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Abstract
Modern high performance circular accelerators require sophisticated corrections of nonlinear
lattices. The beam betatron tune footprintmay crossmany resonances, reducing dynamic aperture
and causing particle loss. However, if particles cross a resonance reasonably fast, the beam
deteriorationmay beminimized. This paper describes the experiments with the beampassing
through a half-integer resonance stopband via tunemodulation by exciting synchrotron
oscillations. This is the first time that beamdynamics have been kept under precise control while the
beam crosses a half-integer resonance. Our results convincingly demonstrate that particles can cross
the half-integer resonance without being lost if the passage is reasonably fast and the resonance
stopband is sufficiently narrow.

1. Introduction

It has become standard practice to constrain the particle’s tune footprint while designing the storage ring lattice
so that the particle tunesfit between harmful resonances, which limit ring dynamic aperture (DA) [1]. This
approach, known as ‘tune confinement’, puts tight limits on themagnitude of the tune shifts with amplitude and
withmomentum. The latter requires labor-intensive optimization of the off-momentumDAand the
corresponding tune footprint for the largemomentumdeviations to achieve a reasonable lifetime.

As nonlinearities of themodern ring lattices aremuch enhanced as comparedwith the previous generation
of synchrotrons, it is becomingmore andmore difficult to keep the off-momentum tune footprint inside the
range surrounded by the resonance lines [2–4]. One of themajor resonances is the half-integer resonance and it
is always treated as an unstable working point thatmay cause beam loss. The half-integer resonance poses
concerns inmany circular accelerators, such asmodern synchrotron light sources [2, 3], heavy ionmedical
accelerators [5] and non-scaling fixed-field alternating-gradient (FFAG) accelerators [6].

Intuitively, if the particle crosses the stopband quickly, onemay expect that the betatron oscillation
amplitudewill not increase substantially thereby keeping the particle within themachine acceptance. At the
same time, the tight tolerances withwhichmodern lattice elements can be designed and produced affordmuch
narrower resonance stopbands when comparedwithmachines built decades ago.

Recentlymodern synchrotrons advanced tomulti-bend achromat lattices featuring small dispersion and low
beta functions, and high nonlinearity of the particlemotion due to stronger sextupoles. In certain cases [2, 3], the
tune spread for on-energy beamwas successfullyminimized, but the off-momentum tunes swing across the
major resonances, as shown infigure 1.However, the tracking result did not showparticle losses in contrast to
the experiments [5, 7] on resonance crossingwhere the beam losses were observed.

In this paperwe investigate, both analytically and experimentally, the beamdynamics during crossing of a
major resonance in one of the lowest-emittance storage rings worldwide. This is the first time in storage ring
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experiments that the beam crossed the half-integer resonancewithout losses due to the fast passage and narrow
resonance stopbandwidth.

The authors of [2] found during tracking studies with the APS-U lattices that the half-integer resonance is
transparent for particlemotion. They explained this phenomenon as resulting from the rapid transition of the
particle through the stopband together with substantial amplitude-dependent tune shifts which helpedmove
the tune off the resonance during the transition. The results of our studies presented in this paper indicate that
this explanation is adequate.

