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a b s t r a c t

A micro-scale resonator suspended over a substrate and illuminated with a continuous wave (CW) laser

forms an interferometer which couples deflection of the resonator to light absorption. In turn,

absorption creates temperature and thermal stress fields which feedback into the motion. Experiments

have shown that this coupling can lead to limit cycle oscillations in which the resonator vibrates in the

absence of external forcing. However, the mechanism by which the thermal stresses drive limit cycle

oscillations of initially flat beams was unknown. In this paper, we present a thermo-mechanical finite

element method (FEM) analysis of doubly clamped beams which shows that the combination of anchor

point thermal gradients and deflection due to compression couples out-of-plane motion of the beam to

the thermal field. It is this coupling that makes limit cycle oscillations of the beam resonators possible.

Results of the FEM analysis are used to compute the threshold laser power needed for limit cycle

oscillations.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Resonant microelectromechanical systems (MEMS) have been
proposed and demonstrated for a number of different sensing [1],
and signal processing [2,3] applications in the past decade. Such
devices are typically lithographically defined out of thin films of
silicon and silicon compounds, materials which have low mechan-
ical losses. As a result of their small size and low inherent damping,
these micro-scale beams, disks, and domes may exhibit extremely
high resonant frequencies (or Z1GHz) and high quality factors
(Q Z100;000). Applications such as mass sensing and signal pro-
cessing depend on MEMS resonators’ high-Q, high frequency oscilla-
tion and their ease of integration with traditional electronics.

In order to induce vibrations, devices are often excited elec-
trostatically, piezoelectrically, magnetically or optically with an
externally modulated input signal. However, such methods
require an independent, highly stable periodic drive signal and
may require additional conductive layers on the resonator surface
which reduce the quality factor. Interferometric transduction can
drive self-oscillation without needing an independent periodic
drive signal nor additional device layers, making it a promising
technique for enabling sensing and signal processing applications.
All rights reserved.

: þ1 607 255 2011.
Langdon and Dowe [4] first demonstrated interferometrically
transduced self-oscillation in a MEMS device. They showed that
an optically thin aluminized polyester beam suspended over a
reflective substrate sets up a Fabry–Pérot interferometer which
couples absorption in the beam to deflection of it. If illuminated
with a CW unmodulated laser, the beam bends statically for low
laser power, but for high enough power (P4PH) the beam begins
to self-oscillate at finite amplitude.

Oscillation of the device through the interference field also
modulates the intensity of reflected light which may be measured
and analyzed to determine the motion [5]. In laboratory experi-
ments, samples are mounted in a vacuum chamber evacuated
to o10�6 mbar to reduce viscous damping, a CW laser is focused
on the center of the beam and the reflected signal measured with
a high speed photodiode and analyzed on a spectrum analyzer
(see Fig. 1). Such experiments [6] can show the existence of
hysteresis, i.e. once oscillating, the device will continue to
oscillate even as the laser power is reduced until a lower power
PLoPH at which point the vibration ceases.

For interferometric transduction to be a viable means of driving
MEMS resonators, the mechanisms and conditions for self-oscilla-
tion must be understood. Early work focused on beams with thin
metal coatings on their top surface and suggested two possible
mechanisms for self-excitation. Churenkov [7] assumed that bend-
ing moments in the beam were due to the differing thermal
expansion coefficients of the beam material and surface coating.
Langdon and Dowe [4] assume that the laser power is absorbed near
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Fig. 1. Absorption in a Fabry–Pérot interferometer. Undeflected beams are a distance go away from the substrate at their center. Deflection of the beam changes the gap to

substrate, altering the absorption in the interferometer, thus coupling absorption to deflection.

Fig. 2. Structural and thermal (a) boundary conditions as well as (b) mesh for a FEM model of a 7 mm beam. For each model, the precise temperature field and

displacement due to steady state heating was calculated using a very fine mesh. Then the mesh coarsened such that maximum temperature and vertical component of the

midline displacement were accurate to within 2%. This mesh convergence study indicated the need for a high density of elements at the support.
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the top surface of the beam causing vertical thermal gradients
throughout the beam and deflection due to resultant bending
moments. Both use energy methods to derive formulae for the
minimum power needed for self-oscillation. However neither
mechanism is applicable here. For uncoated beams there is no
bi-metallic effect. For optically thin beams, absorption occurs
throughout the beam thickness and the combination of high aspect
ratios and high thermal conductivity ensures negligible vertical
thermal gradients in the beam. In addition, such methods cannot
capture hysteresis loops which are experimentally observed.

