
Send Orders for Reprints to reprints@benthamscience.ae

108 The Open Mechanical Engineering Journal, 2018, 12, 108-123

1874-155X/18 2018  Bentham Open

The Open Mechanical Engineering
Journal

Content list available at: www.benthamopen.com/TOMEJ/

DOI: 10.2174/1874155X01812010108

RESEARCH ARTICLE

The  Dynamics  of  One  Way  Coupling  in  a  System  of  Nonlinear
Mathieu Equations

Alexander Bernstein1, Richard Rand2,* and Robert Meller3

1Center for Applied Mathematics, Cornell University, Ithaca, NY 14850, USA
2Dept. of Mathematics and Dept. of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850,
USA
3Cornell Lab for Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14850, USA

Received: December 20, 2017 Revised: March 21, 2018 Accepted: April 04, 2018

Abstract:

Background:

This paper extends earlier research on the dynamics of two coupled Mathieu equations by introducing nonlinear terms and focusing
on the effect of one-way coupling. The studied system of n equations models the motion of a train of n particle bunches in a circular
particle accelerator.

Objective:

The  goal  is  to  determine  (a)  the  system  parameters  which  correspond  to  bounded  motion,  and  (b)  the  resulting  amplitudes  of
vibration for parameters in (a).

Method:

We start the investigation by examining two coupled equations and then generalize the results to any number of coupled equations.
We use a perturbation method to obtain a slow flow and calculate its nontrivial fixed points to determine steady state oscillations.

Results:

The perturbation method reveals the existence of an upper bound on the amplitude of steady state oscillations.

Conclusion:

The model predicts how many bunches may be included in a train before instability occurs.

Keywords: Parametric vibrations, Coupled oscillators, Mathieu’s equation, Synchrotron, Bifurcation theory, Perturbation methods.

1. INTRODUCTION

In this paper, we investigate the dynamics of the following system of n nonlinear Mathieu equations:

(1)

(2)
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ẍ1 + (δ + ε cos t)x1 + εγx3
1 + εμẋ1 = 0

ẍi + (δ + ε cos t)xi + εγx3
i + εμẋi = εαxi−1 , 2 ≤ i ≤ n
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The Mathieu equation is a Hill equation with only one harmonic mode and is an example of parametric excitation.
Parametric  excitation  has  been  well  studied  in  general  [1  -  2],  and  the  Mathieu  equation  has  been  well  studied  in
particular [3 - 5]. One of its most salient features is that it has an infinite number of tongues of instability that grow out

of the points  in the δ - ε plane, where n is an integer. As n gets larger, the size of each tongue gets narrower, and

so the most significant tongue is the one at . This tongue corresponds to a 2:1 subharmonic resonance, and shall
be the focus of this paper.

The effect of nonlinearity is to limit the growth of trajectories around the instability; instead of trajectories spiraling
towards infinity, they tend towards a stable limit cycle. Of particular interest here is the amplitude of the limit cycle and
how that amplitude depends on the various parameters in the problem.

We will investigate the effect of one-way coupling on nonlinear Mathieu equations in this paper. In particular, we
will demonstrate that when the amplitude of the coupling coefficient, α, is small enough, the coupled oscillators (2) can
have multiple steady state oscillations, and one of these is smaller than the steady state of the uncoupled oscillator (1).
When α is large enough, there is only one possible steady state oscillation. In all cases, the sizes of the limit cycles are
bound by an upper bound.

It should be noted that this work is based on the assumption that the forcing frequency is constant. The case where
the forcing frequency changes as the system spins up has been treated in a recent paper [6] where it was shown that the
system can pass through a resonance tongue without excessive growth if the passage is reasonably fast and the tongue is
sufficiently narrow.

Our interest in Eqs.(1, 2) comes from an application in the design of particle accelerators.

1.1. Application

This  work was motivated by a  novel  application in  particle  physics,  namely the dynamics  of  a  generic  circular
particle accelerator.  Since this application is expected to be unfamiliar to most readers of this journal,  we offer the
following description of a synchrotron [7].

