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Nanoscale resonators whose motion is measured through laser interferometry are known to exhibit

stable limit cycle motion. Motion of the resonator through the interference field modulates the amount

of light absorbed by the resonator and hence the temperature field within it. The resulting coupling

of motion and thermal stresses can lead to self-oscillation, i.e. a limit cycle. In this work the coexistence

of multiple stable limit cycles is demonstrated in an analytic model. Numerical continuation and direct

numerical integration are used to study the structure of the solutions to the model. The effect of

damping is discussed as well as the properties that would be necessary for physical devices to exhibit

this behavior.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their high frequencies, ease of integration with tradi-
tional electronics and potential for low cost batch fabrication,
MEMS resonators have found a variety of uses in the past decade
from electrical filters [1] to mass detection sensors [2], gyroscopes
[3,4] and reference oscillators [5]. In such applications, the
frequency or phase of oscillation of the MEMS device carries
information about the quantity of interest. To obtain periodic
motion, devices are often driven using an externally modulated
drive. Such designs require an external highly stable frequency
source, which increases sensor cost. Active feedback electronics
may also be used to create sustained oscillations [6] though will
become increasingly challenging as device frequencies continue
to increase. Self-resonant systems, or limit cycle oscillators, offer
a promising alternative for achieving periodic motion and have
been demonstrated in MEMS opto-mechanical systems.

Langdon and Dowe [7] first demonstrated optically driven self-
oscillation in a MEMS device. They showed that an optically thin
MEMS device suspended over a reflective substrate sets up a
Fabry–Pérot interferometer which couples absorption of light to
displacement of the device. Thus, illuminating MEMS beams with
a continuous wave (CW) unmodulated laser causes optical–
thermal–mechanical feedback.1 The sign of the feedback gain is
determined by the length of the interference cavity, or wave-
length of the light used for illumination. For negative feedback
ll rights reserved.
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gain, feedback increases damping and is termed cavity- or self-
cooling [8,9]. For positive feedback, back-action reduces damping.
In this case, when the laser intensity is low, the beam bends
statically, but for laser powers above a threshold power, PHopf, the
beam exhibits a large amplitude self-oscillation. Later work
examined the necessary conditions for self-oscillation [14–16].
See [17] for an overview of limit cycles in thermo-optically driven
MEMS, as well as [18–23] for other works in the area.

A typical experimental setup is shown schematically in Fig. 1.
Devices are fabricated from a thin film stack to create an optically
thin resonator suspended over a thick substrate. A CW laser is
focused on the resonator,2 mounted in vacuum to reduce damp-
ing. The resonator-gap-substrate system sets up a Fabry–Pérot
interferometer whose absorbed signal depends on the device gap.
As the resonator moves through the interference field, it mod-
ulates the reflected signal which is measured in an AC-coupled
photodiode. This general setup has been used to excite and study
oscillations in cantilevers, clamped–clamped beams, disks and
domes [24,17,25].

Previous work [17,26] on modeling the dynamics of limit cycle
oscillations in optically driven MEMS resonators has assumed
small displacement and expanded the function describing the
interference field in a power series, losing the periodicity in the
process. In this work, we treat the case where displacement is not
small and show that a periodic interference field suggests the
coexistence of multiple stable limit cycles. To our knowledge, the
2 Though past work has used external HeNe lasers and photodiodes,

co-integration with wafer level vertical cavity surface emitting lasers (VCSELs)

and photodiodes would enable truly stand-alone sensors, and eliminate the need

for alignment or collimating optics.
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Fig. 1. Cross-sectional view of an interferometrically transduced clamped–

clamped MEMS beam. Inset is a plot of the laser energy absorbed as a function

of the centerline displacement (x) measured with respect to the undeflected

configuration. As the beam deflects, it changes the gap to substrate and modulates

the absorption. Thus the interferometer couples heating to displacement.

The absorption is periodic in l=2.