Others have assumed periodic surface heating [8–10] and
analyzed deflection due to thermal stress waves to give an
amplitude of driven oscillation which is directly proportional to
the amplitude of the modulated laser power. However, such
methods are not appropriate for interferometrically transduced
oscillations where input power is not modulated externally, but
rather by motion of the device. These self-oscillations begin at
finite amplitude only after the threshold laser power is reached.
Models [6,11] which display hysteresis have been used to accu-
rately predict threshold powers for self-oscillation in specific
devices. However, model parameters have not been systemati-
cally studied, nor tied to the physical mechanisms underlying
deformation. Such analysis would support design questions such
as—How does one construct a MEMS resonator to have a low

threshold power for self-oscillation?
These models show that the threshold power for self-oscilla-

tion in MEMS devices depends on the direct feedback between
static heating and displacement, yet it is unclear what mechanism
causes the displacement. In this paper, a (FEM) model of a doubly
supported beam subject to steady state heating is analyzed using
the commercially available software package, ANSYS. Results
show that deflection due to heating comes from a combination
of thermal gradients and compressive stresses at the beam’s
support. We then illustrate the importance of this direct
thermal–mechanical coupling mechanism in driving interferome-
trically transduced self-oscillation.
2. Materials and methods

The analysis will model doubly clamped beams fabricated out of
silicon–silicon dioxide-silicon (SOI) wafers. The beams are 7,10,15 or
20 mm long, 201 nm thick, and 2 mm wide with 2 mm of under-
cutting and a 400 nm gap to substrate. Resonant frequencies are
measured to be 17.2, 10, 5.0 and 3.6 MHz, respectively. SEM images
show that the 20 mm beams are post-buckled, indicating a residual
compressive pre-stress sres in the device layer that is greater than
the buckling load (sb) of the 20 mm beam and less than that of the
15 mm beams. Thermal–mechanical coupling is found to be highly
dependent on the pre-stress, so a careful analysis of the buckling
loads is done to bracket the pre-stress in the devices. To estimate the
buckling loads and study the thermal–mechanical coupling, FEM
models of each beam were built incorporating the beam and a large
portion of the surrounding substrate. Quarter symmetry was used to
reduce the problem size.

Thermal and mechanical boundary conditions for the model
are shown in Fig. 2(a). In order to account for the estimate pre-
stress, the corresponding strain was calculated and equivalent
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step displacement Dyeq applied to the midline cross section.
Symmetry, clamped or free boundary conditions were applied to
the remaining surfaces of the model. We assume that the laser is
focused on the center of the beam. Given that the devices are
optically thin, absorption is not confined to the top surface. Thus
we consider the power to be evenly absorbed throughout the
thickness of the beam, and apply a heat flux H0 equivalent to
1 mW of incident laser power (4.4% absorbed) to the midline
cross section. The substrate outside the model is assumed to be an
infinite heat sink, and since devices operate in vacuum, with small
temperatures above ambient, convective and radiative heat loss
are negligible. A representative mesh is depicted in Fig. 2(b), and
the material properties used are listed in Table 1.

Recall that pre-stress in our devices is bracketed by the
buckling loads (sb) of the 15 mm and 20 mm beams. In order to
calculate sb for each beam, the temperature is fixed at zero and
the midline displacement is varied in a large deflection static
analysis (NLGEOM ON, PSTRES ON) to produce a load curve. Note
that the top of the device layer is surrounded by vacuum, while
the bottom of the device layer is bonded to the underlying oxide
layer. This geometric asymmetry of the anchor support is cap-
tured in the boundary conditions imposed in the model and
causes imperfection buckling. Since the top surface of the device
layer is free, shear stresses develop along the bottom of the device
layer in the region of the support to counteract axial compressive
stresses due to pre-stress. These shear stresses act below the
beam centerline and tend to arch the beam up away from the
substrate. Once the compressive stress reaches a critical load (sb),
the growth becomes dramatic (see Fig. 3). This load is slightly less
than the buckling load predicted by a Euler–Bernoulli beam
theory model of an initially straight clamped–clamped beam.
Analysis of the 15 mm and 20 mm beams indicates the presence of
55710 MPa of compressive pre-stress.