The synchrotron is a particle accelerator in which a “Particle” actually consists of a group of electrons called a
“Bunch,” and the collection of all bunches is called a “Train.” We ignore the interactions of electrons inside each bunch
and treat the entire bunch as a single particle.

Each bunch leaves an electrical disturbance behind it as it traverses around the synchrotron, and these wake fields
are the main source of coupling in the model. The coupling is mediated by several sources, including ion coupling and
the electron cloud effect.

Particle paths in the synchrotron are circle-like but are not exact circles. Since the synchrotron lacks a central force,
the circle-like particle orbits are achieved through the use of about 100 electromagnets spread around the periphery Fig.
(1).

Fig. (1). Two bunches moving clockwise along a polygonal path through the use of a system of electromagnets.
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This means that the magnetic external forcing is periodic in rotation angle θ; assuming that the angular velocity of
the bunch is constant with θ = ωt, the forcing is periodic in time as well. We can express this forcing function as a
Fourier series, and we shall approximate this series by the first couple of terms in it, namely the constant term and the
first cosine term.

We model each bunch as a scalar variable xi(t), i = 1,...,n. Here, xi is the vertical displacement above equilibrium of
the center of mass of the ith bunch. Each xi is modeled as a damped parametrically-forced oscillator, and we write:

The nonlinear terms are included to create a more realistic model since most natural phenomena are nonlinear and
linear models are a convenient approximation.  The nonlinear parameter,  γ,  can be chosen to adjust  the scale of the
problem.

The damping terms are also included to create a more realistic model.

The coupling terms on the right-hand side may be viewed as the strength of the plasma interactions: the radiation
from a bunch produces an electron cloud which travels behind the bunch. This radiation dissipates away very quickly
though, and so this coupling has a short range and can only influence the dynamics of the next bunch in the train. The
coupling  strength  is  affected  by  both  the  spacing  between  bunches  as  well  as  the  charge  of  each  bunch,  and  α
encapsulates both of those effects.

2. TWO-VARIABLE EXPANSION

We use the two-variable expansion method [8, 9] to study the dynamics of Eqs. (1, 2). We set

where ξ is the time t and η is the slow time.

Since the xi terms are functions of ξ and η, the derivative with respect to time t is expressed through the chain rule:

Similarly, for the second derivative we obtain:

In this paper, we only perturb up to O(ε), and so we will ignore the ε2 terms.

We then expand the xi terms in a power series in ε:

(3)

In addition, we detune off the 2:1 subharmonic resonance by setting:

(4)

Substituting (3), (4) into (1), (2) and collecting terms in ε, we arrive at the following equations:

(5)

(6)

ẍ1 + (δ + ε cos t)x1 + εγx3
1 + εμẋ1 = 0

ẍi + (δ + ε cos t)xi + εγx3
i + εμẋi = εαxi−1 , 2 ≤ i ≤ n

ξ(t) = t, η(t) = εt

ẋi = xiξ + εxiη , 1 ≤ i ≤ n

ẍi = xiξξ + 2εxiξη + ε2xiηη , 1 ≤ i ≤ n

xi(ξ, η) = xi0(ξ, η) + εxi1(ξ, η) +O(ε2), 1 ≤ i ≤ n

δ =
1

4
+ εδ1 +O(ε2)

xi0,ξξ +
1

4
xi0 = 0, 1 ≤ i ≤ n

xi1,ξξ +
1

4
xi1 = −2xi0,ξη − γx3

i0 − μxi0,ξ − δ1xi0 − xi0 cos ξ, 1 ≤ i ≤ n
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The solution to (5) is simply:

(7)

We then substitute (7) into (6). Using trigonometric identities, these equations can be written in terms of  and

. We set the coefficients of such terms equal to zero in order to remove the secular terms which cause resonance.
This results in 2n equations in 2n unknowns:

(8)

(9)

(10)

(11)

These equations are known as the slow flow of the system and represent the envelope of the oscillatory motion of
equations (1, 2). Finding the equilibrium points of the slow flow is analogous to finding simple harmonic motion with
constant amplitude in the original system. In doing so, we will not only obtain information on the amplitude of these
limit cycles but also information on where Hopf bifurcations occur in parameter space.

