε∂V

∂y
(2)

where ε << 1 and where V is given by:

V = a40x
4 + a31x

3y + a22x
2y2 + a31xy

3 (3)

We study this system by first using the method of averaging
to obtain a slow flow valid to O(ε), and then analyzing the
slow flow.

AVERAGING

In order to perturb off of the ε = 0 system, we need to
solve the equation:

d2y

dt2
+ y3 = 0 (4)

The exact solution to eq.(4) is:

y(t) = A cn(At; k)

where k = 1/
√

2 and A is an arbitrary constant. As shown
in (Byrd and Friedman,1954), variation of parameters for
the equation

d2y

dt2
+ y3 = εf (5)

takes the form:

dA

dt
= εf

cn′

A
(6)

dφ

dt
=

A

4K
− εf

cn
4KA2

(7)

where cn′ = ∂cn(u,k)
∂u , where u = 4Kφ, and where φ = At

4K .
Here the solution of eq.(5) has been taken in the form:

y = A cn(4Kφ, k) (8)

where the modulus k = 1/
√

2 and the elliptic integral of
the first kind K(k)=1.854. We simplify the averaging by
use of an “engineering” approximation. (Byrd and Fried-
man,1954), p.304, give the followng Fourier expansion for
cn:

cn
2K
π
q = 0.955 cos q + 0.043 cos3q + · · · (9)

where here K = K(1/
√

2) = 1.854. We replace eq.(9) by
the following approximation (after (Chirikov,1979)):

cn
2K
π
q ≈ cos q (10)

Using eq.(10), eq.(8) becomes:

y = A cos θ, where θ = 2πφ (11)

Using this approximation (11) for y, the variation of para-
meter eqs.(6),(7) become:

dA

dt
= −εf π

2KA
sin θ (12)
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dθ

dt
=
πA

2K
− εf

π

2KA2
cos θ (13)

The corresponding treatment of the x-equation follows the
usual lines (see (Rand,2001), Chapter 3, for example). For
the equation:

d2x

dt2
+ x = εg

we take x in the form:

x = R cosψ (14)

whereupon variation of parameters gives:

dR

dt
= −εg sinψ (15)

dψ

dt
= 1 − εg

cosψ
R

(16)

Now if we let f = −∂V
∂y in eq.(5), and g = −∂V

∂x in eq.(15),
then eqs.(12),(13),(15),(16) represent the result of variation
of parameters for the original system (1),(2), where y and x
are related to the state variables A, θ and R,ψ, respectively,
through eqs.(11),(14).

The next step is to replace x and y
in eqs.(12),(13),(15),(16) by their equivalents in A, θ and
R,ψ via eqs.(11),(14). Using computer algebra, we obtain
the following equation for dR

dt , and three similar equations
on dA

at , dψdt and dθ
dt , which we omit listing for brevity:

dR

dt
=
a13A

3 ε sin (3 θ + ψ)
8

− a13A
3 ε sin (3 θ − ψ)

8

+
a22 A2 εR sin (2 θ + 2ψ)

4
− a22A

2 εR sin (2 θ − 2ψ)
4

+
3 a31AεR

2 sin (θ + 3ψ)
8

+
3 a31AεR

2 sin (θ + ψ)
8

+
3 a13A

3 ε sin (θ + ψ)
8

− 3 a31AεR
2 sin (θ − ψ)
8

−3 a13A
3 ε sin (θ − ψ)

8
− 3 a31AεR

2 sin (θ − 3ψ)
8

+
a40 ε sin (4ψ) R3

2
+ a40 ε sin (2ψ) R3

+
a22A

2 ε sin (2ψ) R
2

(17)

Next we apply the method of averaging to these “varia-
tion of parameters” equations. We posit a near-identity
transformation (see (Rand,2001)) for each of the variables
R,A, ψ, θ. For example for R this takes the form:

R = R̄+ εw1(R̄, Ā, ψ̄, θ̄) (18)

where w1 is a generating function which will be chosen so
as to simplify the resulting slow flow as much as possible.
Differentiating eq.(18),

dR

dt
=
dR̄

dt
+ ε

(
∂w1

∂R̄

dR̄

dt
+
∂w1

∂Ā

dĀ

dt
+
∂w1

∂ψ̄

dψ̄

dt
+
∂w1

∂θ̄

dθ̄

dt

)

(19)
By inspection of eqs.(12),(13),(15),(16), we see that eq.(19)
becomes, neglecting terms of O(ε2),

dR

dt
=
dR̄

dt
+ ε

(
∂w1

∂ψ̄
+
∂w1

∂θ̄

Ā

µ

)
(20)

where µ = 2K/π = 1.18. Now we substitute eq.(20) into
the dR

dt equation (17) and choose w1 to elminate as many
terms as possible from the RHS of the d.e. As an example,
take the following term:

dR

dt
=
dR̄

dt
+ ε

(
∂w1

∂ψ̄
+
∂w1

∂θ̄

Ā

µ

)
= −3εĀR̄2a31

8
sin(θ̄ − ψ̄)

(21)
We choose w1 = C cos(θ̄− ψ̄) and substitute, allowing us to
solve for C:

C =

3εĀR̄2a31

8
Ā
µ − 1

(22)

Proceeding in this way, we eliminate all terms from the RHS
of eq.(17) and from the RHS’s of the comparable equations
on dA

at , dψdt and dθ
dt , except for those terms which have no trig

multiplier. These terms would require that w1 include terms
proportional to t, which would fail to permit the expansion
(18) to be uniformly valid for large t. We obtain the fol-
lowing non-resonant slow flow (where we have dropped the
bars for convenience):

dA

dt
= 0 (23)

dR

dt
= 0 (24)
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dψ

dt
= 1 +

ε a22

2
A2 +

3 ε a40

2
R2 (25)

dθ

dt
=
A

µ
+
ε a22

2µ
R2

A
(26)

Eqs.(25),(26) give expressions for the frequency-amplitude
relations of the nonlinear normal modes which correspond
respectively to the uncoupled x− and y−motions in the
non-resonant case.

INVESTIGATION OF THE 1:1 RESONANCE

Note that the denominator of the derived coefficient
C in eq.(22) vanishes when A = µ. (Recall that µ =
2K/π = 1.18, see eq.(20).) This means that the term
− 3

8εĀR̄
2a31 sin(θ̄ − ψ̄) in eq.(21) is resonant. The vanish-

ing of the argument of the trig term is responsible for the
resonance. Inspection of the variation of parameter equa-
tions shows that there are three resonant conditions: θ = ψ,
θ = 3ψ, 3θ = ψ. These correspond respectively to the fol-
lowing amplitudes A of the strictly nonlinear y-oscillator:
A = µ = 1.18, A = 3µ = 3.54, A = µ

3 = 0.393.
In order to investigate what happens close to the 1:1

resonance, that is, when A ≈ µ = 1.18, we omit removing
the terms which cause the resonance. Writing v = θ − ψ,
we obtain:

dR

dt
= −Aε

(
2Aa22R sin 2 v + 3 a31R

2 sin v + 3A2 a13 sin v
)

8
(27)

dA

dt
=
εR

(
2Aa22R sin 2 v + 3 a31R

2 sin v + 3A2 a13 sin v
)

8Aµ
(28)

dv

dt
=
A

µ
− 1 − 3 a40 εR

2

2
+
a22 εR

2

2Aµ
− A2 a22 ε

2

+
a22 εR

2 cos 2 v
4Aµ

− A2 a22 ε cos 2 v
4

+
3 a31 εR

3 cos v
8A2 µ

− 9Aa31 εR cos v
8

+
9 a13 εR cos v

8µ
− 3A3 a13 ε cos v

8 R
(29)

This 3-dimensional system can be simplified by dividing
eq.(27) by eq.(28), giving:

dR

dA
= −µA

2

R
(30)

Integrating eq.(30), we obtain the first integral:

R2

2
+ µ

A3

3
= k1 = constant (31)

A second first integral is:

R2

2
+
A4

4
+

3
8
εa40R

4 +
1
8
εa22A

2R2 (2 + cos 2v)

+
3
8
ε
(
a13A

2 + a31R
2
)
AR cos v = k2 = constant (32)

This last result may be checked by differentiating (32) with
respect to t and substituting the slow flow eqs.(27)-(29).

