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Abstract

This paper investigates the dynamics of two coupled Mathieu equa-
tions. The coupling functions involve both delayed and nondelayed
terms. We use a perturbation method to obtain a slow flow which is
then studied using Routh-Hurwitz stability criterion. Analytic results
are shown to compare favorably with numerical integration. The nu-
merical integrator, DDE23, is shown to inadvertently add damping.
It is found that the nondelayed coupling parameter plays a significant
role in the system dynamics. We note that our interest in this prob-
lem comes from an application to the design of nuclear accelerators.

©2016 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

In this paper we investigate the dynamics of the system of two delay-coupled Mathieu equations:

ẍ+ εμ ẋ+(δ + ε cos t)x = εβ (x(t−T)+ y(t−T)), (1)

ÿ+ εμ ẏ+(δ + ε cos t)y = εβ (x(t−T)+ y(t−T))+ εαx. (2)

Coupled Mathieu equations without delay have been investigated previously [1], [2]. Recent research
has involved systems which combine parametric excitation with delay [3].

Our interest in Eqs.(1) and (2) comes from an application in the design of nuclear accelerators.

1.1 Application

This work was motivated by a novel application in nuclear physics, namely the dynamics of a generic
particle accelerator. Since this application is expected to be unfamiliar to most readers of this journal,
we offer the following description of a synchrotron [4].

The synchrotron is a particle accelerator in which a“particle”actually consists of a group of electrons
in a “bunch.” We ignore the interactions of electrons inside each bunch and treat the entire bunch as
a single particle.
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Each bunch leaves an electrical disturbance behind it as it traverses around the synchrotron, and
these wake fields are the main source of coupling in the model. The coupling is mediated by several
sources, including resistive wall coupling, ion coupling, and the electron cloud effect. The wake fields
can persist through entire orbits.

The ensemble of all bunches is called a “train.” When a train is modeled as several interacting
bunches, each bunch is coupled to the wake of the bunch in front of it. When a train is modeled as a
single particle, the train interacts with itself after a full orbit. We will combine both of these into one
cohesive model.

Particle paths in the synchrotron are circle-like, but are not exact circles. Since the synchrotron lacks
a central force, the circle-like particle orbits are achieved through the use of about 100 electromagnets
spread around the periphery. ( see Fig. 1).

Fig. 1 Two bunches moving clockwise along a polygonal path through the use of a system of electromagnets.

This means that the magnetic external forcing is periodic in rotation angle θ ; assuming that the
angular velocity of the bunch is constant with θ = ωt, the forcing is periodic in time as well. We can
express this forcing function as a Fourier series, and we shall approximate this series by the first couple
of terms in it, namely the constant term and the first cosine term.

We model each bunch as a scalar variable xi(t), i= 1, . . . ,n. Here xi is the vertical displacement above
equilibrium of the center of mass of the ith bunch. Each xi is modeled as a damped parametrically-forced
oscillator, and we write:

ẍ1 + εμ ẋ1 +(δ + ε cos t)x1 =β
n

∑
j=1

x j(t−T)

ẍi + εμ ẋi+(δ + ε cos t)xi =β
n

∑
j=1

x j(t−T)+αxi−1, i = 2, . . . ,n.

(3)

The coupling terms on the right hand side may be modeled as consisting of two types [5]:

i) plasma interactions,
ii) resistive wall coupling.

In the case of plasma interactions, the radiation from a bunch produces an electron cloud which
travels behind the bunch and influences the dynamics of the next bunch in the train. This results in a
coupling term of the form:

αxi−1.

Resistive wall coupling arises from the finite conductivity of the beam pipe. The skin effect produces
a long tail which may be modeled as a delay term, the duration of the delay being the transit time
around the ring. The entire train can be modeled as a single superparticle with displacement equal to
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the train average, each bunch receiving the same force. This results in a coupling term of the form:

β
n

∑
j=1

x j(t−T ),

where T =delay.
The simplest case is a single bunch, n = 1, in which we only consider the effect of delayed self-

feedback:
ẍ+(δ + εν cos t)x = βx(t −T). (4)

A system of this type has been investigated by Morrison and Rand [3]. It was shown that the region
of instability associated with 2:1 subharmonic resonance can be eliminated by choosing the delay T
appropriately.