The topic of resonance crossing and rapid tunemanipulations in circular accelerators has been studied in
the past. In the 1970s Chasman et al [8], Evens andGareyte [9] and Bruck [10] analyzed the repetitive crossing
of an isolated resonance driven by a singlemultipole term. In [11] the authors solved the problem ofmultiple
crossing of a nonlinear resonance by tunemodulation and the overall emittance growth with the assumption
that the phase of betatron oscillation is uncorrelated between successive crossings. Chao andMonth [12]
obtained expressions for efficiency of particle trappingwhile the bunch traverses an isolated nonlinear
resonance and demonstrated that the trapping efficiency depends on the resonance width, the speed of
traversing the resonance and the nonlinear detuning. Additionally, in 1970 Pellegrini and Sessler developed a
formalism for calculating the displacement andwidth of a bunch of particles passing through an integer
resonance by additional focusing (and the corresponding tune shift) produced by the ions trapped in the
storage ring [13]. The authors calculated betatron amplitude growth rates [14, 15] and presented the
emittance growth factor [16–18] for particles traversing different resonances. Lysenko [15] analyzed betatron
amplitude growth in the cases when the particle tune is fixed,moves along a single resonance line or crosses an
isolated resonance. Later, in 1991,Mane andWeng studied the cases of single and repetitive resonance
crossing caused by power supply noise or by synchrotron oscillations, including consideration of amplitude-
dependent tune shift and growth of emittance [19]. Experimental results on passing a half-integer resonance
in theHeavy IonMedical Accelerator bymeans of a fastmodulation of a quadrupole were presented [5]. Beam
loss was observed. Experimental results of the crossing of a nonlinear third-order resonance at an electron–
positron collider were presented in [20]. Other experimenters [21] havemeasured exponential gain in the
ratio of betatron amplitudes before and after crossing 3/2 resonance in a cyclotron as a function of the
resonant harmonic amplitude in themagnetic field index around the ring. The experiments on integer
resonance crossing in EMMA, a non-scaling FFAG constructed at Daresbury Laboratory in theUK, were
described in a detailed PhD thesis [22].

This paper is organized as follows:

Section 2 discusses beamdynamics of the particle crossing a static resonance stopband.We also describe our
method to control the tune swing by choosing a large chromatic tune shift in the vertical plane and driving
large synchrotron oscillation.

Section 3 discusses theways to control the resonance stopbandwidth and themeasurement results for half-
integer resonance characterization at BrookhavenNational Laboratory’sNSLS-II facility.

Section 4 provides an analytical solution of beamparametric oscillations in close proximity to the half-integer
resonance and beamoscillation amplitude amplification factor while crossing half-integer.

Section 5 describes the concept of the experiment.

Figure 1. Fractional tune shift withmomentumdeviation as presented in [2, 3].
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Section 6 presents themeasurement results.

Section 7 concludeswith ourfindings.

2.Dynamics of the particle crossing a static resonance stopband

Weconsider a storage ringmodel with large chromatic tune shift and a particle withmomentumdeviation
p

p
d = D

up to the second order writing the particle’s tune shift as:

O , 10 1 2
2 3n d n x d x d d= + + +( ) ( ) ( )

where ξ1 and ξ2 are linear and 2nd order chromaticities. In the following, we constrain our analysis to the two-
dimensional case of y and δ. For our experiments we kept ξ1y=+1 and tuned the 2nd order chromaticity to
ξ2y=+300 (the same value as in [2, 3]) by changing ring sextupoles whilemaintaining small tune shifts with
amplitude.

Next we assume that the particle energy oscillates with themaximumdeviation δ0 and this synchrotron
oscillation, for simplicity, is taken as n nsin 2 ,0 sd d pn=( ) ( ) where sn is the synchrotron tune and n is the number
of turns around the ring. An illustration of the problemunder consideration is shown in the left plot offigure 2.
As can be seen, the betatron tune of a longitudinally oscillating particle crosses the half integer resonance
νR=p/2, which has a stopbandwidth that depends on quadrupole errors. The resonance is characterized by a
stopbandwith thewidth J ,p which is heuristically defined as the boundary of the tune rangewhere the peak beta-

beat 0

0
b bD = b b

b
- reaches 100% [23]. Here p is an integer number, 0b is the reference beta function calculated

from the unperturbed latticemodel, and b is themeasured beta function obtained frombeamoscillations
excited by a pulsed kicker andmeasured by beampositionmonitors (BPMs) distributed around the ring [24].