These first integrals may be viewed as surfaces in the
R−A− v slow flow phase space which has topology R+ ×
R+ × S1. In particular, for a given value of k1, which is
found from the initial conditions R(0) and A(0), eq.(31)
is a cylindrical surface parallel to the v−axis. We shall be
interested in the nature of the slow flow on this surface. For
a given value of k2, the surface (32) intersects the cylinder
(31) in a curve. By allowing k2 to vary, the cylinder (31)
becomes foliated into invariant curves.

SLOW FLOW EQUILIBRIA

Equilibria of the slow flow eqs.(27)-(29) correspond to
periodic motions in the original eqs.(1),(2). In order to ob-
tain expressions for these slow flow equilibria and to investi-
gate their stability, we proceed as follows: We solve eq.(31)
for R and substitute the resulting expression in eqs.(28) and
(29) to obtain two eqs. in A and v of the form:

dA

dt
= F (A, v),

dv

dt
= G(A, v) (33)

The equilibrium condition in the first of these equations,
F (A, v) = 0, can be satisfied in three ways:

v = 0 or v = π or cos v = −3
(
a31R(A)2 +A2 a13

)
4Aa22R(A)

(34)
where R(A) represents the function of A obtained by solving
eq.(31) for R:

R(A) =

√
2
3

√
3k1 − µA3 (35)

Note that since we are interested in 1:1 resonance, A ≈
µ = 2K/π = 1.18 and eq.(35) tells us that k1 > µA3/3 ≈
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µ4/3 = 0.646.

Thus the number of slow flow equilibria in the case of 1:1
resonance is either 2 or 4, depending upon whether or not
the third condition in (34) has real roots. The bifurcation
case corresponds to cos v = ±1. Substituting A = µ into
this limiting case, we obtain the following relation between
the parameters:

a22 =
±√

3
(
2(3k1 − µ4)a31 + 3µ2a13

)
4
√

2µ
√

3 k1 − µ4
(36)

As an example, we choose the value of k1 to correspond to
the initial conditions R(0) = A(0) = 1 which gives k1 =
0.893333, in which case eq.(36) becomes:

a22 = ±0.4468 (a31 + 2.8178a13) (37)

giving the following bifurcation diagram:

Figure 1. Bifurcation Diagram

Next we investigate the stability of these slow flow equi-
libria. Let us select one of the conditions (34) and call it
v = v∗. Using this condition in the equilibrium condition
for the second of (33), G(A, v) = 0, we obtain:

G(A, v∗) = 0

We seek to satisfy this equation approximately by choosing
A in the form:

A = µ+ ε u+O(ε2) (38)

Let us denote by u∗ and A∗ = µ+ ε u∗ the resulting equil-
brium location. The nature of the equilibrium may be ob-
tained by linearizing in its neighborhood:

d(A−A∗)
dt

= (A−A∗)
∂F

∂A
+ (v − v∗)

∂F

∂v
+ · · · (39)

d(v − v∗)
dt

= (A−A∗)
∂G

∂A
+ (v − v∗)

∂G

∂v
+ · · · (40)

where the partial derivatives are evaluated at the equilib-
rium (A∗, v∗). From the existence of the second first integral
(and the absence of dissipation in the original equations of
motion) we know that the trace of the Jacobian matrix of
eqs.(39),(40) must vanish. Thus the type of equilibrium is
determined by the determinant ∆ of the Jacobian matrix:

∆ > 0 ⇒ center, ∆ < 0 ⇒ saddle (41)

We now give the result of computations. We begin with u∗:

u∗ = a31

(
−11 cosv∗ µ6

12
√

2 q
+

13 k1 cos v∗ µ2

4
√

2 q
− 3 k2

1 cos v∗

2
√

2µ2 q

)