D. Blocher et al. / International Journal of Non-Linear Mechanics 52 (2013) 119–126120
coexistence of multiple stable limit cycles have not been predicted
or seen experimentally in the previous work on MEMS.3 Devices
exhibiting multiple stable limit cycles would allow for tuning
between distinct frequency bands. For example, in applications
such as GPS receivers narrow tuning within a band would be
required to overcome drift or process variation, and tuning
between bands would allow a single device to cover both L1
and L2 broadcast frequencies. On the other hand, extraneous
stable motions could be problematic if a device designed to
operate in one limit cycle was found to operate in a different
limit cycle with a different frequency and amplitude.

In the following sections, the resonators are described, the
equations of motion used to model them are derived and model
parameters are identified. Then continuation and direct integra-
tion results are presented and discussed. Since small displace-
ment is not assumed, approximate analytic methods (Lindstedt’s
method, harmonic balance) give poor predictions, thus no analy-
tic results are presented. Lastly, conclusions are drawn about the
properties of corresponding physical devices in which multiple
stable limit cycles would be possible.
2. Theoretical model

The equations that follow are applicable to any interferome-
trically driven MEMS device with a temperature dependent
stiffness and direct thermal–mechanical coupling, but here a
clamped–clamped beam is modeled to illustrate the phenom-
enon. A similar model has been used to describe the motion of
optically excited disks, dome oscillators and beams [24,17,27,28].
See [24,29] for a more detailed discussion. Although the devices
have spatially varying fields, first-mode vibration is assumed, and
the centerline displacement (x) as depicted in Fig. 1 is modeled as
a one degree-of-freedom oscillator. A quasi-static temperature
field is assumed, and the average temperature in the device (T) is
modeled using a lumped thermal model. No external forcing is
applied to the system. To begin with, we describe the mechanical
model (1).

Though membrane stress is neglected in linear beam theory, it
is an important non-linearity for high curvature deformations in
structures. For pre-buckled beams subject to out of plane loads,
the slope of a force vs. displacement curve increases with
displacement due to membrane stresses, a phenomenon called
‘‘hardening.’’ Membrane stress has been shown to come into an
3 It has been shown that first or second mode vibrations could be excited into

self-oscillation by varying the cavity length [16].
oscillator model of first mode vibration as a cubic stiffness ( ~bx3)
which is hardening ( ~b40) for pre-buckled beams [30] and soft-
ening ( ~bo0) for post-buckled beams [31]. As a result, a cubic
stiffness term is included to incorporate the effect of membrane
stiffness.

The temperature above ambient in the beam (T) leads to an
increase in compressive stress at the support needed to counter-
act thermal strain. It is known that the first mode frequency of a
clamped–clamped beam decreases monotonically as the com-
pression is increased until it reaches zero frequency at the
buckling load [32]. Thus the stiffness of the beam to out of plane
displacements is a decreasing function of temperature. In order to
account for the dependence of frequency on temperature the
linear spring stiffness is modeled as a decreasing function of
temperature: k¼ k0ð1� ~c1 TÞ, where the spring stiffness tempera-
ture coefficient ( ~c1 ) determines how strongly the frequency
depends on temperature. This recovers the theoretical resonant
frequency exactly for pre-buckled beams [32] and approximately
for post-buckled beams [33].

Finally, it has been observed that heating of cantilever beams
causes static deflection due to stress gradients at the anchor
points [34]. FEM modeling indicates that the same is true for
clamped–clamped beams [35]. To incorporate this direct change
in displacement due to temperature a term proportional to the
temperature ( ~c2 T) is included in the mechanical model which
shifts the equilibrium solution as the temperature increases.
The thermo-mechanical coupling coefficient ( ~c2 ) is the deflection
for a unit temperature change. Including a damping term, along
with the terms previously described and non-dimensionalizing,
gives the following mechanical model:

€zþ
_z

Q
þð1�c1TÞzþbz3 ¼ c2T, ð1Þ

where z is the centerline displacement scaled by the laser
wavelength (z¼ x=l), time is rescaled by the linear resonant
frequency (t¼ to0), overdots denote derivatives with respect to
non-dimensional time t, and the parameters ~b, ~c1 , ~c2 have been
transformed to the dimensionally appropriate b, c1, c2.