The right-hand plot offigure 2 shows the resonance stopbandmeasured atNSLS-II using two techniques to
control the tune: a scan of the quadrupole gradients and a scan of the RF frequency. Applying the first technique
we adjusted the quadrupole gradients k L q1( ) tomove the tune around the resonance andmeasure beta-beat as a
function of the tune.Wemeasured the second curve bymoving the tune via changing themomentumdeviation
according to (1).We accomplished the latter by changing the RF frequency and scanning the tune through the
resonance similar to changing ring quadrupole strengths k L .q1( )

Wedefine δR= δ(νR) as the value of the energy deviationwhere the particle’s tune crosses the resonance νR.
The boundaries of energy deviation that correspond to the resonance stopband Jp are (neglecting the
contribution from the linear chromaticity ξ1 and assuming that 0

p

2 0n- > and 2x is positive):

.R
p J

2

2 2R p0

2

d  =d n

x
D - ( )/ /

Figure 2. Left-hand plot: particle’s synchrotron oscillationswithmaximumamplitude δ0 crossing resonance at νR=p/2with the
stopbandwidth of Jp and lower scale refers to themomentumdeviation versus RF phasej(t). Right-hand plot:measurement of the½
resonance stopbandwidth Jp atNSLS-II using the scan of quadrupole gradients k L q1D( ) (blue points), the scan of RF frequencyΔfRF
(red points) and theirfits.
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For calculating the number of turns the particle takes to cross the stopbandwe get:

n
asin asin 2 , if

acos , if .
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Due to the radiation damping the amplitude of energy oscillations δwill decay below δR after the time

intervalΔT=NcrossTs/2, whereTs is the synchrotron period, N 2 ln
Tcross

Rs

s 0
= - t d

d( ) corresponds to the
number of crossings of the resonance stopbandwhen R0d d> and τs is the damping time. This expression is an
approximate result sincewe are not taking quantum excitation into account.

Note that wemade the two following assumptions in this section:first, we assumed that the detuning effect
frombetatron oscillations is insignificant as comparedwith the detuning from energy oscillations. This holds
only for small amplitudes of betatronmotion and, thus, we limited the range of amplitudes in our experiments
towithin a fewmillimeters. Second, we assumed that the resonance stopband is ‘static’, i.e. it does not change
with the energy deviation δ. The lattermeans that the chromatic widening of the resonance stopband is smaller
than that driven by errors in quadrupole gradients.

As shown in the right-hand plot offigure 2, themeasured stopband does not change significantly between
the quadrupole scan and the RF frequency scan, which supports our second assumption.

3. Controlling the resonance stopbandwidth

Quadrupole imperfections of the linear lattice lead to a betatron tune shift as well as forming a finite bandwidth
of resonances on the tune diagram. The tune shift and half-integer stopbandwidth are determined
correspondingly by the 0th and pth harmonics of quadrupole perturbations around themachine (we are using
largely the same notation as in [23]):

k L

J k L e , 3

t
q

q q

p
q

q q
p

1

4 1

1

2 1
i q

å

å

n b

b

D = D

= D

p

p
f-

( )

( ) ( )

where p is close to 2n , q runs over the lattice quadrupoles, b and
s

s1

0

d

0òf =
n b

are betatron amplitude and phase

and k L B L B1 rD = D ¢ ( ) is the perturbed quadrupole focusing strength.
Theway to control the resonance stopbandwidth Jp is to act on the pth harmonic of k L q1D( ) while

maintaining the 0th harmonic caused by the same k L q1D( ) equal to zero.Methods ofminimizing the stopband
widthwere presented in [25].

In the experiments we characterized the resonance stopband using the twoways of tune scans described
above, resulting in themeasured Jp of 0.016with accuracy of about±0.0025.We assume the beta-beat
distribution along the ring as the sumof harmonic functions and calculate the rms beta-beat driven by random
Gaussian distributed errors in the ring quadrupole settings as:

M
k L

2 sin 2
,

q

max

1
b
b pn

b
D

» á D ñ
( )

whereMq is the total number of quadrupoles. Using themeasured value of beta-beat (3%)we calculate the rms
perturbations inMq=300NSLS-II quadrupoles as k k1 1áD ñ=0.13%. From these perturbations we estimate
the½ resonance stopbandwidth Jp via (3) as 0.015, which closely corresponds to ourmeasurements reported in
figure 2.