Having estimated the pre-stress, we apply equivalent step
displacements Dyeq to each beam, and calculate the midline
displacement due to pre-stress alone using a large-deflection static
analysis (NLGEOM, ON) which accounts for geometric non-linear-
ities. In addition, we select (PSTRESS, ON) so that the stiffness matrix
Table 1
Material properties used in analyses. Listed from left to right are the density ðrÞ,
Poisson ratio (n), Young’s modulus (E), coefficient of thermal expansion (aT ),

thermal conductivity (k) and specific heat capacity (c). Note the two order of

magnitude difference between the thermal conductivity of Si and SiO2.

Material r (kg/m3) n E (GPa) aT (K�1) k ðW=m KÞ c ðJ=kg KÞ

Si 2420 0.279 130 2.5 �10�6 170 712

SiO2 2200 0.17 70 0.5 �10�6 1.38 1120
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Fig. 3. Load curve for the 15 mm beam. Note that undercutting artificially softens the b

beam ‘‘effectively’’ longer. For shorter, stiffer beams (7 mm) where undercutting (2 mm) is

calculated first mode frequency of each beam with the clamped–clamped theoretical fre

equivalent length is used to relate stress to displacement from Dy¼ sL=2E and to app

buckling analysis was not done. Thermal–mechanical coupling is found to depend criti

Thus careful analysis of sres is required. To find the buckling load (sb), we curve fit the
is recalculated in the deformed configuration. Next we turn our
attention to the thermal model. A steady state thermal analysis is
performed to calculate the temperature distribution in the beam.
Equivalent structural loads are applied by switching the element
type from thermal to structural and the large deformation static
problem including pre-stress effects is solved to find the vertical
component of the midline displacement due to pre-stress and
heating. The difference between these displacements, DUZ, provides
us a measure of the thermal–mechanical coupling.
3. Results

In doubly supported beams, deflection due to heating is the
result of two competing effects. Heat propagates more efficiently
in the device layer because the thermal conductivity of silicon is
two orders of magnitude higher than that of the underlying
silicon dioxide layer [9,10]. Heat from the laser, applied at the
center of the beam travels along the beam and is sunk by flowing
into the low conductivity oxide. This sets up a large vertical
temperature gradient in the oxide near the support (Fig. 4(a)). The
device layer, being hotter than the oxide layer expands more, and
the mismatch in thermal expansion coefficients between the
layers (see Table 1) augments this affect to create a bending
moment that tends to rotate cantilevered beams down toward the
substrate. However, in doubly supported beams compressive
stresses across the length of the device due to pre-stress or

thermal expansion have the opposite effect: a phenomenon noted
in the previous section. For the beams studied, the effect of the
thermal compressive force dominates the effect of the vertical
thermal gradients, causing the beams to arch up away from the
substrate when heated. Assuming small displacements, we define
the thermo-mechanical coupling coefficient as

D¼
DUZ

Tave
ð1Þ

where DUZ is the vertical component of the displacement at the
center of the beam and Tave is the average temperature in the
beam. Note that in calculating the coupling, we include only the
displacement due to heating, not the portion due to pre-stress.
This coefficient is roughly equivalent to the local slope of the
load–displacement curve in Fig. 3 where excess temperature is
transformed to thermal stress load. Note that the analysis is
inherently non-linear in sres and H0. See Table 2 for a list of
results. The 20 mm beams being post-buckled, have the greatest
thermal–mechanical coupling (highest slope), while the 15 mm
beams being nearly buckled have the second greatest thermal–
mechanical coupling.
50 60 70 80 90
s [MPa]

σb

eam support reducing the buckling load and resonant frequency, thus making the

a significant fraction of the length, this effect is pronounced. By comparing the FEM

quency [12] we calculate effective lengths of 9.44, 11.83, 16.43, and 20.9 7 mm. The

roximate the buckling stress for the 7;10 mm beams where a full non-linear FEM

cally on residual pre-stress, particularly in the neighborhood of sb (see Section 5).

post-buckled load curve to a square root.
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Fig. 4. (a) Temperature distribution and (b) deflection for the 7 mm beam under

steady state heating—note that a portion of the displacement is due to pre-stress.