The resonator is assumed to heat up due to laser absorption
and cool down due to Newton’s law of cooling, giving the
following equation governing the average temperature in the
beam (T):

_T ¼�BTþHPabsorbedðzÞ, ð2Þ

where B is the cooling rate due to conduction, H is the inverse of
the lumped thermal mass and Pabsorbed(z) is the energy absorbed
due to interferometric heating. Once again, overdots represent
derivatives with respect to non-dimensional time t. Note that the
absorption function Pabsorbed(z) depends on the properties of the
interferometer for a given deflection (z) and is proportional to the
applied laser power. Pabsorbed(z) can be described numerically using
an optical model presented in [36]. The resulting function is
periodic with period l=2 in x (or 1=2 in z) and is approximated by

PabsorbedðzÞ ¼ P½aþg sin2
ð2pðz�zoÞÞ� ð3Þ

with fitting parameters a, g and zo. Eqs. (1)–(3) form a system of
two coupled ordinary differential equations and one algebraic
equation to model the first mode of vibration of a MEMS
resonator.

In [17,26], Eq. (3) was approximated by replacing the sine
function by the first two terms of its Taylor series. This permitted
an approximate analytic treatment using perturbations, but
limited the applicability of the results to small amplitudes of
vibration. In the present work this limitation is removed, and the
analytic treatment of [17,26] is replaced by numerical treatment
using the continuation (bifurcation) software AUTO [37,38]. The



Table 1
Material properties used in parameter estimation.

Material properties Si SiO2

Density ðkg=m3Þ 2420 2200

Poisson ratio 0.279 0.17

Young’s modulus [GPa] 130 70

CTE ðppm=KÞ 2.5 0.5

Thermal conductivity ðW=mnKÞ 170 1.38

Specific heat capacity ðJ=kgnKÞ 712 1120

Index of refraction 3:882�0:019i N/A
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result is a dynamical system which is richer in dynamical
phenomena (multiple limit cycles and associated bifurcations).
From a physical point of view, the reason for the increase in
complexity lies in the fact that as z increases, the absorption of
light energy varies periodically (i.e. sinusoidally) with z due to
interference. By replacing the sine function in Eq. (3) by a cubic
approximation, the analysis in [17,26] eliminated this aspect of
the physics, and with it much of the dynamical behavior.

In the next section, the parameter estimation process is
described and parameters are established for a 201 nm thick,
10 mm long clamped–clamped silicon beam with 400 nm gap to
substrate, subjected to 50 MPa of pre-compression.
Table 2
Estimated parameters used in continuation and

integration of model equations, for 201 nm thick,

10 mm long beams, subject to 50 MPa of pre-

compression.

Model parameters

Q 13,800

c1 4:75� 10�3
ðK�1
Þ

c2 1:37� 10�5
ðK�1
Þ

b 4.65

H 4410 ðK=WÞ

B 0.152

g 0.011

a 0.035

z0 0.18
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Fig. 2. AUTO generated bifurcation diagram of the system showing location and

stability of equilibrium solutions as a function of laser power (P). Limit cycle

branches emerging from Hopf bifurcations (H) are shown in Fig. 9.
3. Parameter estimation

Estimation of the physical, thermal and optical parameters is
done using a number of different analyses. The optical parameters
a, g and zo are least squares fit to the numerical results from the
model presented in [36]. Given the complex index of refraction of
the materials as well as the resonator thickness and gap to
substrate, the algorithm given in [36] solves Maxwell’s equations
to determine the percentage of laser energy absorbed in and
reflected from the resonator. The gap to substrate is varied to
account for deflection of the device, giving a result seen in Fig. 1.
For the 201 nm thick silicon device with 400 nm un-deflected gap
to substrate, we estimate aC0:035, gC0:011 and zoC0:18.