To control the stopbandwidth, defined in (3), we selected several quadrupoles separated by n·π+π/2 in

betatron phase advance
s

s

0

dòj =
b
and changed their strength by k L q1D( ) yielding themaximumchange in the

stopbandwidth of k L .
q

N
q q

1

2 1 1
qå b D

p = ( )
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4. Parametric oscillator excited at½ resonance

We solved the perturbedHill’s equationwith normalized variables via the Floquet transformation.

k ,d

d
2 2 2

1
2

2 n h n b f h+ = - Dh
f

( )

where
p

2
n n= + D is the betatron tune, p is an integer number, nD = p

2
is static detuning from the half-

integer resonance, ,
yh =
b

β is beta-function,
s

s1

0

dòf =
n b

is the phase, which changes by 2π every turn and

Δk1(s) is a perturbation of quadrupole k1(s).
Following [1]we expand the RHS of the equation above in Fourier series and retain only the resonance

harmonic of the perturbation arriving to theMathieu equation:

J p2 cos 0, 4p
d

d
2

2

2 n n f h+ + =h
f

( ( )) ( )

where Jp 2
f= n

p
∣ ∣ is the stopbandwidth as in (3).We carry out themethod of slowly varying amplitudes and

obtain the solution [26]:
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where ,
p

J

p1,2 2

pm = nD  ,1 2m m m= C1 and C2 are defined by the initial conditions of 0h ( ) and 0 ,h¢( )
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0

2

0
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phase are defined as tan C C

C C0
1 2

1 2
j = +

-
and tan .1

1

1

j = m
m

When the tune is out of stopband, i.e. ,
J

2

p n< D∣ ∣ particlemotion is stable.When the tune is within the

stopbandwith ,
J

2

p n> D∣ ∣ the amplitude ofmotion increases exponentially. The oscillation amplitude maxh is

given by C e1 1
2 2m m+ mt( ) since the second term in (5) becomes insignificant after a few turns.

In our experiment the detuning, nD = nnD ( )= n n ,0 1 2
2n x d x d+ +( ) ( ) is not constant but changes

every turn.Wenote that the corresponding change in ν is slow as comparedwith the value of the tune itself:

1,
n

1 d

dn
n  so m varies slowly and crossing the stopband takes a large number of betatron oscillations.

To assess the increase of betatron amplitude maxh during the resonance crossing we solved the equation (4)
numerically. Results of this solution are presented as the red trace infigure 3 and comparedwith particle
tracking results using code Elegant [27] for the conditions of our experiment atNSLS-II.

The turn-by-turn (TBT) graphs of the beam centroid position and its rms size obtained frommulti-particle
tracking simulations are shown as the blue trace infigure 3. The beam transverse oscillation is excited at the 20th
turn by a pulsed kicker. The tunemanipulation, according to equation (1), is accomplished by the excitation of
synchrotron oscillations using fast shift of the RF phase (also referred to as RF phase jump) at the 120th turn. The
tune crosses the half-integer resonance twice: the first crossing occurs around the 140th turn, where one can see

Figure 3.Betatron oscillations versus turn number. The red curve corresponds to numerical solution of equation (4) and the blue
curve shows a result of particle tracking using code Elegant (oscillation of the beam centroid, with the envelope determined by rms
beam size to evaluate the decoherence effect). The green trace shows tune evolutionwith dashed lines indicating borders of the
stopband.
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the oscillation amplitude ramping up; and the second crossing is at around the 175th turn. The oscillation
decoherence becomes significant at large beamoscillation amplitudes.

As follows from figure 3, the oscillatory solution ismodulatedwith the beat frequencyμ in proximity to the
stopband to a rapid growth of the oscillation envelopewhile the tune approaches the stopband and crosses it.
The nature of the increase in the amplitude fits with themodel described by equation (4) adequately and shows
good agreement with the output of the Elegant.We note that these solutions deviate at the top of the first
maximumof the oscillation envelope because of the tune shift with amplitude, which is not taken into account
in (4) andfilamentation of the particle distribution due to high chromaticity.