In this paper we investigate the dynamics of the system (1), (2). The method of two-variable
expansion is used to obtain a slow flow whose stability is analyzed. We use the Routh-Hurwitz criteria
for calculating stability and compare these results with numerical integration of the system.

2 Two-variable expansion

We start off by transforming the system into a more tractable form. By using the linear transformation:

u = x+ y, v = x− y, (5)

the system (1), (2) becomes

ü+ εμ u̇+(δ + ε cos t)u =
1
2

εα(u+ v)+2εβud, (6)

v̈+ εμ v̇+(δ + ε cos t)v = −1
2

εα(u+ v), (7)

where ud ≡ u(t−T ). These equations have been previously studied in [2] for the special case of α = 0,
T = 0, and μ = 0.

We use the two-variable expansion method [6], [7] to study the dynamics of Eqs. (6), (7). We set

ξ (t) = t, η(t) = εt,

where ξ is the time t and η is the slow time.
Since u and v are functions of ξ and η , the derivative with respect to time t is expressed through

the chain rule:
u̇ = uξ + εuη , v̇ = vξ + εvη .

Similarly, for the second derivative we obtain:

ü = uξξ +2εuξη + ε2uηη , v̈ = vξξ +2εvξη + ε2vηη .

In this paper we only perturb up to O(ε), and so we will ignore the ε2 terms.
We then expand u and v in a power series in ε :

u(ξ ,η) = u0(ξ ,η)+ εu1(ξ ,η)+O(ε2), v(ξ ,η) = v0(ξ ,η)+ εv1(ξ ,η)+O(ε2). (8)

In addition, we detune off of the 2:1 subharmonic resonance by setting:

δ =
1
4
+ εδ1+O(ε2). (9)
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Substituting (8), (9) into (6), (7) and collecting terms in ε , we arrive at the following equations:

u0,ξξ +
1
4
u0 = 0, (10)

v0,ξξ +
1
4
v0 = 0, (11)

u1,ξξ +
1
4
u1 = −2u0,ξη −μu0,ξ −δ1u0 −u0 cosξ +2βu0d +

α
2
(u0 + v0), (12)

v1,ξξ +
1
4
v1 = −2v0,ξη −μv0,ξ −δ1v0 − v0 cosξ − α

2
(u0 + v0). (13)

The solutions to (10) and (11) are simply:

u0 = A(η)cos(
ξ
2
)+B(η)sin(

ξ
2
), (14)

v0 = C(η)cos(
ξ
2
)+D(η)sin(

ξ
2
). (15)

We then substitute (14), (15) into (12), (13). Note that

u0d = A(η−εT)cos(
ξ
2
−T

2
)+B(η−εT)sin(

ξ
2
−T

2
) (16)

Since A and B are unknown functions, the most general way to express them in terms of η is with
a Taylor series:

A(η−εT) = A(η)− εTA′+O(ε2) = A(η)+O(ε).

Such a technique is common in the literature [3] and is useful for dealing with delay terms.

Trigonometrically expanding equation (16) gives terms in cos ξ
2 and sin ξ

2 . The method involves
setting the coefficients of such terms equal to zero in order to remove secular terms which cause
resonance in equations (12), (13). This results in four equations in four unknowns:

A′ = −αD
2

−2βC B+δ1B− αB
2

− B
2
−2βS A− μA

2
, (17)

B′ =
αC
2

−2βS B− μB
2

+2βC A−δ1A+
αA
2

− A
2
, (18)

C′ = δ1D+
αD
2

− D
2
− μC

2
+

αB
2

, (19)

D′ = −μD
2

−δ1C− αC
2

−C
2
− αA

2
= 0, (20)

where S = sin(T/2),C = cos(T/2).
The origin is an equilibrium point of the system; we study its stability, which is determined by the

coefficient matrix: ⎡⎢⎢⎢⎣
− 4βS+μ

2 − 4βC−2δ1+α+1
2 0 −α

2
4βC−2δ1+α−1

2 − 4βS+μ
2

α
2 0

0 α
2 − μ

2
2δ1+α−1

2
−α

2 0 − 2δ1+α+1
2 − μ

2

⎤⎥⎥⎥⎦ . (21)

