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Thermal instability in a horizontal Newtonian liquid layer with rigid boundaries is investigated in the
presence of vertical quasiperiodic forcing having two incommensurate frequencies �1 and �2. By means of a
Galerkin projection truncated to the first order, the governing linear system corresponding to the onset of
convection is reduced to a damped quasiperiodic Mathieu equation. The threshold of convection corresponding
to quasiperiodic solutions is determined in the cases of heating from below and heating from above. We show
that a modulation with two incommensurate frequencies has a stabilizing or a destabilizing effect depending on
the frequencies ratio �=�2 /�1. The effect of the Prandtl number in a stabilizing zone is also examined for
different frequency ratios.
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I. INTRODUCTION

Several works have been devoted to analyzing the effect
of periodic modulation on the stability of the motionless state
of a heated liquid layer. This periodic modulation is associ-
ated with either gravity or with temperatures imposed on the
horizontal planes of a liquid layer. The gravitational modu-
lation, which can be realized by a vertically oscillating hori-
zontal liquid layer, acts on the entire volume of the liquid
and may have a stabilizing or destabilizing effect depending
on the amplitude and frequency of the forcing �1–13�. This
effect was analyzed for a liquid layer heated from below or
from above �respectively, stable or unstable equilibrium con-
figurations�. Here the onset of convection presents a compe-
tition between harmonic and subharmonic modes; see, for
instance, Refs. �1,5,6,9–13�. A similar modulation to that of
gravity can be realized by heating a horizontal ferromagnetic
liquid layer from above and forcing it with a time-periodic
external magnetic field �11,12�. The other type of modulation
�14–25�, in which the temperature is forced to oscillate at the
boundaries, is mainly concentrated in a boundary layer
whose thickness decreases with increasing frequency of
modulation. Note that this modulation is similar to the gravi-
tational one for low modulation frequencies. In the out of-
phase oscillations case, the modulation presents a stabilizing
effect. However, in the in-phase oscillations case, the modu-
lation presents a stabilizing effect for low frequencies and a
destabilizing effect at high frequencies �2�.

In contrast to the standard periodic modulation, the
present work focuses attention on the influence of a quasip-
eriodic gravitational modulation on the convective instability
threshold. Here we consider a Newtonian fluid layer confined
between two horizontal rigid plates of infinite extent and
submitted to a vertical quasiperiodic displacement having
two incommensurate frequencies. This motion can be real-
ized, for instance, by using a coupled system of two blocks

and two springs attached to a horizontal wall and oscillating
vertically. One of the two blocks corresponds to the physical
system under consideration. Neglecting friction, the solution
of the linear system involves a quasi-periodic motion with
two incommensurate frequencies. A Galerkin method trun-
cated to first order is implemented to reduce the linear prob-
lem of convection to a linear damped quasiperiodic Mathieu
oscillator. Note that in this case, Floquet theory cannot be
applied to determine a stability criterion. However, the recent
works by Rand et al. �26,27� provide a stability chart for the
quasiperiodic Mathieu oscillator. This result is used to inves-
tigate the quasiperiodic parametric instability in our specific
physical problem and to determine a convective instability
criterion as a function of the various parameters of the prob-
lem. This technique is based principally on deriving approxi-
mate analytical expressions for marginal stability curves us-
ing the method of harmonic balance and Hill’s determinants.
In contrast to the periodic modulation case where the onset
of convection corresponds to harmonic or subharmonic solu-
tions, here the threshold of convection corresponds precisely
to quasiperiodic solutions.

II. FORMULATION

Consider a Newtonian fluid bounded between two hori-
zontal plates having, respectively, constant temperatures To

at z=− d
2 and T1 at z= d

2 �To�T1 or To�T1�. Assume that the
fluid layer is submitted to vertical quasiperiodic motion ac-
cording to the law of displacement

z = b1 cos��1t� + b2 cos��2t� ,

where �1 and �2 are two incommensurate frequencies. The
parameters b1 and b2 are the amplitudes of motion. There-
fore, the fluid layer is submitted to two volumic forces: the
gravitational force �g and the quasiperiodic one
−��b1 �1