To estimate the increase of amplitude after a single passage of the stopband, we developed a simplified
solution of equation (4). The ratio of betatron oscillation amplitudes before (i) and after ( f ) passing the
resonance is as follows:

J nexp 6
f

i
p R

max

h

h
p» D

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

with nRD estimated using the first expression of (2), as the number of ring revolutions while the particle is
moving through the resonance stopband.When the particlemoves through the unstable region, the growth rate

varies from zero (when
J

2

pnD = - to amaximum (when 0nD = ), and then back down to zero again (when
J

2

pnD = ). In order to obtain a bound on the amplitude overall growth, we assume that the instantaneous growth

rate equals themaximumgrowth rate, i.e. ,
J

p2

pm » when the particlemotion resides in the unstable region. This

method then gives the solution of growth rate as equation (6).
We applied the expression above to the case depicted infigure 3 and obtained the gain in amplitude as a

result of a single passage through the resonance as approximately 2 for the stopbandwidth asmentioned in
section 3, which is in reasonable agreement with the numerical results plotted infigure 3.

We note that a similar estimate of the amplitude gain factor was reported in [28], whereas the analytic
solution of slow passage through a resonance governed by theMathieu equationwas presented in [29].

5. Concept of the experiment

Wecarried out our experimental studies at theNSLS-II storage ring. TheNSLS-II is a high-brightness
synchrotron light source based upon a 3 GeV storage ringwith a 30-cell double-bend-achromat lattice
complimented by dampingwigglers in order to reduce the emittance below 1 nm rad [30]. In table 1we present
the beamparameters of theNSLS-II storage ring relevant to our experiments.

In our experiments wemoved the tune yn to a proximity of a half integer resonance located at 16.5 and
excited the beam vertical betatron oscillations with a transverse pulsed kicker. TBTbeam transverse positions
and beam relative intensity weremeasuredwith BPMs. The vertical TBTdata showedmodulated betatron
oscillations, which provided a convenient tool for independentmeasurement of the detuning nD and J ,p using
the solution of equation (5). Rapid changes of the RF phase at some delaywith respect to the transverse kicker
pulse induced beam energy oscillation large enough to cross the resonance stopband.

BeamTBT energy oscillationwas retrieved from the horizontal data of the BPMs located in the dispersion
region. Alsowemeasured the first and second order dispersion and chromaticity by scanning theRF frequency,
which provided the necessary calibration of the energy and tune oscillations [31].

While the beam crosses the resonance itsmotion is affected by rapid decoherence of the betatron
oscillations. The small transverse size and energy spread of the bunch prior to the transition allowed us to
observe coherent betatronmotion as the bunchwas crossing the resonance stopband. In our experiments at
NSLS-II the transverse and longitudinal pinger amplitudes (Δα=200 μrad and δ0=1.5%) exceeded the
natural beamdivergence (1.5 μrad) and the energy spread (0.05%) by the ratio of about a hundred. Therefore the
decoherence of beamoscillation and subsequent filamentation of the particle distribution become significant
only after the beamhas crossed the resonance, thus notmasking the BPMTBT signals of the coherent particle
motion during the transition.

In order tomodulate the off-energy tune in this experiment, we developed amethod of rapid excitation of
coherent beam energy oscillations (‘RF jump’ or ‘RFpinger’, [31]). TheNSLS-II LowLevel RF controller [32]
wasmodified by adding an external timing trigger to control the phase transient.

The RF pinger timingwas alignedwith other timing-driven subsystems, such as transverse kicker and BPMs
as shown infigure 4. The timing delay for the RF pinger trigger was synchronizedwith and delayed by 100 turns
relative to the transverse kicker in order tomonitor beambetatron oscillation and energy oscillation.