The characteristic polynomial of this matrix is given by:

λ 4 + pλ 3 +qλ 2 + rλ + s = 0, (22)
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where

p = 4βS +2μ , (23)

q = 4β 2S 2 +6β μS +4β 2C 2 −4βδ1C +2αβC +
3μ2

2
+2δ 2

1 −
1
2
, (24)

r = 4β 2μS 2 +3β μ2S +4βδ 2
1 S +4αβδ1S −βS (25)

+4β 2μC 2 −4βδ1μC +2αβ μC +
μ3

2
+2δ 2

1 μ − μ
2
,

s = β 2μ2S 2 +4β 2δ 2
1 S 2 +4αβ 2δ1S

2 +α2β 2S 2 −β 2S 2 (26)

+
β μ3S

2
+2βδ 2

1 μS +2αβδ1μS − β μS

2
+β 2μ2C 2

+4β 2δ 2
1 C 2 +4αβ 2δ1C

2 +α2β 2C 2 −β 2C 2 −βδ1μ2C

+
αβ μ2C

2
−4βδ 3

1 C −2αβδ 2
1 C +βδ1C − αβC

2
+

μ4

16

+
δ 2

1 μ2

2
− μ2

8
+δ 4

1 −
δ 2

1

2
+

1
16

.

We will use the Routh-Hurwitz Criterion on the polynomial (22) to determine the stability of the
equilibrium point at the origin.

3 Routh-Hurwitz criterion

In this work, by“linearly stable”we mean bounded in time, not to be confused with asymptotic stability
which requires that the motion approaches the equilibrium point as t → ∞. So e.g. if a system has a
pair of complex roots with negative real parts and a second pair of purely imaginary roots, we will say
that this system is linearly stable.

The Routh-Hurwitz stability criterion [8] is a test on the coefficients of a characteristic polynomial
to determine whether the system is linearly stable.

In Routh’s original paper [8], he gives an example of a biquadratic polynomial that has the same
form as (22). The conditions of stability are given by:

p > 0, q > 0, r > 0, s > 0, pqr− r2 − p2s ≥ 0.

To obtain stability plots, we plot the curves p = 0, q = 0, r = 0, s = 0, and pqr− r2 − p2s = 0, which
partitions the T − δ1 plane into disjoint regions. Then we numerically evaluate the quantities p, q, r,
and s at representative points in each region. Note that the resulting plots are 4π-periodic in T since
the quantities p, q, r and s are 4π-periodic in T .

The first set of parameters we examined was μ = 0,α = 0,β = 0.125 (see Fig. 2).
In the case when α = 0 and μ = 0, we see that the transformation (5) uncouples the system (1), (2)

into a standard Mathieu equation (7) and a delayed Mathieu equation (6); the latter has been studied
in [3]. For the system (1), (2) to be stable, both of equations (6), (7) must be stable. Since Eq. (7)
with α = 0 does not involve delay, it causes instability in the region |δ − 1

4 | < ε
2 +O(ε2), or from Eq.

(9), in the horizontal strip −0.5 < δ1 < 0.5. See Fig. 2, which agrees with these considerations and the
results found in [3].

The next set of parameters we examined was μ = 0,α = 0.01,β = 0.125 (see Fig. 3).
It turns out that, for any non-zero value of α (and μ = 0), the Routh-Hurwitz criterion predicts

instability almost everywhere! How is it possible that an arbitrarily small value of α can cause a
discontinuous change in the stability diagram, from Fig. 2 to Fig. 3? The reason is that in the stable
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μ = 0, α = 0, β = 0.125

Fig. 2 The shaded regions are stable and the unshaded regions are unstable. The curved lines represent
potential stability transition curves for the 5 inequalities in the Routh-Hurwitz criterion. Note that the entire
plot is 4π-periodic in T .

μ = 0, α = 0.01, β = 0.125

Fig. 3 The shaded regions are stable and the unshaded regions are unstable. The curved lines represent
potential stability transition curves for the 5 inequalities in the Routh-Hurwitz criterion. Note that the entire
plot is 4π-periodic in T .
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region of Fig. 2 there are purely imaginary eigenvalues λ , and an arbitrarily small value of α can move
these eigenvalues to the right half plane.