+ a13

(
9 cos v∗ µ4

8
√

2 q
− 9 k1 cos v∗

4
√

2 q

)

+ a40

(
3 k1 µ− µ5

)

+ a22

(
5 cos 2v∗ µ3

12
+

5µ3

6
− k1 cos 2v∗

2µ
− k1

µ

)
(42)

where q =
√
k1 − µ4

3 and where µ = 2K/π = 1.18. As
an example, we again choose k1 = 0.893333, in which case
eq.(42) becomes:

u∗ = 1.00759 a31 cos v∗ + 0.24343 a13 cos v∗

+ 0.87464 a40 + (0.61213 + 0.30607 cos2v∗) a22

For these parameters, the determinant ∆ of the Jacobian
matrix is computed to be:

∆ = −0.17744 ε [a22 cos 2v∗ + 0.4468 cosv∗(a31 + 2.8178a13)]

Thus from (41) we may conclude that the type of equilib-
rium occurring at v = v∗ is dependent on the sign of the
following quantity:

a22 cos 2v∗ + 0.4468 cosv∗(a31 + 2.8178a13) < 0 ⇒ center
> 0 ⇒ saddle
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Now we apply these results to the slow flow equilibria at
v∗ = 0 and v∗ = π:

a22 ± 0.4468(a31 + 2.8178a13) < 0 ⇒ center
> 0 ⇒ saddle (43)

where the upper sign refers to v∗ = 0 and the lower sign
refers to v∗ = π. By comparing conditions (43) to con-
ditions (37), which govern whether or not there are two
equilibria in addition to v∗ = 0 and v∗ = π, we may draw
the following conclusions:

• If v∗ = 0 and v∗ = π are the only two equilibria, then
they have opposite types. If the quantity a31+2.8178a13 > 0
then v∗ = 0 is a saddle and v∗ = π is a center. If the
quantity a31 + 2.8178a13 < 0 then v∗ = 0 is a center and
v∗ = π is a saddle.

• If there are two additional equilibria coming from
the third condition of eq.(34), then v∗ = 0 and v∗ = π both
are of the same type, and the additional equilibria are of
the opposite type. If a22 > 0 then v∗ = 0 and v∗ = π
are saddles while the additional equilibria are centers. If
a22 < 0 then v∗ = 0 and v∗ = π are centers while the
additional equilibria are saddles.

These considerations lead to a graphical enumeration
of the four cases shown in Figs.2,3.

Figure 2. Four cases

These results may be checked by computing Poincare
maps directly from the original o.d.e.’s (1)-(3) for the cor-
responding parameters. The choice of the constant k1 =
0.89333 in Fig.3 will correspond to a corresponding value of
the energy h, where

h =
1
2
(ẋ2 + ẏ2) +

1
2
(x2 + y2) + εV

Figure 3. Phase portraits of the four cases. In each case the slow flow

on the cylinder (31) is shown projected onto the R − v plane. The hori-

zontal axis goes from R = 0 to R = 1.336, and the vertical axis goes

from v = 0 to v = 2π. The parameters for the four cases are as follows:

A (a31 = 1, a13 = 1, a22 = 1, a40 = 1),

B (a31 = −4, a13 = −4, a22 = 6, a40 = 1),

C (a31 = 1, a13 = 1, a22 = 2, a40 = 1),

D (a31 = 1, a13 = 1, a22 = −3, a40 = 1). In each case k1 = 0.89333.