Table 2

FEM results of thermal–mechanical analysis. DUZmidline is the vertical component

of the displacement at the center of the beam due to heating with reference to the

pre-stress configuration. Note that the thermal–mechanical coupling coefficient

(D) increases with length.

Length (mm) 7 10 15 20

DUZ (Å) 0.0364 0.0930 2.17 33.6

Tave (K) 0.831 1.07 1.48 1.88

D (Å/K) 0.0219 0.0434 0.734 8.96

Table 3
Parameters for 15 mm beam. The thermal–mechanical

coupling coefficient has been non-dimensionalized.

Parameter Value

Q 10,900

H 5570 (K/W)

a 0.035

b 6.72

D 2.32 �10�4 (1/K)

or 4.975 (MHz)

B 0.112

g 0.011

Tbuckle 28 (K)

P Continuation parameter
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4. Discussion

We do not sweep the laser power in the FEM model directly in
order to determine the threshold power for self-oscillation
because of the computational cost of solving the coupled
thermal–mechanical problem. Rather, we build on past work by
using our FEA results to populate parameters in a simple analytic
model which has already been studied. Variations of the model
have been presented in [6,13–15,11], and the interested reader
should refer there for more details on its derivation. Although
physical devices have spatially varying fields, first mode vibration
is assumed and the midline displacement (z) is modeled as a one
degree-of-freedom oscillator. The average temperature in the
device (T) is modeled using a lumped thermal model. Note that
heating causes compression which changes the stiffness to out of
plane loads giving us a temperature dependent linear stiffness
k¼ k0ð1�T=TbuckleÞ, with Tbuckle ¼ ðsb�sresÞ=aT E, the temperature
at which a Euler–Bernoulli beam buckles due to thermal stresses.
This relationship recovers exactly the frequency-compression
relationship for pre-buckled beams [12] and is approximately
correct for post-buckled beams [16]. Furthermore, the slope of a
load vs. displacement curve increases with displacement due to
membrane stresses, giving a cubic stiffness bz3 [17]. Including
damping and the thermal–mechanical coupling term, as well as
non-dimensionalizing time by the beam’s measured resonant
frequency and non-dimensionalizing displacement by the laser
wavelength, we get the following model of the first translational
mode of vibration:

€zþ
_z

Q
þ 1�

T

Tbuckle

� �
zþbz3 ¼DT ð2Þ

The average temperature is assumed to change according to
Newton’s law of cooling, giving

_T ¼�BTþHPabsorbedðzÞ ð3Þ

where H is the inverse of the lumped thermal mass, B is the
cooling rate due to conduction, and Pabsorbed(z) is the laser energy
absorbed as a function of deflection. This final term describes the
Perot–Fabrey interferometer and is often modeled as

PabsorbedðzÞ ¼ Pðaþg sin2
ð2pðz�z0ÞÞÞ ð4Þ

with a, g and z0 fitting parameters that depend on the device
thickness and material properties, and P the incident CW laser
power. Optical parameters (a, g, z0) are fit using a physics based
model of reflection, transmission and absorption in thin films
given in [18]. Thermal parameters (H, B) are fit using an FEM
thermal model of the beam and surrounding substrate. Structural
parameters (Q, Tbuckle and b) are fit using a mixture of experi-
mental results, analytic results, and FEM modeling. See [13] for a
detailed description of the parameter estimation techniques.

Finally, we examine the nature of solutions to Eqs. (2)–(4) to
identify the laser power at which self-oscillation is first seen (PH) and
at which self-oscillation ceases when reducing power (PL). Equilibrium
and periodic solutions are calculated using numerical continuation
with AUTO2000 [19,20]. Numerical continuation allows us to effi-
ciently determine whether self-oscillation is possible in the model for
a given laser power. Using AUTO, we track changes in the equilibrium
solution as the laser power, P, is varied, monitoring for a Hopf
bifurcation. Then we restart the continuation at the Hopf bifurcation,
tracking the periodic solution that emerges. As an example, para-
meters estimated for the 15 mm are listed in Table 3, and continuation
results depicted in Fig. 5.