2 cos��1 t�+b2 �2
2 cos��2 t��k. We denote by k,

the unit vector upward. The equilibrium of the fluid layer
corresponds to a rest state with a conductive regime. Under
these assumptions, the linear system of the governing equa-*s.aniss@fsac.ac.ma
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tions, corresponding to a perturbation of equilibrium state, is
given by the following Navier-Stokes equations in the
Boussinesq approximation

� · V = 0, �1�

�
�V

�t
= − �P + ��V + �	�g + b1�1

2 cos��1 t�

+ b2�2
2 cos��2 t��T k , �2�

�T

�t
−

To − T1

d
w = 
�T , �3�

where �, 	, �, and 
 designate, respectively, the density, the
coefficient of thermal dilatation, the dynamic viscosity, and
the thermal diffusivity of the fluid. In this study, we assume
that b1�1

2=b2�2
2. Scaling time by d2


 , the coordinates by d, the
velocity field by 


d , the pressure by � �


d2 , and the temperature
by �To−T1�, we obtain the following dimensionless system
corresponding to a linear perturbation of the basic state

�Pr−1 �

�t
− ���w − Ra�1 + ��cos�1t� + cos�2t����2T = 0,

�4�

�T

�t
− w = �T . �5�

Equation �4� represents the vertical component of the vortic-

ity where �2= �2

�x2 + �2

�y2 , Ra=
�g	�T0−T1�d3

�
 is the gravitational

Rayleigh number, Pr= �

 is the Prandtl number, 1=

d2�1


 and

2=
d2�2


 are two dimensionless incommensurate frequencies.
We denote the amplitude ratio of the acceleration of the os-

cillatory motion to the acceleration of gravity by �=
b1�1

2

g

=
b2�2

2

g . This coefficient can be written as �=Fr11
2=Fr22

2,
where Fr1 and Fr2 are two Froude numbers defined by

Fr1 =
�
/d�2

gd

b1

d
, Fr2 =

�
/d�2

gd

b2

d
.

The boundary conditions on temperature and velocity, for the
rigid-rigid case, are given by

T = w =
�w

�z
= 0 at z = �

1

2
. �6�

III. STABILITY ANALYSIS

Using the normal mode analysis, the third component of
velocity w and the temperature T are written in the form

w = w1�z,t�exp�iqxx + iqyy� ,

T = T1�z,t�exp�iqxx + iqyy� . �7�

Here, qx and qy represent the wave numbers in the x and y
directions. Introducing Eq. �7� into the system �4� and �5�,
one obtains

�Pr−1 �

�t
− �D2 − q2���D2 − q2�w1

+ q2Ra�1 + Fr11
2�cos�1t� + cos�2t���T1 = 0, �8�

� �

�t
− �D2 − q2��T1 − w1 = 0, �9�

where q2=qx
2+qy

2 and D=� /�z. To solve the system �8� and
�9�, together with the boundary conditions �6�, we seek a
solution by means of a first order Galerkin method

w1�z,t� = g�t�Z1�z�, T1�z,t� = f�t�Z2�z�

with

Z1�z� = 	z2 −
1

4

2

, Z2�z� = 	z2 −
1

4

	5

4
− z2
 .

Note that the trial functions Z1�z� and Z2�z� are used first by
Gershuni �2� in the classical Rayleigh-Bénard problem and
represent a good approximation to determine the convection
threshold. Indeed, these trial functions lead to the critical
Rayleigh number 1717.98. The exact value given by Chan-
drasekhar is 1707.8 �28�. Under these assumptions and ap-
plying the Galerkin method, the system �8� and �9� is re-
duced to the damped quasi-periodic amplitude equation of
temperature

d2f

dt2 + 2p
df

dt
+ c�R0 − Ra�1 + Fr11

2
„cos�1t� + cos�2t�…��f

= 0, �10�

where R0=
4�q4+24q2+504��306+31q2�

121 q2 is the gravitational Rayleigh
number of the marginal stability curve for the classical
Rayleigh-Bénard problem. The coefficients p and c are given
by

2p = 	306

31
+ q2
 + Pr

q4 + 24q2 + 504

12 + q2 , c =
121 Pr q2

124�12 + q2�
.