Using eqs.(11),(14) and neglecting terms of O(ε), this be-
comes:

h =
1
2
R2 +

1
4
A2 (44)

In the case of 1:1 resonance, we had the approximate first
integral (31):

R2

2
+ µ

A3

3
= k1 = constant (45)

Substracting (45) from (44) we obtain:

h− k1 =
1
4
A4 − µ

A3

3

But for 1:1 resonance we saw in eq.(38) that A = µ+O(ε),
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giving

h = k1 − 1
12
µ2 = 0.7318

where we have used k1 = 0.89333 and µ = 1.18. Figs.4,5
present the results of such computations cases C,D respec-
tively. In each case the surface of section for the Poincare
map is taken as x = 0 with ẋ > 0. Initial conditions were
chosen to generate the motions corresponding to the sepa-
ratrices in Fig.3. The excellent qualitative agreement be-
tween Figs.4,5 and Fig.3 demonstrates the validity of our
asymptotic expansions. The fixed points in the Poincare

Figure 4. Poincare map, case C. The y − ẏ plane is displayed, extending

from -1.5 to +1.5 along both axes. Eqs.(1)-(3) were numerically integrated

using initial conditions which lie on the energy surface h = 0.7318. See text.

maps correspond to periodic motions in the original system
(1)-(3).

We note that Figs.4,5 illustrate two different types of
periodic motions. The fixed points which occur on the verti-
cal (ẏ) axis correspond to motions in which y = 0 occurs si-
multaneously with x = 0. These periodic motions are called
nonlinear normal modes (NNMs) and may be thought of as
vibrations-in-unison, or synchronous periodic motions. If
projected onto the x-y plane, NNMs plot as curves which
pass through the origin. In addition, Figs.4,5 also possess

Figure 5. Poincare map, case D. The y − ẏ plane is displayed, extending

from -1.5 to +1.5 along both axes. Eqs.(1)-(3) were numerically integrated

using initial conditions which lie on the energy surface h = 0.7318. See text.

fixed points which occur off the vertical axis. Such motions
are also periodic, but they do not pass through the origin
when projected onto the x-y plane. Rather they plot as
closed curves on the x-y plane, approximately elliptical in
shape, and are known as elliptic orbits (EOs). These mo-
tions are not vibrations-in-unison, and are said to be asyn-
chronous. They correspond to slow flow equilibria for which
v is neither 0 nor π (see eq.(34)).

EXAMPLE

Consider a system of two unit masses which are con-
strained to move along a straight line, and which are re-
strained by three springs, two of which are anchor springs
and one of which is a coupling spring. One anchor spring
is linear with spring constant k1, F = k1 δ. The other two
springs are strictly cubic, F = ki δ

3, i = 2, 3. See Fig.6.
The potential energy may be written:

P.E. =
1
2
k1x

2 +
1
4
k2(x− y)4 +

1
4
k3y

4

We rewrite this by collecting terms, in the following form:

P.E. =
1
2
k1x

2+
1
4
k2(x4−4x3y+6x2y2−4xy3)+

1
4
(k3+k2)y4
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Figure 6. Example system consisting of two unit masses and three springs.

Spring 1 is linear, while springs 2 and 3 are nonlinear. See text.

We take k1 = 1, k2 = ε, and k3 = 1 − ε, giving

P.E. =
1
2
x2 +

1
4
ε(x4 − 4x3y + 6x2y2 − 4xy3) +

1
4
y4

which gives the equations of motion:

ẍ+ x = −εVx, ÿ + y3 = −εVy

where

V =
1
4
(x4 − 4x3y + 6x2y2 − 4xy3)

This is a special case of the general potential V

V = a40x
4 + a31x

3y + a22x
2y2 + a13xy

3

in which

a40 = 1, a31 = −4, a22 = 6, a13 = −4

This case has been called case B in Fig.3. The correspond-
ing Poincare map is shown in Fig.7 for ε = 0.001 and
h = 0.7318. Cut is x = 0, ẋ > 0, and y − ẏ plane is
displayed from -1.5 to 1.5 in both directions.

