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ABSTRACT
In this work, we investigate regions of stability in the vicinity

of 2:2:1 resonance in the quasiperiodic Mathieu equation

d2x
dt2

+ (δ + ε cos t + εµ cos(1 + ε∆)t)x = 0,

using two successive perturbation methods. The parameters ε
and µ are assumed to be small. The parameter ε serves for
deriving the corresponding slow flow differential system and µ
serves to implement a second perturbation analysis on the slow
flow system near its proper resonance. This strategy allows us
to obtain analytical expressions for the transition curves in the
resonant quasiperiodic Mathieu equation. We compare the an-
alytical results with those of direct numerical integration. This
work has application to parametrically excited systems in which
there are two periodic drivers, each with frequency close to twice
the frequency of the unforced system.

INTRODUCTION

In this paper, we investigate the transition curves of
the quasiperiodic (QP) Mathieu equation in the vicinity of
the 2:2:1 resonance. In this case the QP Mathieu equation
takes the form

d2x

dt2
+ (δ + ε cos t + εµ cos(1 + ε∆)t)x = 0. (1)

Here, ε and µ are small perturbation parameters, while ∆
is a frequency detuning parameter.

In a series of papers, Rand and co-workers (Rand,
Zounes and Hastings, 1997; Zounes and Rand, 1998) studied

eq.(1) in the case that the driver frequency 1+ε∆ is replaced
by a parameter ω. They approximated the regions of stabil-
ity in the δ-ω plane for fixed ε by using four different meth-
ods: direct numerical integration, Lyapunov exponents, reg-
ular perturbations, and harmonic balance. The results ob-
tained by these various techniques were compared and an
excellent agreement was obtained. The nonlinear QP Math-
ieu equation has also been considered (Zounes and Rand,
2002a; Belhaq, Guennoun and Houssni, 2002; Guennoun,
Houssni and Belhaq, 2002). Zounes and Rand (Zounes and
Rand, 2002a) investigated the interaction of subharmonic
resonance bands in a cubic nonlinear QP Mathieu equa-
tion using Chirikov’s overlap criterion (Chirikov, 1979) and
the analytical machinery presented in (Zounes and Rand,
2002b). The transition from local chaos to global chaos
was investigated. Belhaq and co-workers (Belhaq, Guen-
noun and Houssni, 2002; Guennoun, Houssni and Belhaq,
2002) approximated analytically QP solutions and studied
stability of a damped cubic nonlinear QP Mathieu equa-
tion, using a double perturbation method. The problem
of approximating QP solutions of the original system was
then transformed to the study of stationary regimes of the
(second) induced autonomous system. Explicit analytical
solutions were obtained and good agreement with numeri-
cal integrations was shown. For another application of this
double perturbation procedure, see (Belhaq and Houssni,
1999).

In his Ph.D. thesis, Zounes (Zounes, 1997) presented a
numerical study of eq.(1) with 1 + ε∆ replaced by ω. His
results included a stability chart which is shown in Fig.1, re-
plotted in the δ1-∆ parameter plane for ε = 0.1 and µ = 1,
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where δ = 1/4 + δ1ε. Our goal is to understand this fig-
ure through the use of analytical methods. To this end, we
apply the double perturbation procedure (Belhaq, Guen-
noun and Houssni, 2002; Guennoun, Houssni and Belhaq,
2002) to determine transition curves in the δ1-∆ parameter
plane. The procedure consists of applying two successive
perturbation methods by introducing two small parameter
perturbations ε and µ, such that 0< |ε| � |µ| �1. The
first reduction is performed using the two variable expan-
sion method associated with ε. This leads to a slow flow
amplitude-phase system. The second perturbation parame-
ter µ which appears in the induced slow flow system allows
the application of a second perturbation method, yielding
analytical approximations of the transition curves of eq.(1).

PERTURBATION METHOD AND SLOW FLOW SYSTEM

The two small parameters ε and µ introduced in eq.(1)
allow implementation of two successive perturbation tech-
niques. In the first step we use the two variable expansion
method (Bender and Orszag, 1978) associated with the pa-
rameter ε. The method consists of introducing two time
scales by associating two separate independent variables:
ξ = t and η = εt. Substituting these new variables as well
as the expressions of the first and second derivatives of x
with respect to t in term of the new variables, eq.(1) trans-
forms to the following partial differential equation

∂2x

∂ξ2
+2ε

∂2x

∂ξ∂η
+ ε2

∂2x

∂η2
+(δ + ε cos ξ+ εµ cos(ξ +∆η))x = 0.

(2)
We expand x and δ in power series:

x(ξ, η; ε) = x0(ξ, η) + x1(ξ, η)ε + · · · (3)

δ =
1
4

+ δ1ε + · · · (4)

Substituting (3),(4) into (2) and collecting terms gives:

∂2x0

∂ξ2
+

1
4
x0 = 0, (5)

∂2x1

∂ξ2
+

1
4
x1 = −2

∂2x0

∂ξ∂η
− δ1x0 − x0 cos ξ − x0µ cos(ξ + ∆η).

