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ABSTRACT

Self-sustained mechanical vibrations of a disc-type micro-
fabricated resonator were experimentally observed when a con-
tinuous wave (CW) laser beam was focused on the periphery
of the disc (for a 40 µm diameter resonator, natural frequency
0.89MHz, the laser power above a 250 W threshold was required).
A theoretical model for self-oscillatory behavior has been devel-
oped based on FEM analysis of a stress pattern created within
the resonator by the focused laser beam. This model accounts
for the fact that the amount of absorbed laser light is modu-
lated due to the motion of the resonator through the optical
interferometric pattern. Analytical study reveals the presence
of a Hopf-type bifurcation with a critical laser power close to
the experimentally observed value. Harmonic balance analysis
indicates the existence of a stable limit cycle in the phase plane
determining the amplitude of self-oscillations.

INTRODUCTION

Micro- and nano-mechanical (NEMS) resonators have
many potential applications in systems such as pressure
and temperature sensors, [1,2], accelerometers [1,3], scan-
ning force microscopes [4,5], and mass detectors [6]. In
a typical application the frequency carries the information
on the quantity of interest (mass, temperature, pressure,
etc...). Nano-mechanical resonators also have potential ap-
plications in radio frequency communications systems, pro-
viding nanoscale solutions for functions such as filtering and
signal conversion [7,8].

Some of the challenges to using NEMS resonators in-
clude drive, signal transduction and attainment of high
quality factor. It is known that parametric pumping, i.e.

modulation of resonator stiffness, can be used to drive
NEMS resonators and to increase their effective quality fac-
tor and hence system sensitivity [9]. Electrostatic [9-11],
magnetic [12], and mechanical [13] pumping for paramet-
ric amplification in MEMS are common approaches. The
mechanics of parametric drive of electrostatic torsional os-
cillators has been studied extensively [14].

It has been recently discovered that optical excitation
can be used to drive and to parametrically amplify vibra-
tions of NEMS oscillators, [15-18]. This discovery opens
up many new potential applications of NEMS resonators.
However, to exploit these opportunities the mechanics of
optically driven NEMS devices must be well understood.
Combining thermo-mechanical finite element analysis with
numerical solutions of a dynamical model of the oscillator,
prior studies identified the mechanisms for parametric ex-
citation and self-oscillation [15-17]. Here we introduce an
additional feature in the model to account for static deflec-
tion of the disks due to heating. This addition brings the
predictions of the model into much better agreement with
the experiments. We will also concentrate on using ana-
lytical approaches to explore simplified models of optically
driven NEMS resonators.

The geometry and fabrication of the devices will be de-
scribed, followed by an overview of the experimental meth-
ods and observations. Finite element analyses used to deter-
mine system parameters will be described. Then a model of
the system will be developed and explored and to the extent
possible, its predictions compared to experimental results.
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OSCILLATOR GEOMETRY, FABRICATION AND EXPERI-

MENTAL OBSERVATIONS

Commercially available silicon-on-insulator
(SOI) wafers with a 250 nm thick silicon layer on top of
a 1 µm silicon oxide layer were used for the microfabrica-
tion. Discs of radii, R, from 5 to 20 µm were defined by
electron-beam lithography followed by a dry etch through
the top silicon layer. Dipping the resulting structure into
hydrofluoric acid undercuts the silicon oxide starting from
the disc’s periphery toward the center. By timing this wet
etch, the diameter of the remaining column of the silicon
oxide, which supports the released silicon disc, can be var-
ied. In this paper we present data obtained with R = 20µm
discs supported by the SiO2 pillars with diameter 6.7µm,
see Fig.1. After a critical point drying (CPD) process, sam-
ples were bonded to a piezoceramic transducer and placed
into a high vacuum chamber (P = 10−7 Torr) for testing.
All measurements were done at room temperature.

Motion of the disk is detected using the interferometric
setup [19] shown in Fig.2, that uses a He-Ne laser beam fo-
cused on the surface of the disc. The disk is thin enough that
light can pass through the disk, reflect from the substrate
and then interfere with light reflected from the disk, forming
a Fabry-Perot type interferometer. The net reflected signal,
measured using an AC coupled photodetector, is a periodic
function of the disk deflection. The net light absorbed by
the disk is also a periodic function of the deflection. Thus,
as the disk moves, it passes continuously into and out of
regions of higher and lower light absorption. Incident light
intensity can be controlled with an electro-optic modulator.
An AC voltage applied to the piezoceramic transducer to
which the wafer is bonded, can be used to excite the NEMS
oscillators.

Focusing a low power continuous wave (CW) HeNe laser
onto a 5 µm spot on the periphery of the disk, and exciting
the oscillator with the piezo-ceramic transducer, the reso-
nant frequency of the disk was measured as a function of
laser light intensity for several modes of vibration. As seen
in Fig.3, the frequencies of the two lowest modes increase
with laser power, while the frequency of the third mode
decreases.