Interferometric transduction depends on the feedback between
heating and displacement, yet with no direct thermal–mechanical
coupling term, D¼0, as laser power (P) increases, the displacement is
zero until the beam thermally buckles at T ¼ Tbuckle. Direct thermal–
mechanical coupling due to deformation of the beam supports
couples heating and displacement at all temperatures making vibra-
tion possible sooner. As an example calculation, for the 15 mm beams
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Fig. 5. Continuation of periodic solutions. Incident laser power (P) is plotted along the x-axis and the amplitude of oscillation is plotted along the y-axis. PL is the lower

threshold of self-oscillation, and PH is the point at which the steady state solution becomes unstable giving rise to self-oscillation. Note the hysteresis loop. In addition to

reducing PH, direct thermal–mechanical coupling reduces PL and thus increases the width of our hysteresis loop. (a) No optothermal forcing, i.e. D¼0 in Eq. (2). (b) With

optothermal forcing, i.e. Da0 in Eq. (2).

Table 4
Model predictions of power at which self-oscillation is first seen (PH) and lowest

power for which self-oscillation is possible (PL). For 55 MPa of pre-stress, the

20 mm beams are already buckled. For post-buckled beams, there is no self-

oscillation in the model without direct thermal–mechanical coupling, and with

direct thermal–mechanical forcing, the Hopf Bifurcation is supercritical and so

there is no hysteresis loop. For 35 MPa pre-stress, all of the beams are pre-buckled.

As a result their thermal–mechanical coupling coefficients (D) are lower and

threshold power for self-oscillation (PH) higher.

Length (mm) No DT With DT,

sres ¼ 55 MPa

With DT,

sres ¼ 35 MPa

PH (mW) PL (mW) PH (mW) PL (mW) PH (mW) PL (mW)

7 482 467 64.7 19.1 76 22

10 239 233 18.2 4.46 26 5.8

15 19.4 19.3 1.12 0.568 7.0 2.0

20 N/A N/A 0.0798 N/A 0.29 0.22
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the reduction in the laser power at Hopf bifurcation (PH) is from
PH¼19.4 mW to PH¼1.12 mW.

We have used continuation to calculate PH and PL for the 7,10,15
and 20 mm long beams: the results are presented in Table 4.
Predicted threshold powers for self-oscillation are consistent with
those measured in similar sized beams [18], paddles [21], disks [15],
and the predictions of Langdon and Dowe [4]. Experimental results
from the actual devices modeled are forthcoming.

In order to illustrate the sensitivity of this analysis to the pre-
stress values, the thermal–mechanical coupling coefficient is
re-calculated, and continuation performed assuming 35 MPa of
pre-stress. For this pre-stress value, all beams are pre-buckled.
Note the sensitivity of (PH) to the pre-stress value, particularly in
the neighborhood of the buckling length.
5. Conclusion

When illuminated with a CW laser, MEMS resonators have
been shown to go into self-oscillation for sufficiently high laser
power. Such interferometric transduction is driven by the cou-
pling of heating to displacement and provides a means to achieve
vibration in MEMS sensors without the need for externally
modulated drive signals or extra fabrication steps which reduce
the mechanical quality factor. We have shown that the threshold
laser power needed for self-oscillation (PH) depends intimately on
the static deflection due to steady state heating, and calculated
that deflection for doubly supported beams of various lengths.
Unlike cantilevered beams, doubly supported beams are seen to
deflect away from the substrate when heated due to compressive
stress across the length of the device. We have interpreted the
thermal–mechanical coupling as the slope of a imperfection
buckling load curve, and shown that the power needed for self-
oscillation decreases for increasing coupling. Thus, the amount of
pre-stress provides a control parameter in designing low-power
devices. Barely post-buckled beams should have the lowest
threshold power for self-oscillation, though that power (and the
operating frequency) are sensitive to changes in pre-stress near
the buckling load.
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