RESONANCE CAPTURE AND PASSIVE NONLINEAR EN-

ERGY PUMPING IN THE DAMPED SYSTEM

To study the effect of damping on the dynamics we
focus on the specific example of two coupled oscillators just

Figure 7. Poincare map, case B. The y − ẏ plane is displayed, extending

from -1.5 to +1.5 along both axes. Eqs.(1)-(3) were numerically integrated

using initial conditions which lie on the energy surface h = 0.7318. See text.

considered (case B). By adding two viscous damping terms
the equations of motion take the form:

ẍ+ x+ ελẋ+ ε(x− y)3 = 0 (46)

ÿ + (1 − ε)y3 + ελẏ + ε(y − x)3 = 0 (47)

In Fig.8 we depict the damped response of the system with
parameters ε = 0.1, λ = 0.5 and zero initial conditions ex-
cept for ẋ(0) = 1.6. These initial conditions correspond to
an impulse of magnitude 1.6 applied to the linear oscilla-
tor, with the system initially at rest. In Fig.8a we present
the approximate instantaneous frequency of the nonlinear
oscillator computed by (Vakakis and Gendelman,2001):

Ω = ΞI1/3
1 (t)

where

Ξ =
(

3π4(1 − ε)
8K4

)1/3

, I1(t) =
(

π2ẏ2

2Λ2Ξ2K2
+
y4(t)
Λ4

)3/4

8 Copyright c© 2003 by ASME



in which

Λ =
(

1
4(1 − ε

)1/6 (
3π
K

)1/3

and K=K(1/2) is the complete elliptic integral of the first
kind with modulus 1/2. From Fig.8a we note that due to
the relatively low level of initial excitation, Ω(t) does not
reach the neighborhood of the natural frequency of the lin-
ear oscillator, and, as a result no resonance capture and no
significant energy pumping from the linear to the nonlinear
oscillator takes place. This is concluded from Fig.8b where
the time responses of the two oscillators are depicted.

Figure 8. Case of no resonance capture: (a) Instantaneous frequency of the

nonlinear oscillator, (b) Response of the linear (dashed line) and nonlinear

(solid line) oscillator.

In Fig.9 we show the response of the same system, but
for the higher initial velocity ẋ(0) = 3.0. For this increased
level of initial excitation we see that the instantaneous fre-
quency of the nonlinear oscillator reaches the neighborhood
of the natural frequency of the linear oscillator, giving rise
to 1:1 resonance capture. It can be concluded from Fig.9b
that significant energy transfer from the linear to the non-
linear oscillator takes place. As discussed below, this energy
transfer (pumping) can be directly related to the resonance

Figure 9. Case of resonance capture: (a) Instantaneous frequency of the

nonlinear oscillator, (b) Response of the linear (dashed line) and nonlinear

(solid line) oscillator.

capture phenomenon. For comparison purposes in Fig.10
we depict the portion of total energy dissipated at the vis-
cous damper of the nonlinear oscillator versus time for each
of the two cases discussed above. For low initial energy (no
energy pumping) nearly 9% of total energy is dissipated,
whereas, when energy pumping occurs, as much as 45% of
total energy is dissipated. This clearly demonstrates the
capacity of the nonlinear oscillator to absorb energy from
the linear one as the level of initial excitation increases.

In order to better understand the dynamics of the
1:1 resonance capture and its relation to energy pumping
we will perform an analysis based on the partition of the
damped response into ‘slow’ and ‘fast’ parts. This parti-
tion is justified by the numerical simulations of Figs.8b and
9b where it is observed that fast oscillations are modulated
by slowly-varying envelopes. Moreover, from Fig.9b we see
that 1:1 resonance capture takes place when the fast os-
cillation has frequency approximately equal to unity (the
frequency of the linear oscillator). It is concluded that
in the energy capture regime the fast oscillations have fre-
quency approximately equal to unity. We follow the analyt-
ical technique first introduced by Manevitch (Gendelman et
al.,2001), by introducing the complex variables,

ψ1 = ẏ + jy, ψ2 = ẋ+ jx, j =
√−1

9 Copyright c© 2003 by ASME



Figure 10. Portion of initial energy dissipated at the damper of the nonlinear

oscillator versus time.

and complexifying the resulting equations of motion
(46),(47):

ψ̇1 −
(
j − ελ

2

)
(ψ1 + ψ∗

1) +
j

8
(1 − ε)(ψ1 − ψ∗

1)3

+
jε

8
(ψ1 − ψ2 − ψ∗

1 + ψ∗
2)3 = 0 (48)

ψ̇2 − jψ2 +
ελ

2
(ψ2 + ψ∗

2) +
j

2
(ψ2 − ψ∗

2)

− jε
8

(ψ1 − ψ2 − ψ∗
1 + ψ∗

2)3 = 0 (49)

where * denotes complex conjugate. These equations are
exact.