3. ANALYTIC RESULTS

3.1. The First Bunch

The dynamics of the first bunch are given by eqs. (8, 9).

As this system is 2-dimensional, the complete dynamics can be expressed in the phase plane A1-B1. The Numerical
Results section contains various graphs demonstrating the full dynamics of the first bunch, but the rest of this section
will focus purely on calculating the equilibrium points of the system.

Setting these equations equal to zero gives us the following equilibrium points:

Here, we use the standard notation  to denote equilibrium points of the variables Ai, Bi.
To simplify matters, we will focus on the special case when δ1 = 0 and μ = 0. Setting δ1 = 0 lets us examine the point

of resonance directly without considering points in the neighborhood of the resonance, and setting μ = 0 ignores the
effects of damping which ends up having a negligible effect on the analysis of the steady state. The fixed points in this
case are:

(12)
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(
ξ

2

)
+Bi(η) sin

(
ξ

2

)
, 1 ≤ i ≤ n

cos ξ
2

sin ξ
2

A′1 = −B1

2
+ δ1B1 −

µA1

2
+

3γ

4
B1(A2

1 +B2
1)

B′1 = −A1

2
− δ1A1 −

µB1

2
− 3γ

4
A1(A2

1 +B2
1)

A′i = −Bi
2

+ δ1Bi −
µAi

2
+

3γ

4
Bi(A

2
i +B2

i )− αBi−1 , 2 ≤ i ≤ n

B′i = −Ai
2
− δ1Ai −

µBi
2
− 3γ

4
Ai(A

2
i +B2

i ) + αAi−1 , 2 ≤ i ≤ n

A′1 = −B1

2
+ δ1B1 −

µA1

2
+

3γ

4
B1(A2

1 +B2
1)

B′1 = −A1

2
− δ1A1 −

µB1

2
− 3γ

4
A1(A2

1 +B2
1)

(A∗1, B
∗
1) = (0, 0),

0, ±

√
±
√

1− µ2(2δ1 − 1)− µ2 + 1− 2δ1
3γ

 ,

±
√
±
√

1− µ2(2δ1 + 1) + µ2 − 1− 2δ1
3γ

, 0


A∗i , B

∗
i

(A∗1, B
∗
1) = (0, 0),

(
0, ±

√
2

3γ

)
,

(
±i
√

2

3γ
, 0

)



112   The Open Mechanical Engineering Journal, 2018, Volume 12 Bernstein et al.

Here,  we  note  our  first  major  observation:  Nontrivial  real  equilibrium  points  for  A1  only  exist  for  γ  <  0,  and
nontrivial real equilibrium points for B1 only exist for γ > 0. However, the magnitude of the amplitude is the same in
both cases, and the analysis of both cases is identical. Without the loss of generality, we will take γ > 0 and  = 0.

3.2. The Second Bunch

The dynamics of the second bunch are given when i = 2 in eqs. (10, 11).

(13)

(14)

Note that these equations share a similar structure to eqs. (8 and 9) but with additional terms resulting from the one-
way  coupling.  These  additional  terms  mean  the  dynamics  of  the  second  bunch  are  4-dimensional  instead  of  2-
dimensional like the first bunch, and we cannot view the dynamics in a phase plane. Our analysis of the second bunch
will focus only on the steady-state solutions and not on the general dynamics.

Since we are taking γ > 0, all equilibrium points for the first bunch require  = 0; substituting  = 0 into eqs. (13,
14) yields:

(15)

(16)

Note that  +  is a nonnegative value, and is only identically zero in the trivial solution ( , ) = (0,0). Since
we are interested in nontrivial solutions, we require that  +  be positive.

However, since γ > 0, the expression 3γ(  + ) + 2 must be positive. Thus, the only way for (16) to equal zero is
for  = 0.

Substituting  = 0 into (15) yields:

(17)

Since  is already known to us from eq. (12), solving this cubic equation will give us the solution for .

This solution gives us the steady-state of B2. The full dynamics of the system is 4-dimensional, involving A1, B1, A2

and B2, and cannot be expressed in a phase plane.