(6)

We take the solution to eq.(5) in the form

x0 = R(η) cos(
ξ

2
− θ(η)). (7)

Substituting (7) into (6) and removing secular terms gives:

dR

dη
= −R

2
[sin 2θ + µ sin(2θ + ∆η)], (8)

dθ

dη
= −δ1 − 1

2
[cos 2θ + µ cos(2θ + ∆η)]. (9)

Note that the parameter µ appears in this slow flow system
(8), (9) as a new perturbation parameter. eq.(8) has the
solution:

R(η) = R(0) exp
{
−1

2

∫
[sin 2θ + µ sin(2θ + ∆η)]dη

}
.

(10)
eq.(10) will exhibit unbounded solutions if eq.(9) has a limit
cycle. The reason is that the integral in (10) will in general
not vanish if θ(η) is a periodic function. On the other hand,
all solutions of (10) will be bounded if (9) does not exhibit
a limit cycle. In this case the torus flow (9) will be ergodic
and the integral in (10) will vanish.

This reasoning leads us to believe that eq.(9) can, to
O(ε), determine the stability of the QP Mathieu eq.(1).
This is confirmed by numerical simulation of eq.(9), for
µ = 1, see Fig.2. Comparison with Fig.1, based on eq.(1),
for µ = 1, shows excellent agreement.

Note that Fig.2 is point-symmetric about δ1 = 0,
∆ = 0, whereas Fig.1 is not. This may be explained by
noting that eq.(9) is invariant under the transformation
δ1 → −δ1, ∆ → −∆, θ → −θ + π

2 .

In Fig.3 we present a numerical simulation of eq.(9) for
µ = 0.1. Note that this figure has many qualitative features
in common with Fig.2 (which corresponds to µ = 1). Our
goal in this paper is to gain understanding of Figs.1-3 by
obtaining analytical expressions for the transition curves
separating the regions of stability from those of instability.
In order to do so, we will use a second perturbation analysis
on the slow flow system (8), (9) for small µ.
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SECOND PERTURBATION METHOD AND TRANSITION

CURVES

To begin with, we transform eqs.(8), (9) from polar vari-
ables R, θ to rectangular variables A, B via the equations:

A = R cos θ, B = R sin θ (11)

This gives:

dA

dη
=

(
δ1 − 1

2

)
B − µ

A

2
sin ∆η − µ

B

2
cos∆η (12)

dB

dη
= −

(
δ1 +

1
2

)
A + µ

B

2
sin ∆η − µ

A

2
cos∆η (13)

We set τ = ∆η, whereupon these equations become:

∆
dA

dτ
=

(
δ1 − 1

2

)
B − µ

A

2
sin τ − µ

B

2
cos τ (14)

∆
dB

dτ
= −

(
δ1 +

1
2

)
A + µ

B

2
sin τ − µ

A

2
cos τ (15)

We treat these equations by algebraically eliminating B,
giving a single second order o.d.e. on A. To do this, we
differentiate (14) with respect to τ and then substitute dB

dτ
from (15). Finally we solve (14) for B and substitute the
result. This gives an equation which may be written in the
form:

d2A

dτ2
+ f1(τ)

dA

dτ
+ f2(τ)A = 0 (16)

where f1(τ) and f2(τ) are 2π-periodic functions and where

f1(τ) = O(µ) and f2(τ) =
(

δ2
1 − 1

4

∆2

)
+ O(µ). (17)

Next we construct analytic expressions for the transition
curves in δ1-∆ parameter plane which separate stable
(bounded) solutions from unstable (unbounded) solutions.
From Floquet theory, we know that on these transition
curves there exist periodic solutions with period 2π or 4π,
since the period of the coefficients f1 and f2 is 2π. Thus we

follow Stoker (Stoker, 1950) and seek a solution to (16) in
the form of a Fourier series with period 4π (which includes
period 2π as a special case):

A(τ) =
∞∑

n=0

cn cos
nτ

2
+ dn sin

nτ

2
(18)

We substitute (18) into (16) and collect terms. This work is
algebraically intensive and was done on MACSYMA. There
result four sets of algebraic equations on the coefficients
cn and dn. Each set deals exclusively with ceven, deven,
codd and dodd, respectively. Each set is homogenous and of
infinite order, so for a nontrivial solution the determinant
must vanish. This gives four infinite determinants. For
brevity we omit showing these here. We find that in the
unperturbed autonomous case, µ = 0, these determinants
have the following roots:

∆ =

√
4 δ1

2 − 1
N

, N = 1, 2, 3, · · · (19)

eq.(19) represents resonance conditions between the µ = 0
slow flow oscillator given in eqs.(14),(15), and the slow flow
forcing functions sin ∆η, cos∆η. In order to obtain expres-
sions for the associated transition curves, we detune these
resonances:

∆ =

√
4 δ1

2 − 1
N

+µσ1+µ2σ2+· · · , N = 1, 2, 3, · · · (20)

where the detuning constants σi are as yet unknown. We
substitute eq.(20) into each of the four vanishing determi-
nants, expand in µ, collect terms and solve for the unknown
constants σi. Here are the first two transition curves ob-
tained in this way:

∆ =
√

4 δ1
2 − 1 ±

(
2 δ1

√
4 δ1

2 − 1 + 4 δ1
2 − 1

)
µ

8 δ1
2 − 2

−
((

8 δ1
2 − 1

) √
4 δ1

2 − 1 − 16 δ1
3 + 4 δ1

)
µ2

256 δ1
4 − 128 δ1

2 + 16
+ · · ·(21)

∆ =

√
4 δ1

2 − 1
2

−
(
(4 δ1 + 3)

√
4 δ1

2 − 1 + 16 δ1
2 − 5

)
µ2

√
4 δ1

2 − 1
(
48 δ1

2 − 12
) +· · ·

(22)
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Note that these expressions are singular in the neighbor-
hood of δ1 = ±1/2. Nevertheless, these expressions com-
pare favorably with the numerical results shown in Fig.3.
See Fig.4 where the first eight transition curves are dis-
played.

CONCLUSION

In this work, we have constructed analytical expressions
for the transition curves of the QP Mathieu equation in
the vicinity of the resonance 2:2:1. A double-perturbation
procedure was applied to obtain the analytical approxima-
tions to these transition curves. In a first step, we have
applied the two variable expansion method to the QP Math-
ieu equation and derived the slow flow system. To obtain
expressions for the transition curves we have implemented
another perturbative study near the proper resonance of the
slow flow system. The analytical expressions obtained by
this procedure show a good agreement with the direct nu-
merical integration of the original QP Mathieu equation.

The analytical methods presented in this work offer an
explanation of the nature of the stability chart shown in
Figs.1-3 which may be expressed in words, as follows. For
small values of µ, the expressions for the transition curves
given by eqs.(21),(22) require that |δ1| > 1/2. This means
that the cos t driver in eq.(1) is too detuned off of 2:1 res-
onance with the unforced oscillator to produce instability.
(This follows from the fact that in the usual Mathieu equa-
tion, eq.(1) with µ = 0, the 2:1 transition curves have the
well-known expression δ = 1/4 ± ε/2 + O(ε2).) Thus the
instability associated with the transition curves (21),(22)
cannot come from 2:1 resonance with the cos t driver, and
must have some other source. The resulting motion, if
µ = 0, would be a QP motion with frequencies 1 com-

ing from the cos t driver, and
√

δ2
1 − 1

4 , which is the slow
flow frequency of the slow time modulating functions A(η),
B(η), see eqs.(12),(13). Now if µ �= 0, another resonance
can occur between the A(η), B(η), µ = 0 oscillator, which

runs with slow flow frequency
√

δ2
1 − 1

4 , and the slow flow
driver, sin ∆η, cos∆η, which runs at slow flow frequency
∆. This latter frequency is seen to be the difference be-
tween the two drivers in the original QP Mathieu eq.(1),
and may be thought of as the extent of the drift of the
cos(1 + ε∆)t) driver relative to the cos t driver. The order
of the superharmonic tells how many cycles the slow flow
A, B oscillator goes through in one cycle of the frequency ∆
slow flow driver during instability, that is, the order of the
resonance. Thus we may conclude that each of the white
instability regions in Figs.1-3 corresponds to a distinct or-
der of resonance between the µ = 0 slow flow motion and

the frequency of drift between the two drivers in eq.(1).
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Figure 1. Stability chart of the QP Mathieu equation (1) obtained using numerical integration

by Zounes [9] for parameters ε = 0.1 and µ = 1. Here δ = 1/4 + δ1ε. Points in the blackened

regions correspond to stable (bounded) motions. Points in the white regions correspond to un-

stable (unbounded) motions.



Figure 2. Stability chart obtained by numerically integrating slow flow eq. (9) for µ = 1. Points

in the blackened regions correspond to absence of limit cycles (stable). Points in the white re-

gions correspond to the presence of limit cycles (unstable). Compare with Fig.1.



Figure 3. Stability chart obtained by numerically integrating slow flow eq. (9) for µ = 0.1.

Points in the blackened regions correspond to absence of limit cycles (stable). Points in the

white regions correspond to the presence of limit cycles (unstable).



Figure 4. Transition curves, as obtained from double-perturbation procedure for µ = 0.1. Com-

pare with Fig.3.