The proof of this phenomenon can be seen by examining the pqr− r2 − p2s ≥ 0 stability condition
when μ = 0 (see Eqs. (23)-(26)):

For instability pqr− r2 − p2s =−16α2β 2S 2(β 2 −2βδ1C +δ 2
1 )< 0

Note that α2, β 2, and S 2 are all positive, and so β 2 − 2βδ1C + δ 2
1 needs to be positive for the

system to be unstable.
First note that if C = 0 (i.e. if cos T

2 = 0, i.e. if T = nπ, n = 1,3,5, · · · ) then β 2 − 2βδ1C + δ 2
1 is

positive. Therefore, by continuity, in order for β 2 −2βδ1C +δ 2
1 to become negative it must first pass

through zero. But the equation
β 2 −2βδ1C +δ 2

1 = 0

which is a quadratic on δ1, cannot have real roots δ1 since the discriminant is

4β 2(C 2 −1)< 0 if C 2 �= 1

Thus for a nonzero value of α (and μ = 0) the system is unstable almost everywhere.
The special case T = nπ, n = 2,4,6, . . ., gives C = cos T

2 = ±1, and is excluded from this argument;
this case may (and indeed does) correspond to a stable region of measure zero in the T −δ1 plane.

The next set of parameters we examined was μ = 0.01,α = 0.01,β = 0.125 (see Fig. 4).
Fig. 4 shows the effect of including nonzero damping to the system of Fig. 3. We find that the

stable regions from Fig. 3 return. The introduction of μ also creates much more intricate potential
transition curves, although as both α and μ are relatively small, the stable regions remain very similar
to those in Fig. 3.

Note that the stability boundary at T = 4π has moved slightly to the left.
The next set of parameters we examined was μ = 0.1,α = 0.01,β = 0.125 (see Fig. 5).
Here we can see that the effect of increasing μ is to increase the size of the stable region near

T = 2π and T = 4π. In particular, the stability boundary near T = 4π that appeared in Fig. 5 has
moved further to the left, and the edge of the stable region around T = 2π has moved to the right.
These results reflect our intuition that adding damping increases the stability of the system.

The next set of parameters we examined was μ = 0.01,α = 0.1,β = 0.125 (see Fig. 6).
By comparing Fig. 4 with Fig. 6 we see that the effect of increasing α is to decrease the size

of the stable region. The remaining stable regions cluster around T = 0 and T = 2π, suggesting that
T = nπ, n = 0,2,4, . . . produces stable regions that resist the destabilizing effect of the coupling term
α .

We proceed to compare these results to numerical integration.

4 Numerical results

The numerical computations use DDE23 in MATLAB [9] to numerically integrate the original DDE’s
(1), (2).

These numerical results will be compared to the analytical results presented earlier in the paper. We
note that the analytical results are approximate due to a) the perturbation method, which truncates
the solution, neglecting terms of O(ε2), and b) the replacement of delay terms in the slow flow (17)–(20)
by nondelayed terms, a step which is valid for small ε . In this way both the numerical and the analytic
approaches are approximate.

Determining the stability of this system via numerical integration is a challenge in and of itself.
Specifically, in the limit as μ → 0, the system becomes Hamiltonian and there is no damping; in this
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μ = 0.01, α = 0.01, β = 0.125

Fig. 4 The shaded regions are stable and the unshaded regions are unstable. The curved lines represent
potential stability transition curves for the 5 inequalities in the Routh-Hurwitz criterion. Note that the entire
plot is 4π-periodic in T .

μ = 0.1, α = 0.01, β = 0.125

Fig. 5 The shaded regions are stable and the unshaded regions are unstable. The curved lines represent
potential stability transition curves for the 5 inequalities in the Routh-Hurwitz criterion. Note that the entire
plot is 4π-periodic in T .



Alexander Bernstein, Richard Rand /Journal of Applied Nonlinear Dynamics 5(3) (2016) 337–348 345

μ = 0.01, α = 0.1, β = 0.125

Fig. 6 The shaded regions are stable and the unshaded regions are unstable. The curved lines represent
potential stability transition curves for the 5 inequalities in the Routh-Hurwitz criterion. Note that the entire
plot is 4π-periodic in T .

case a stable solution is one that oscillates, rather than one that approaches a fixed point. Even when
damping is present, the general effect of adding delay to the system is to increase the instability.