We now introduce the slow-fast dynamics partition by
approximating the complex variables as,

ψi(t) = φi(t) expjt, i = 1, 2

where φi(t) is assumed to be a slowly-varying complex am-
plitude and the exponential models the fast oscillation with
frequency nearly to unity. Substituting this partition into

(48),(49) and averaging out components with fast frequen-
cies higher than unity, we obtain the approximate complex
modulation equations:

φ̇1 +
(
j + ελ

2

)
φ1 − 3j

8
(1 − ε)φ1

2φ∗1

−3jε
8

(φ1 − φ2)2(φ∗1 − φ∗2) = 0 (50)

φ̇2 +
ελ

2
φ2 +

3jε
8

(φ1 − φ2)2(φ∗1 − φ∗2) = 0 (51)

We now introduce the following transformation that ac-
counts approximately for the decay due to damping:

φi(t) = σi(t) exp−εt/2, i = 1, 2

and express the complex amplitudes as:

σ1(t) = M sin θ(t)ejδ1(t) and σ2(t) = M cos θ(t)ejδ2(t)

where M represents a (constant) real amplitude, and where
θ(t), δ1,2(t) are angles. Substituting these transformations
into eqs.(50),(51), separating real and imaginary parts and
manipulating the resulting differential equations, we obtain
the following equations governing the (slow) evolution of
the angle θ(t) and the phase difference δ(t) = δ1(t) − δ2(t):

θ̇ + f(θ, δ, t) sin δ = 0 (52)

δ̇ +
1
2
− 3

8
(1 − ε)M2e−ελt sin2 θ

−f(θ, δ, t)(tan θ − cot θ) cos δ = 0 (53)

where

f(θ, δ, t) =
3
8
εM2e−ελt

[
(sin θ − cos θ cos δ)2 + cos2 θ sin2 δ

]

We note that the requirement of slow evolution of the vari-
ables θ(t) and δ(t) poses the restriction that the difference
1
2 − 3

8 (1 − ε)M2e−ελt sin2 θ in eq.(53) be small [actually, it
can be shown that this difference must be of O(

√
ε)].
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The corresponding approximations for the responses of
the system are given by:

x(t) ∼M sin θe−ελt/2 sin[t+ δ(t) + δ0] (54)

y(t) ∼M cos θe−ελt/2 sin[t+ δ0] (55)

where δ0 depends on the initial conditions of the problem.
The approximate eqs.(52),(53) are defined on a 2-torus and
govern (to the first order of approximation) resonance cap-
ture in the system under consideration. We note that δ0 = 0
and θ(0) = 0 correspond to zero initial conditions for the
original problem except for ẋ(0) = M . Therefore the mod-
ulation eqs.(52),(53) can help us interpret the direct numer-
ical simulations of Figs.8-10.

For fixed M , ε = 0.1 and λ = 0.5, eqs.(52),(53) were
numerically integrated subject to specific initial conditions
θ(0) and δ(0). By setting δ0 = 0, δ(0) = 0 and θ(0) =
0.1 (setting the initial condition for θ to exactly zero leads
to numerical instabilities) we investigate the evolution of
the variables θ(t) and δ(t) for the low- and high-excitation
numerical simulations of Figs.8-10 corresponding to initial
excitation of the linear oscillator with initial velocityM and
zero for the other initial conditions. In Fig.11 we depict the
evolution of θ(t) and δ(t) for M = 1.6 (case of no resonance
capture - cf. Fig.8) and M = 3.0 (case of resonance capture
- cf. Fig.9).