A graph of the relationship between  and α can be seen in Fig. (2).

3.3. The Third Bunch

The dynamics of the third bunch are given when i = 3 in eqs. (10, 11).

(18)

(19)

Note  that  these  equations  share  the  exact  same  structure  as  eqs.  (13,  14).  Just  like  with  the  second  bunch,  the
presence of additional terms means that the dynamics of the third bunch are 4-dimensional. This means that we can’t
view the dynamics in a phase plane, and so our analysis of the third bunch will focus only on the steady-state solutions
and not on the general dynamics.
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Fig. (2). Plot of  as a function of α, for γ = 1 and 

We know from the analysis of the second bunch that  = 0 is necessary for all steady state solutions of the second
bunch; substituting  = 0 into eqs. (18, 19) yields:

(20)

(21)

Note that  +  is a nonnegative value, and is only identically zero in the trivial solution ( ) = (0,0).
Since, we are interested in nontrivial solutions, we require that  be positive.

However, since γ > 0, the expression 3γ(  + ) + 2 must be positive. Thus, the only way for (21) to equal it to
zero is for 

Substituting  into (20) yields:

(22)

Since  is already known to us from eq. (17), solving this cubic equation will give us the solution for .

The graph of the relationship between  and α will look qualitatively similar to the relationship between  and α
Fig.  (2)  but  they  will  differ  quantitatively  since  the  value  of   that  is  substituted  into  eq.  (22)  will  in  general  be
different than the value of  that is substituted into eq. (17).

Still, given the similarity between eq. (22 and 17), it is natural to ask if this pattern continues for all later bunches.
Indeed, this is the case, and so we will generalize the results found in these past two sections to the nth bunch in the
system, where n can be any integer.

3.4. The nth Bunch

Due to the nature of one-way coupling, the dynamics of all the bunches except the first one are identical, as can be
seen in the results found for the second and third bunches. Thus, we can easily derive a formula for calculating the
steady-state solution for the nth bunch for any n > 1:
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(23)

Unfortunately, calculating  in practice requires calculating the amplitudes of all bunches in front of it, since the
recursive relationship cannot be simplified into a formula dependent only on the first bunch. Part of the problem is that
each step requires solving a cubic equation which, although solvable in principle, is a tangled mess. In practice, it is
much easier to use numerical root solving methods to find the amplitudes for all the bunches.

The other, bigger problem is that cubic equations have three roots; if all three roots are real and distinct, then we
have a multi-valued function. Fortunately, this only occurs for a range of α values, and we can easily determine this
region through analytic means.

3.5. Multi-Valued Regions

Note that in Fig. (2), there are two points with infinite slope: these are the points that divide the function into multi-
valued regions and single-valued regions. If we flipped the two axes, then these two points change from having infinite

slope to zero slopes see Fig. (3). Thus, we want to derive  and find the values of α for which the derivative is equal
to zero.

Fig. (3). Plot of α as a function of , for γ = 1 and 

We start by moving the α term in eq. (23) to the right hand side and differentiating both sides.

Here  is a constant since we’re assuming all  up to i = n - 1 have already been found.

Solving for , we obtain:

We set this equal to zero to find the local extrema:
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Finally, we substitute this result into eq. (23) to find the corresponding α value:

(24)

One important feature of this result is that the range of α values for the nth bunch depends on the bunch before it. As

an  example,  for  ,  the  α  range  depends  on  ;  multiple  limit  cycles  are  possible  for   when

The significance of this result is that fixing α does not guarantee that all bunches
 

 will be either multi-valued or
single valued; it is possible to choose α such that  only has one limit cycle, but  has three.

A natural question to ask at this point is whether there exist values of α that do guarantee single valuedness for all 
.  Due  to  the  relationship  of  eq.  (24),  a  uniform  bound  on  α  requires  a  uniform  bound  on  ,  so  this  question  is
equivalent to asking if there is a bound on how large  can become.

3.6. Limit as n → ∞

It turns out that the      are  indeed  bound  by an upper bound, and this can be shown by examining the limit  as
  n → ∞.