RF feedback gain parameters were also optimized so that the RF phase transition excited the beam
synchrotron oscillationswith themaximumamplitude [31, 32].
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6. Experimental results

In the experiment, we stored a beam current of a fewmilliamperes, switched to the lattice with high ξ2 and then
moved the betatron tune to a near half-integer resonance (ν0∼16.47) by controlling non-dispersive
quadrupoles.

The beta-beat along the ring at different tuneswas retrieved fromBPMTBTdata tomeasure the stopband
width. The beta beat for the nominal lattice was corrected to∼3%with stopbandwidth at 0.016.We called these
experimental conditions the ‘small stopband’ scenario.

With the sameRF jump and transverse kicker settings we designed another experimental scenario inwhich
the quadrupole strengthwas adjusted to expand the stopbandwidth from0.016 to 0.038, so that the beam tune
stayswithin the stopbandmuch longer during the RF jump.We called these experimental conditions the ‘large
stopband’ scenario.

Themeasurement results are shown in figure 5 including traces of the vertical tune, vertical beamposition
and beamnormalized intensity. Beam energy oscillation amplitude is about+/−1.4% (peak to peak), as
retrieved from the horizontal beampositionmeasured by BPMs. The tunemodulation is calculated using
equation (1) and presented in the upper plots. Different colors correspond to the different values of the initial
tune .0n When the tune approaches the resonance,motion in the vertical plane exhibits the behavior typical for

Figure 4.Timing diagram. The numerical solution of equation (4) is presented by the blue line, themajor events are indicated by the
vertical red lines: 1—transverse kicker, 2—RFpinger, 3—resonance crossings.

Figure 5.TBTbeamparameters (upper plot: calculated y-tunes with dashed lines indicating borders of the stopband, lower plot: BPM
measured TBT y-position on left axis and normalized beam intensity on right axis) for the three separate experiments with different
initial tunes prior to triggering the RF phase jump. The left-hand plot corresponds to the ‘small stopband’ case and the right-hand plot
corresponds to the ‘large stopband’ case.

Table 1.NSLS-II storage ring beamparameters.

Vertical betatron tune 16.26K16.55

Revolution period,μs 2.64

Synchrotron tune 0.006 25

Damping time (x/y/z), ms 55.3/55.3/27.7

Vertical emittance, pm rad 30

Energy spread,% 0.05
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parametric resonance, i.e.modulation at the detuning frequencyΔν, which is in the range between 20 and 120
turns for our experimental conditions.

In the left-hand plot offigure 5we plotted the data with different initial vertical tunes: 0.470 (black), 0.483
(blue), 0.493 (red).With these initial conditions the beam takes approximately 11, 12 and 17 turns to cross the
resonance. The difference in the oscillation amplitude after the first crossing is visible but in every case there is no
beam loss. In the ‘large stopband’ scenario, there is no beam loss while the tune is outside of the resonance
stopband, butwhen the beam ismoving through the resonance for about 40 turns, particle loss occurs. The
losses then repeat during subsequent synchrotron oscillations.

With equation (2)we estimate that themaximumnumber of turns the beam can spendwithin the ‘small
stopband’ is about 25 and for the ‘large stopband’ it is about 49.Using equation (6)we estimate the betatron
amplitude growth under our experimental conditions as a factor of 3.5 for the ‘small stopband’ and a factor of
350 for the ‘large stopband’. This large amplification factor for the ‘large stopband’ leads to significant beam loss
as demonstrated by our experiments. Since about half of the beam intensity is lost after the first crossing of the
stopband, the plots of vertical TBTdata in this case are not representative of the actual beambetatronmotion.

Wenote thatwewere able to study vertical TBTdata corresponding to thefirst crossing of the resonance
during the first half-period of the energy oscillation. Clear exponential-like growth of betatronmotion is visible
only during thefirst crossing. During the next few synchrotron oscillations the BPMTBT signal blurs due to the
decoherence andfilamentation of the beam as the particles are repetitively passing through the stopband.