Using the change of variable �=1t, we obtain a similar
equation to the one studied by Rand et al. �26,27�

d2f

d�2 + 2�
df

d�
+ �� + ��cos��� + cos������f = 0, �11�

where �= p
1

, �=−
c�Ra−R0�

1
2 , �=−cFr1Ra, and �=

2

1
.

As noted above, Floquet theory cannot be used to deter-
mine solutions of Eq. �11�. Following Rand et al. �26,27�, we
use the harmonic balance method to determine the marginal
stability curves by means of expansion

f�t� = �
n=0

�

�
m=−�

� �Anm cos	n + m�

2
�
 + Bnm sin	n + m�

2
�
�
�12�

in which we may set, without loss of generality, A−n,−m
=An,m and B−n,−m=−Bn,m. Approximate results are obtained
by a truncation of the infinite sums in Eq. �12� and then
replaced by sums from 0 to N for n and from −N to N for m,
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respectively. In the case, N=1�n=0,1 ; m=−1,0 ,1�, Eqs.
�11� and �12� allow us to obtain two homogenous algebraic
systems in Anm and Bnm. The first system in Anm is of the
form

	� −
�2

4

A0,1 + ��B0,1 +

�

2
A0,1 = 0, �A0,0 = 0,

	� −
�1 − ��2

4

A1,−1 + ��1 − ��B1,−1 + �A1,1 = 0,

	� −
1

4
+

�

2

A1,0 + �B1,0 = 0,

	� −
�1 + ��2

4

A1,1 + ��1 + ��B1,1 + �A1,−1 = 0.

The second system in Bnm is given by

	� −
�2

4
−

�

2

B0,1 − ��A0,1 = 0,

	� −
�1 − ��2

4

B1,−1 − ��1 − ��A1,−1 = 0,

	� −
1

4
−

�

2

B1,0 − �A1,0 = 0, 	� −

�1 + ��2

4

B1,1 − ��1

+ ��A1,1 = 0.

Algebraically eliminating the Bn,m from these two systems,
we obtain the following system in An,m:

�
a11 0 0 0 0

0 a22 0 0 0

0 0 a33 0 a35

0 0 0 a44 0

0 0 a53 0 a55

�
A0,0

A0,1

A1,−1

A1,0

A1,1

 = 0, �13�

where

a11 = �, a22 = −

�2

2
− 	� −

�2

4

2

− �2�2

�2

4
− � +

�

2

,

a33 =
	� −

�1 − ��2

4

2

+ �2�1 − ��2

� −
�1 − ��2

4

, a35 = �,

a53 = �, a44 =

�� − 1
4�2 −

�2

4
+ �2

� −
1

4
−

�

2

,

a55 =
	� −

�1 + ��2

4

2

+ �2�1 + ��2

� −
�1 + ��2

4

.

The system �13� will have a nontrivial solution only if its
determinant vanishes. For each N, the dimension of this sys-
tem is 2N2+2N+1. For the case N=4 considered in the cur-
rent paper, the corresponding system dimension is equal to
41. Nevertheless, the analysis is facilitated by putting the
system in upper triangular form. We show in Fig. 1 in the
plane �� ,�� when �=0.1 and �=0, the stability chart as
obtained by Rand et al. �26,27�. In this analysis, the vanish-
ing determinant can be given formally in the form
F�Ra,q ,Pr,Fr1 ,1 ,��=0 in which all parameters of the
physical problem are taken into account.

The marginal stability curves Ra�q� are determined nu-
merically by fixing the dimensionless frequency 1, the fre-
quency ratio �, the Prandtl number Pr, and the Froude num-
ber Fr1. Hereafter, we focus attention on the curves
corresponding to the critical Rayleigh number Rac and wave
numbers qc versus the dimensionless frequency 1.

IV. RESULTS AND DISCUSSION

Figure 2 illustrates the results of the case where the fluid
layer is heated from below and for values of frequencies ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

–0.1 0.1 0.2 0.3 0.4 0.5

δ
FIG. 1. Stability chart of the quasi-periodic Mathieu equation in

the plane �� ,�� for N=4, �=0.1, and �=0.
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�=�2, Prandtl number Pr=1, and Froude number Fr1=1.6
�10−4. We see that near 1�0, the critical Rayleigh and
wave numbers tend, respectively, to the values of the un-
modulated case, namely, Rac=1718 and qc=3.14. Here, it
turns out that initially the effect of modulation is stabilizing
for 1 lower than 1460, and it becomes destabilizing as 1
increases beyond this value. Furthermore, the critical Ray-
leigh number reaches the asymptotic value Rac=1207 for
high frequencies. The evolution of the critical wave number
gives rise to two jump phenomena when crossing 1=163
and 1=718.