In particular, we care about the limit of the amplitude   | |. One way for this limit to exist is if   B* =  =  as
  n → ∞. In this case, each bunch has the same amplitude as the bunch before it, and each bunch is oscillating in phase
with the bunch before it.

By setting B* =  =  in eq. (23), we obtain:

(25)

Thus, we find that the possible in-phase limits are:

(26)

As long as α ≥ - 1/2, these three limits are distinct; otherwise, no in-phase limit cycles are possible.

Another possibility is to examine the case when B* =  =  as n → ∞. In this case, each bunch has the same
amplitude as the bunch before it, and each bunch is oscillating 180 degrees out of phase with the bunch before it.

By setting B* =  = -  in eq. (23), we obtain:

(27)

Thus, we find that the possible limits are:

(28)

As long as α ≤ 1/2, these three limits are distinct; otherwise, no out-of-phase limit cycles are possible.

Therefore, in the limit as n → ∞, there are three possible cases:

For α < - 1/2, only out-of-phase limit cycles can exist.
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For -1/2 < α < 1/2, both out-of-phase and in-phase limit cycles can exist.
For 1/2 < α, only in-phase limit cycles can exist.

Fig. (4) shows the upper bound for both types of limit cycles.

Fig. (4). The solid curve is the upper bound on amplitude of the in-phase limit cycle. The dashed-dot curve is the upper bound on the
amplitude of the out-of-phase limit cycle.

4. NUMERICAL RESULTS

4.1. Phase Plane

To help visualize the dynamics of the first bunch, graphs showing the phase plane for eqs. (8 and 9) are provided
below. All phase plane graphs were made using PPLANE [10].

Fig. (5) compares the cases when γ > 0 and γ < 0. Qualitatively, the graphs are the same; the only difference is that
one has the equilibrium points on the A axis and the other has the equilibrium points on the B axis.

Fig. (6) shows the effect of including small values of δ1 and μ. The inclusion of damping has broken the homoclinic
orbit and all orbits are eventually attracted to one of the two stable equilibrium points. Since the two basins of attraction
are intertwined, it can be hard in practice to determine which equilibrium point will be reached from a given initial
condition.

Fig.  (7)  shows  the  effect  of  including  larger  values  of  δ1  and  μ.  The  equilibrium  points  have  gone  through  a
pitchfork bifurcation and there is now only one equilibrium point: the origin.

4.2. Cobweb Diagram

Since all bunches other than the first bunch are coupled to another bunch, we cannot express their dynamics in a
phase plane. Instead, we will show the amplitudes  through  in a cobweb diagram for a fixed number n.

Each diagram contains the graphs of Eq. (23), with  on the x-axis and  on the y-axis, and the line y = x. The
sequence starts with  on the x-axis, and proceeds as follows:

Move vertically to the line y = x.
Move horizontally to the curve given by Eq. (23) [may be multi-valued].
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Fig. (5). Phase plots of the A1-B1 dynamics. The left plot shows the dynamics for γ = 1 and the right plot shows the dynamics for γ =
-1. Both plots have α = 0 and μ = 0.
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Fig. (6). Phase plot of the A1-B1 dynamics. Parameter values are α = 0.1, μ = 0.1 and γ = 1.

Fig. (7). Phase plot of the A1-B1 dynamics. Parameter values are α = 1, μ = 1 and γ = 1.

This process is repeated n times, with each horizontal change determining the next value of .

For example, Fig. (8) shows the case when α > 1/2. The diagram begins at the point (0.8,0), representing the value

 After moving up to the line y = x at (0.8,0.8), the process then moves to the right to (1.1,0.8), where 1.1
represents the next value, . After several iterations, the values of  approach the point (1.2,1.2), where 1.2 is the size
of the stable limit cycle in this region.

B∗i

B∗i

B∗ =

B∗1 =
√

2/3.

B∗2
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Fig. (8). Cobweb diagram for α = 0.6 and γ = 1.