Figure 6 shows oscillations of the beamposition and evolution of the beam intensity over a longer period of
time, 5000 turns, which is equivalent to about half of the radiation damping time. The upper plot offigure 6
presents oscillations in the horizontal position asmeasured by the BPMs at non-zero dispersion location. The
shape of thewaveform is asymmetric due to contributions from the second order dispersion.We took this effect
into account while retrieving beam energy dependence on the turn number from theTBTdata [31]. The
oscillation envelope decays exponentially due to the radiation damping.

We carried out studies of the beam executing large-amplitude synchrotron oscillations and crossing amajor
machine resonance in the storage ringwith high chromaticity. First we designed a lattice with high second order
chromaticity and characterized its properties. Nextwe developed and tested an experimental technique, ‘RF
pinger’ [31], which provided uswith away to excite synchrotron oscillations of thewhole beam at an amplitude
sufficient to cross the½ resonance.Wemeasured the resonance stopband using scans of quadrupole gradients

k L1D( ) and energy deviation and developed solutionswith two different stopbandwidths.
In our experiments we studied the beam coherent oscillations during the crossing of the resonance stopband

as if the beamwas a single particle. Due to the constraints imposed by this experimentalmethodwe could not
study the dynamics ofmultiple crossings of the resonance, whichmay be the subject of our future experiments.

Considerations presented in this paper can be readily applied to the analysis of beamdynamics in the new
generation of synchrotrons [2, 3]. For instance, we estimate a gain in the betatron oscillation amplitude of a
particle crossing the resonance for conditions similar to [2] or [3], i.e. ξ2≈300. Using equation (2)we calculate
the number of turns that the particle takes to cross the resonance stopband is n 3RD » turnswith an assumption

on the stopbandwidth of 0.02 as atNSLS-II and 0.030d = as in [2]. The gain factor
max

f

i

h

h( ) estimated via

equation (6) gives 1.2 for the single crossing of the stopband.Due to low synchrotron frequency (takingTs≈1.4
ms and τs≈14ms from theAPS-U design report)we get the total number of crossings N 2,cross = and therefore
the total gain in the amplitude of betatron oscillation amplitude cannot exceed a factor of 2.

Figure 6.TBTbeamparameters (upper plots: horizontal position, lower plots: vertical position on left axis and beam intensity on right
axis) for both cases of ‘small stopband’ (left plot) and ‘large stopband’ (right plot). The horizontal axis extends to 5000 turns so that 40
synchrotron oscillations are shown.
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Wenote that, as predicted [8, 11], in the case of large Ncross the partial increases in the betatron amplitude per
crossing should add up ‘incoherently’, i.e. the growth of amplitude follows the randomwalk process. This
happens because there are a large number of betatron oscillations between successive crossings and particles
enter the resonance stopbandwith the uncorrelated betatron phases fromone crossing to the next.

7. Conclusions

In summary, we carried out a study focused on beamdynamics in a storage ring featuring a large chromatic tune
footprint that can span acrossmajor resonances. Such a property of the ring lattices has been recently identified
during the design of the newmulti-bend achromat lattices [2, 3] proposed for the next generation of synchrotron
light sources.

We have shown that it is possible, both by design and by experiment, to achieve the storage ring conditions
where the beam crosses the½ resonancewithout particle loss. This can be accomplished if the stopband is
narrowdue to small residualfield errors in the ringmagnets and is further controlled by accurate cancellation of
the harmful harmonic of thefield errors around the ring. The combination of the small stopbandwidthwith a
largemagnitude of nonlinear chromaticity leads to the rapid crossing of the resonance, which does not cause loss
of the particles as demonstrated by our experiments.

We studied themotion of particles in the vicinity of a single resonance and could not cross thewhole range of
tunes covered by the footprint similar to [2, 3]. The amplitude ofmomentumoscillations that wewere able to
excite with our RF-pinger techniquewas limited by the reflected power during transition of the RF cavity phase
andwas about 1%,while themaximumamplitudes in the cases of [2, 3] reach or exceed 3%.Another limitation
of our technique comes from the fast decoherence of the beamoscillationsmasking coherent beammotion
during subsequent crossings of the resonance.
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