One of the ways to examine the growth of the system is by calculating the amplitude of the
system as a function of time. In this work we measured the amplitude of the motion by computing√

x(t)2 + ẋ(t)2 + y(t)2 + ẏ(t)2. In a stable system, the amplitude will either decrease or oscillate around
a finite value. In an unstable system, the amplitude will increase without bound. Thus, a basic test for
instability is to integrate over a long time period and compare the amplitude at the final time with the
amplitude at an earlier time. In particular we compared the amplitude at time 6000 with the amplitude
at time 5000. In all computations we used ε = 0.01.

In Fig. 7 we see that for α = 0 and μ = 0 the numerical results closely match the perturbation
results. The numerical results for α = 0.01,μ = 0.01 and α = 0.01,μ = 0.1 are also quite similar to their
corresponding results from the Routh-Hurwitz criterion (Fig. 4 and Fig. 5).

In Fig. 8 we see that in the case when α is nonzero and μ is zero the numerical results differ
quite strongly from the results predicted by the Routh-Hurwitz criterion. Recall from Fig. 3 that the
introduction of small α caused instability almost everywhere due to the occurrence of purely imaginary
roots in the α = 0, μ = 0 case. We believe the failure of the numerical solution to match the analytic
solution in Fig. 8 is because the numerical solver is inadvertently adding a small bit of damping to the
system due to numerical error.

To estimate the quantity of inherent damping in the numerical solution, we inserted negative values
for the damping coefficient μ and adjusted the size of μ so that analytic and numerical results agree.
For example, in the case of Fig. 8, we set μ = −0.2 in the numerical results, producing agreement
between numerical and analytic results as can be seen in Fig. 9.

In Fig. 10 we see that when α is greater than μ the numerical results and perturbation results do
not match. However, in Fig. 11 we see that for an adjusted μ value of μ = −0.0375 the numerical



346 Alexander Bernstein, Richard Rand /Journal of Applied Nonlinear Dynamics 5(3) (2016) 337–348

μ = 0, α = 0, β = 0.125

Fig. 7 The left graph is the result of the numerical integration. The right graph is Fig. 2.

μ = 0, α = 0.01, β = 0.125

Fig. 8 The left graph is the result of the numerical integration. The right graph is Fig. 3.

results more closely match the Routh-Hurwitz results. This outcome is important as it highlights that
the inherent damping of the numerical integrator depends on α .

Note that adjusted numerical results show several scattered stable points in regions that are pre-
dicted to be unstable. This is not an artifact of the μ adjustment but rather is due to the inaccuracy of
the numerical method. The results become more accurate as the numerical integrator runs for longer
times. In particular, for Figs. 10, 11 we compared the amplitude at time 8000 with the amplitude at
time 6000.

5 Conclusion

In this paper, we investigated the dynamics of two coupled Mathieu equations with delay. In particular
we analyzed the stability of the origin and the effect of delay and damping on stability. We used the
method of two variable expansion to calculate a characteristic polynomial of the system’s slow flow,
and used the Routh-Hurwitz criterion to determine stability; these results were then compared with
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μ = 0, α = 0.01, β = 0.125

Fig. 9 The left graph is the result of the numerical integration with an adjusted μ value of μ =−0.2. The
right graph is Fig. 3.

μ = 0.01, α = 0.1, β = 0.125

Fig. 10 The left graph is the result of the numerical integration. The right graph is Fig. 6.

numerical integration.
The numerical results closely matched the Routh-Hurwitz criterion when both α = 0 and μ = 0, but

introducing nonzero values of either of these parameters caused the two methods to yield very different
results. We believe this is because the numerical solver implicitly carries its own damping effect. By
comparing perturbation results with those of numerical integration we were able to estimate the extent
of inherent damping in the numerical integrator DDE23 in MATLAB.

In the parameter range which we explored, we found that increases in α and delay T tended to
decrease stability, whereas an increase in damping μ tended to raise stability.
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μ = 0.01, α = 0.1, β = 0.125

Fig. 11 The left graph is the result of the numerical integration with an adjusted μ value of μ =−0.0375. The
right graph is Fig. 6.
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