Fig. (9) shows the case when α < -1/2. The diagram begins at the point (0.8,0), as before. This time, after moving up
to the point (0.8,0.8), the process then moves to the left to (-1.2,0.8), where -1.2 represents the next value, . After
several iterations, the values of  alternate between two values, 1.3 and -1.3, reflecting the out-of-phase nature of the
stable limit cycle in this region.

Fig. (9). Cobweb diagram for α = -0.6 and γ = 1.

For -1/2 < α < 1/2, there are three possible limit cycles. Since the output of eq. (23) is multi-valued in this region,
there are many different cobweb diagrams for a given starting point , with the realized outcome determined by the
initial condition in the original system (1, 2). The code used to generate the diagrams picks one of the three limit cycles
at random, as this best represents the unpredictability of knowing the precise initial condition.
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Fig. (10) shows the chaotic nature of this iteration map in the region -1/2 < α  < 1/2. Since the behavior here is
randomized, there is no clear pattern to be discerned here. However, we note that the attractor seems to be a fractal of
some kind since there are gaps that are never reached.

Fig. (10). Cobweb diagram for α = 0.1 and γ = 1.

Fig. (11). Plots of  vs α for α ≥ 0.3 and γ = 1. The top left graph shows n = 2, the top right graph shows n = 3, the bottom left graph
shows n = 4, and the bottom right graph shows n = 5.
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4.3. Convergence to the Limit

The  most  important  question  in  this  model  is  determining  how  long  a  train  of  bunches  can  be  before  the  tail
becomes unstable. We have shown that there is a theoretical upper bound to the limit cycle amplitude, but it remains to
be seen how quickly the numerical sequence given by Eq. (23) approaches this limit.

Fig. (11) shows a sequence of graphs of  vs α for 2 ≤ n ≤ 5 and α ≥ 0.3, which demonstrates the speed at which
this sequence approaches the limit. However, we note that the sequence does not seem to converge pointwise at the
same rate, and for larger α values, it takes longer to converge to the limit.

Fig. (12) shows the graph of  vs α for a larger range of α values, including the multi-valued region. While the
multi-valued region does not show convergence to either of the limit curves, the values do stay bounded between the
maximum values of the two limit curves. Thus, even in this region we, can place an upper bound on how large the 
can grow.

Fig. (12). Plots of  vs α for -2≤α≤2 and γ = 1.

Fig. (13) shows the graph of  vs α. For α > 0.5, this figure is almost identical to Fig. (12), but for α < -0.5 the sign
of the curve is now negative instead of positive. This reflects how the limit cycle in this region is out-of-phase, as  is
out of phase with . Since the magnitude of the limit curve is the same for both positive and negative branches, the
sign of  is of little concern.
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Fig. (13). Plots of  vs α for -2≤α≤2 and γ = 1.

CONCLUSION

Our model predicts an upper bound for the amplitudes of bunches in a train. While the dynamics of the system
varies depending on the value of α, the upper bound holds for all values of α.

In  theory,  this  means  that  all  trajectories  are  bounded,  but  in  practice,  there  is  a  physical  bound  on  how  large
amplitudes  can  grow  before  they  become  unstable.  For  example,  if  the  theoretical  bound  on  the  motion  is  100
centimeters, but the radius of the cross-section of the accelerator is only 2 centimeters, then instability occurs once 
grows  larger  than  2  centimeters.  On  the  other  hand,  if  the  theoretical  bound  on  the  motion  is  1  centimeter,  then
instability will never occur, as  will never grow larger than 2 centimeters.

If it is known that the physical upper bound is smaller than the theoretical upper bound, then it is a simple matter to
numerically calculate  from eq. (23) and determine at what point  exceeds the physical bound. Even in the multi-
valued region, taking the worst-case scenario when the amplitude grows, the largest at each step will determine the
critical  n  at  which  instability  occurs.  Thus,  it  is  possible  to  know  how  many  bunches  to  include  in  a  train  before
instability occurs.

If this model proves accurate, then α can be used to determine the maximum number of bunches in a train. As α
contains information for both the per-bunch charge and the per-bunch spacing, adjusting either of these specifications
can adjust the value of α, and thus affect the size of the train.
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