With the piezo drive switched off, when the CW laser
intensity in increased beyond approximately 250µW the
disk begins to self-oscillate. This is seen in Fig.4 where the
amplitude of motion increases abruptly once the threshold
laser power is exceeded. Additional experimental observa-
tions are discussed in refs. [15-18].

FINITE ELEMENT MODELING AND MECHANISMS FOR

SELF-EXCITATION

Two mechanisms, both involving light absorption, heat-
ing and thermal stress are causing the self-excitation. De-
pending on the oscillator’s deflection, from 5 to 25% of the
incident laser light is absorbed, increasing the temperature
of the disk. The disk, unable to thermally expand at its
center due to the SiO2 pillar goes into tension in the radial
direction and compression in the hoop direction. The ra-
dial tension stiffens the disk for vibration modes involving
primarily radial bending (modes 1 and 2) and softens the
disk for modes involving primarily hoop bending (mode 3).
This is verified by the finite element results of Fig.5 that
show the temperature and thermal stress field for steady
state heating. Modal analyses were performed before and
after heating. The modal shapes are shown in Fig.1d. Note
that since Si is a cubic material there are two modes with
slightly different frequencies, rotated by 45o with respect
to each other, that are identical in shape to the last mode
shown in Fig.1d. The change in resonant frequency versus
incident laser power (assuming 25 % absorption) is plotted
in Fig.3 for the first three modes.

As the disk oscillates, it is subject to modulated laser
heating, due either to passing through the absorption inter-
ference fringes or due to external modulation of the laser.
In either case, since the disk is so small it can heat and cool
in response to the modulated heating. Note that the disk’s
thermal time constant is about 2µs and its period of vibra-
tion about 1 µs. Thus, as the disk oscillates its temperature
is modulated, resulting in modulation of the stiffness. If at
the equilibrium position the disk lies at either a maximum
or minimum of the absorption fringes, then due to passing
through the absorption interference fringes the modulation
of stiffness is always at a 2:1 ratio to the motion, resulting
in Mathieu-equation-like parametric pumping of the system.
Note that the larger the amplitude of motion, the larger the
modulation of stiffness, unlike the canonical Mathieu sys-
tem in which the change in spring stiffness is independent
of amplitude of motion.

In addition to modulation of the disk’s stiffness during
motion, laser heating can cause a direct deflection of the
disk. Larger diameter disks, made using the same process
clearly show that the disks are curved due to the release of
residual stresses in the Si layer during fabrication. Further-
more, the deflection is large enough that it can be measured
using interference microscopy. Using the deflection from a
disk of diameter 89µm, the residual stresses in the Si were
estimated, and then applied in an FEM model to the 40µm
disk to estimate its initial shape. Through this procedure
we estimate that the 40µm disk is curved by about 100nm.

A 3D FEM model of the curved disk was built and sub-
jected to steady state and modulated heating over a 5µm
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Figure 1: (a) SEM images of disk-shaped oscillator, (b) schematic, (c) optical images, (d) first
three modes of vibration



Figure 2: Experimental setup.
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Figure 3: Relative shift in frequencies versus incident laser power, below threshold for self-
oscillation. Points are experimental measurements from several repeats. Solid lines from FEM
simulation. Mode numbers refer to mode shapes in Figure 1. Note that mode shape 3 in Figure
1 actually has two modes rotated 45o to each other, thus there are two FEM lines for this mode.



Figure 4: Amplitude of signal to photodector versus incident laser power. Inset shows spectrum
at a power above 250µW . The multiple peaks are due to nonlinearity in the relationship between
reflected signal and deflection.
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Figure 5: FEM results for steady heating, assuming a 260µW laser spot, focused on a 5µm
diameter region on the periphery of the disk, and assuming 25 absorption of light. Mechanical
and thermal properties for FEM simulation are given in Table 1. (a) Increase in temperature,
oC. (b) Radial and hoop stresses along sections a-a and b-b. Solid line shows stress field for a
disk heated uniformly to δTmax
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Si (100)Properties [20, 21]

E 130 GPa

ν .279

µ 79.1 GPa

ρ 2420 kg/m3

k 170 W/m K

c 712 J/kg K

α 2.5 ×10−5/K

dE/dT -130 ×10−4 GPa/K

dµ/dT -79.1 ×10−4 GPa/K

Table 1. Properties of Si(100)

spot. From these calculations, the deflection of the disk
due to modulated heating and thermal expansion could be
determined. Note that if the disk was flat it would deflect
much less. In this case the deflection would be due only
to the gradient of temperature through the thickness. This
gradient, however is very small due to the very fast time
constant for conduction through the thickness (6×10−4µs)
relative to the 1µs period. In larger MEMS systems bending
of beams due to through the thickness thermal expansion
gradient has been identified as leading to self-oscillation and
bi-stability of equilibrium deflections [22,23]. Note also that
in the current problem, the deflection due to photon pres-
sure is negligible relative to the motion caused by thermal
expansion of the curved disk.