For M = 1.6 no resonance capture occurs; δ(t) de-
creases monotonically with time and θ(t) assumes small
O(

√
ε) values. In this case the motion remains mainly con-

fined to the (initially excited) linear oscillator and only a
small portion of the energy is ‘pumped’ to the nonlinear
oscillator. When we increase the amplitude to M = 3.0,
δ(t) becomes oscillatory for some initial time interval, 0 <
t < 40, before assuming a monotonic decrease for t > 40.
The initial oscillatory regime is due to resonance capture
in the region of the phase space defined by the neighbor-
hood of the homoclinic loop of the stable periodic solution
of the undamped system. After the initial resonance cap-
ture, the solution ‘escapes’ the resonance regime and from
then on δ(t) behaves as in the non-resonance capture case.
Considering the behavior of the other angle variable θ(t),
it initially increases to O(1) values during the initial reso-
nance capture regime. In view of eqs.(54),(55), this implies
a one-way energy transfer from the initially excited linear
oscillator to the nonlinear one. It follows that resonance
capture is associated with oscillatory behavior of δ(t) (which
leads to the increase of θ(t), and, thus, to nonlinear energy
pumping), whereas, absence of resonance capture is associ-
ated with monotonic decrease of δ(t) (and O(

√
ε) values of

Figure 11. The evolution of the angles and for M=1.6 (dashed line), and

M=3.0 (solid line).

θ(t), i.e., absence of resonance pumping). These results es-
tablish a direct link between resonance capture and passive
nonlinear energy pumping in the damped system.

Although the results of this Section apply to the specific
system (46),(47), they can be extended to all four classes
of undamped systems A through D discussed in the previ-
ous Sections. It is anticipated that the addition of damping
transforms the homoclinic and heteroclinic loops of the un-
damped slow dynamics into resonance capture regions. Tra-
jectories of the damped system that are temporarily cap-
tured in these regimes cause interesting energy exchange
phenomena between oscillators, similar to the passive en-
ergy pumping exchange described in this Section.
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CONCLUSIONS

We studied the resonant dynamics of a two-DOF sys-
tem of nonlinear coupled oscillators. One of the oscillators
possessed a strong, essential (nonlinearizable) cubic nonlin-
earity. For the undamped system this led to a series of
internal resonances, depending on the level of (conserved)
total energy of oscillation. We studied in detail the case
of 1:1 internal resonance and constructed the bifurcation
diagram in parameter space. In the neighborhood of 1:1
resonance the undamped system admits stable and unsta-
ble synchronous periodic motions (nonlinear normal modes
- NNMs). Depending on the system parameters, asynchro-
nous periodic motions (elliptic orbits - EOs) can also be
realized.

When damping is introduced, the stable NNMs become
damped free oscillations (damped NNMs), and in certain
cases produce resonance capture phenomena: A trajectory
of the damped dynamics gets ‘captured’ in a neighborhood
of a damped NNM before ‘escaping’ and becoming an os-
cillation with exponentially decaying amplitude. It was
shown that such sustained resonance captures produce pas-
sive nonlinear energy pumping phenomena from the linear
to the nonlinear oscillator, thus sustained resonance capture
appears to provide a dynamical mechanism for passively
transferring energy from one part of the system to another,
in a one-way, irreversible fashion. The analysis performed in
this paper indicates that energy pumping (or equivalently,
sustained resonance capture), is affected by the initial con-
ditions of the system, by its initial energy level, and by
the specific spatial distribution of the external excitation.
We note that energy pumping is directly related to the es-
sential (nonlinearizable) stiffness nonlinearity of the system
(Vakakis,2001),(Vakakis and Gendelman,2001).

As a possible extension of this work we suggest a more
general study of the relation between sustained resonance
capture and passive energy pumping in a general class of
damped oscillators; in this work this relation was studied
only for a specific system configuration. In addition, it will
be of interest to study energy exchange phenomena related
to the excitation of the damped analogs of the stable EOs;
in this work we only examined energy transfer related to
damped NNMs. In general, this work demonstrates that
systems with essential nonlinearities possess interesting free
and forced dynamics, which can provide new tools for effec-
tive vibration and shock isolation of mechanical systems.
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