Figure 3 shows the evolution of the critical Rayleigh
number as a function of 1 for Pr=1, Fr1=1.6�10−4, and
for different values of the irrational ratio of frequencies �. In
contrast to the curves corresponding to �=�3, �=�5, �
=�11, and �=�37 where we are always in the presence of a
stabilizing effect, the curves corresponding to �= 1

�37
, �= 1

�2
,

and �=�2 give rise to either a stabilizing or destabilizing
effect. The zone corresponding to a destabilizing effect nar-
rows dramatically as � increases, and for a fixed frequency
1, the critical Rayleigh number Rac increases with increas-

ing �. Also, at high frequencies, the asymptotic values of the
critical Rayleigh number increases with increasing �. These
results suggest that the onset of convection is well controlled
by varying the ratio of frequencies. Note that for values of
1�200 approximately, � has no significant effect on the
variation of the critical Rayleigh number.

We illustrate in Fig. 4 the dependence of the critical Ray-
leigh number Rac, on the Prandtl number Pr, for 1=100,
Fr1=1.6�10−4, and for different values of the irrational fre-
quencies ratio. It can be seen from Fig. 4 that the largest
critical Rayleigh number, corresponding to the maximum of
stabilization, increases with decreasing � and then the stabi-
lizing effect decreases with the frequency ratio. The Prandtl
number corresponding to the largest value of Rac increases
weakly from Pr=2.9 for �=�37 to Pr=3.5 for �=�5 and
decreases to the value Pr=2.4 for �=�2. However, for high
values of Prandtl number, the critical Rayleigh number for
all the profiles tends, as expected, to the value of the un-
modulated case Rac=1718. Indeed, in this situation the iner-
tial term Pr−1 �

�t disappears from Eq. �8�.
In Fig. 5, we present the results corresponding to the case
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FIG. 2. Heating from below—evolution of the critical Rayleigh
number Rac and wave number qc as a function of the dimensionless
frequency 1 for �=�2.
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FIG. 3. Heating from below—evolution of the critical Rayleigh
number Rac as a function of the nondimensional frequency 1 for
different values of the irrational frequencies ratio �.
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FIG. 4. Heating from below—evolution of the critical Rayleigh
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of a fluid layer heated from above for Pr=1, Fr1=1.6
�10−4 and for the values �=1 /�37, �=�2, and �=�37.
This stable configuration is potentially unstable at high fre-
quencies and stable at low frequencies. Indeed, for each fre-
quency ratio �, as 1 tends to zero, the critical Rayleigh
number increases to high values �stable equilibrium configu-
ration� and decreases with increasing 1 to reach an
asymptotic value. We notice that, as in the case of heating
from below, the asymptotic critical Rayleigh number de-
creases with decreasing �. The evolution of the critical wave
number qc for �=�2 gives rise to two jump phenomena
when crossing 1=399 and 2=774.

V. CONCLUSION

In this work we have studied the effect of vertical quasi-
periodic oscillations on the onset of convection in an infinite

horizontal layer with rigid boundaries. We have considered
the case of a heating from below and the case of a heating
from above. The linear equations of convection are reduced
to a damped quasiperiodic Mathieu equation where the qua-
siperiodic solutions characterize the onset of convection.
Furthermore, the effect of the frequencies ratio �=2 /1

=�2 /�1, on the convection threshold has been observed. It
was shown that the modulation with two incommensurate
frequencies produces a stabilizing or a destabilizing effect
depending on the ratio of the frequencies. This ratio plays an
important role in controlling the onset of convection. The
effect of the Prandtl number is also studied for 1=100 and
it turned out that the stabilizing effect of gravitational quasi-
periodic modulation depends strongly on � for moderate
Prandtl numbers.
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