MATHEMATICAL MODEL

We model the system as a lumped thermal mass and
single degree of freedom oscillator. In the thermal problem
the disk heats up due to absorbed laser light and cools ac-
cording to Newton’s law of cooling, i.e. the rate of heat
loss is proportional to the temperature above ambient. The
absorbed laser light can be modulated externally by modu-
lating the incident laser and internally by the disk moving
through the interference fringes. In the mechanical prob-
lem the bending up or down of the curved disk due to laser
heating is treated as a base excitation. Modulation of the
stiffness due to dynamic temperature changes is assumed to
be proportional to the temperature change. Making these
assumptions, and assuming that there is no other external
drive in the system, the motion and heating of the disk os-
cillator can be modeled using the following coupled set of

differential equations,

z̈ +
1
Q

(ż −DṪ ) + (1 + cT )(z −DT + β(z −DT )3) = 0 (1)

Ṫ + BT = AP (1 + φ sin Ωt)(α + γ sin2 2π(z − z0)) (2)

where z is the deflection normalized by wavelength of laser
light, Q is the quality factor, c is the relative change in
spring constant per unit temperature change, T is temper-
ature change in oC, β is the nonlinearity in the disk’s stiff-
ness, D is the deflection of the disk due to heating, per unit
temperature change, B represents the disk’s overall ther-
mal conductivity, A its overall thermal mass, P the inci-
dent laser power in µW , φ the fraction of modulation of the
incident laser beam, Ω the frequency of modulation of the
incident laser beam, α is the minimum value of absorption,
γ is the contrast in the absorption curve, and z0 represents
the disk’s equilibrium position relative to the absorption in-
terference curve. Note that the sin2 2π(z − z0) term is an
approximation to the actual absorption curve. Time has
been non-dimensionalized in the above system so that the
frequency of small oscillations is 1. In the above system,
the bending of the beam due to heating is treated as a base
excitation.

Values for A and B were calculated based on the max-
imum temperatures calculated in FEM simulations of both
steady state and modulated laser heating. Heating was
modulated at frequency 2. The quality factor was esti-
mated from experiments where the disk was piezo driven
at small amplitudes. The stiffness change per tempera-
ture, c was estimated from the FEM simulation by cal-
culating the resonant frequency change. The deflection
per temperature, D was estimated from the FEM simu-
lation by calculating the amplitude of motion due to fre-
quency 2 modulated laser heating. The cubic non-linearity
in stiffness was estimated based on experimentally observed
frequency-amplitude curves. The absorption parameters,
α, γ and z0 are calculated based on the dielectric prop-
erties of the Si, its thickness and the gap thickness [20].
Note that the gap thickness depends on the initial curva-
ture of the disk. Analyses of several sized disks have been
performed. For the 40µm diameter disk the following val-
ues are estimated: A = .018oC/µW, B = .49/oC, c =
3.5×10−4/oC, D = 1.3×10−5/oC, β = .38, Q = 104, z0 =
.06, α = .06, and γ = .26. These parameter values will be
used in the rest of this paper. Note that D and z0 could be
positive or negative depending on whether the disk curves
up or down from the substrate. The laser power P is in the
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range of 0 − 1000µW . The modulation depth, φ is from 0
to 1.

We begin by seeking an expression for the equilibrium
of eqs.(1),(2) in the case of no forcing, φ = 0. We also take
α = 0 in what follows. From eq.(1) this will occur when
z = DT . Substitution into eq.(2) gives

z =
ADPγ

B
sin2 2π(z − z0) (3)

For typical parameter values, the quantity ADPγ
B << 1,

yielding the following approximate expression for the equlib-
rium of eqs.(1),(2):

zeq =
ADPγ

B
sin2 2πz0, Teq =

1
D

zeq (4)

In order to investigate the stability of the equilibrium (4),
we set z = zeq+u, T = Teq+v in eqs.(1),(2) and linearize in
u and v. The characteristic equation of the resulting linear
system may be written in the form λ3 +k2λ

2 +k1λ+k0 = 0.
For a Hopf bifurcation, λ = ±iω, which gives the condition
k1k2 = k0, yielding the following expression for PHopf :

PHopf =
Q + B2Q + B

2πADγ(Q2 − BQ − 1) sin 4πz0

≈ 1 + B2

2πADγQ sin 4πz0
(5)

where the approximation in eq.(5) is based on the small
damping assumption Q >> 1. When the foregoing numeri-
cal values of the parameters are substituted into eq.(5), we
obtain PHopf = 474µW .
Note that the theoretical value is somewhat higher than the
measured threshold for self-oscillation shown in Fig.4. This
suggests that we are not estimating all the parameters in
the model accurately, which is not surprising given the large
number of parameters and the uncertainty in the initial cur-
vature of the disk, which affects D and z0 in equation 5.
Nonetheless the theoretical model shows excellent qualita-
tive agreement and predicts the threshold for self-oscillation
within a factor of two.

SIMPLIFIED MODEL

In this section we investigate the dynamics of a simpli-
fied version of eqs.(1),(2). We assume D = 0, φ = 0, z0 = 0
and α = 0, whereupon eqs.(1),(2) become:

z̈ +
1
Q

ż + (1 + cT )(z + βz3) = 0 (6)

Ṫ + BT = APγ sin2 2πz (7)

We further simplify eqs.(6),(7) by Taylor-expanding
sin2 2πz and keeping only the first two terms in the series:

sin2 2πz = 4π2z2 − 16
3

π4z4 + · · · (8)

Eqs.(6)-(8) have the equilibrium solution z = 0, T = 0.
Linearizing about this solution, we see that it is a stable
equilibrium.

We look for periodic solutions of eqs.(6)-(8) by using
the method of harmonic balance. We set

z = R cosωt (9)

and substitute eq.(9) into eqs.(7),(8), which gives the fol-
lowing periodic expression for T :

T = p1+p2 sin 2ωt+p3 cos 2ωt+p4 sin 4ωt+p5 cos 4ωt (10)

where the constants pi are known functions of the parame-
ters R, ω, A, P, γ, c, β, Q and B. We substitute eqs.(9),(10)
into eq.(6) and collect terms after trigonometric reduction.
The method of harmonic balance requires that we set the
coefficients of cosωt and sinωt to zero. This gives the re-
lations ω ≈ 1 and the following equation on the amplitude
R:

(8π2 − 3β)R4 − 6R2 +
3(B2 + 4)
π2APγQc

= 0 (11)

Eq.(11) is a quadratic on R2. Assuming 8π2 − 3β > 0,
eq.(11) will have two real positive roots for R2 if the diskrim-
inant is positive. This gives the following condition for
eqs.(6)-(8) to have two periodic solutions:

APγQc

B2 + 4
>

8
3
− β

π2
(12)

The associated periodic motions are limit cycles. Since the
equlibrium at the origin z = 0, T = 0 is stable, we are not
surprised to find that the smaller limit cycle is unstable and
the larger one is stable. At the critical value of parameters
given by replacing the inequality in (12) by an equal sign,
the two limit cycles disappear in a fold. See Fig.6.

The smaller limit cycle is born in a subcritical Hopf
bifurcation as the damping 1/Q passes through zero.
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Figure 6. Oscillation amplitude R as a function of laser power P in simplified

model. The larger limit cycle is stable (solid line) and the smaller limit cycle

is unstable (dashed line). The equilibrium R = 0 is stable.

When the simplified system (6)-(8) has no damping in
the z-equation, Q → ∞, the origin is unstable and a stable
limit cycle exists with amplitude R, where eq.(11) gives:

R2 =
6

8π2 − 3β
(13)

Note that in this case we see from eq.(6) that no such limit
cycle exists when the parameter c = 0. This follows because
the resulting equation, z̈ + z + βz3 = 0 is conservative and
the z-ż phase plane is filled with concentric closed curves
for β > 0. Thus we may view the limit cycle (13) as being
born when the parameter c is increased from zero. This
type of bifurcation is not to be confused with a Hopf, since
the limit cycle first occurs with a finite amplitude, that is, it
does not grow out of an equilibrium point. This situation is
reminiscent of van der Pol’s equation, z̈+z−ε(1−z2)ż = 0,
which exhibits a limit cycle of radius 2 for small values of ε.

CONCLUSIONS

A theoretical model for the experimentally observed
self-oscillations of disk-type NEMS resonators due to CW
laser irradiation was constructed. FEM simulations were
employed to determine the model parameters describing
thermomechanical effects in the resonator due to the laser
beam. Both parametric (variation of the effective spring

constant due to local laser heating) and linear tempera-
ture effects were taken into account. Periodic, position-
dependent absorption, defined by the optical interferomet-
ric pattern set up by the laser, was used to describe the
interaction of the laser beam with the mechanical struc-
ture. The model assumed non-linearity of the oscillator.
It was analytically shown that stable, self-sustained oscilla-
tions are achieved at a certain threshold of CW laser power
in a Hopf-type bifurcation. This threshold was calculated
to be close to the experimentally observed values. To ana-
lyze the stability of the solutions above the critical point a
simplified model accounting only for parametric effects was
considered. Using the method of harmonic balance it was
shown that a stable limit cycle in the phase plane exists
that determines the amplitude of self-oscillations.
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