The mechanical parameters are fit as follows: first the devices
under test are driven at low amplitude in vacuum and their
resonance curve is measured. The quality factor (Q) is determined
by fitting the resonance curve to a Lorentzian and is estimated to
be Q¼13,800. Given the low damping, the natural frequency (o0)
is taken to be equal to the resonant frequency (wr¼9.96 MHz)
which is used to non-dimensionalize the equations. The spring
stiffness temperature coefficient (c1¼0.00475 K�1) is determined
by taking a Taylor series expansion of the frequency–compression
relation given in [32], using linear thermoelasticity to convert
between temperature above the ambient and compression.
The cubic stiffness ðb¼ 4:65Þ is estimated using an FEM analysis
in which a normal load of 0210 mN is applied at the center
of a clamped–clamped beam. The load–displacement curve is
least squares fit to F ¼ kzþbz3 using the appropriate non-
dimensionalization.

The thermal parameters are also fit using an FEM analysis. The
beam and a large volume of the surrounding substrate are
modeled in 3D. The temperature is assumed to be zero at the
outer boundary and a Heaviside unit flux is applied at the center
of the beam. The inverse lumped thermal mass (H) is related to
the slope of the temperature at time t¼0 ( _T 9t ¼ 0 ¼H) and the
cooling rate due to conduction (B) is related to the steady state
average temperature ðlimt-1TðtÞ ¼H=BÞ.

To determine c2, equivalent thermal stresses are calculated
from the steady state temperature field and applied to the
mechanical model. The normalized centerline deflection for unit
temperature rise is the thermal coupling coefficient (c2). See
Table 1 for a full list of material properties used for parameter
estimation and Table 2 for estimated model parameters.
4. Continuation results

The continuation tool AUTO 2000 [37,38] is used to examine
the structure of solutions to Eqs. (1)–(3). This software package is
commonly used in the bifurcation analysis of differential equa-
tions and algebraic systems. Using AUTO 2000 we track the
change in the equilibrium and periodic solutions as the laser
power is varied.

We begin with P¼0 which has known equilibrium solution
ðz¼ 0, _z ¼ 0, T ¼ 0Þ. This equilibrium solution is continued in P,
monitoring the eigenvalues of the Jacobian of the linearized
system for Hopf-bifurcations. For low laser power, there is a
unique stable equilibrium solution with small centerline displa-
cement. As the laser power is increased to PC18 mW, this
equilibrium solution loses stability in a Hopf bifurcation leading
to self-oscillation. As the power is increased further, the equili-
brium solution branch begins to lift up from zeq ¼ 0 and a second
branch of equilibrium solutions is born at PC168 mW in a fold of
equilibrium points. An equilibrium point along this branch is
computed numerically using a root finding method and then is
used as a starting point for continuation of the branch. See Fig. 2
for a plot of the equilibrium branches along with Hopf-bifurcation
points at which limit cycles are born. This behavior in the position
and number of equilibria is caused by asymmetric buckling in the
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model. Hopf bifurcations along the branches of equilibria alter the
usual buckling stability result – that the unbuckled state is
unstable and the buckled states are stable.

Next, we turn our attention to the limit cycle oscillations born
in Hopf bifurcations. The continuation is restarted at each Hopf
bifurcation and the emerging limit cycle is followed, allowing the
power P and frequency of oscillation o to vary. Following the limit
cycle branch born in the first Hopf bifurcation, we see a series of
folds of limit cycles in which stable and unstable limit cycles
coalesce or divide (see Fig. 3), in addition to regions of period
doubling which are discussed later. To display equilibrium points
and limit cycles on the same bifurcation diagram, the maximum
displacement attained during one cycle (zmax) is used as the
dependent variable for limit cycles. This measure includes the
amplitude plus a small mean value roughly equal to the displace-
ment of the equilibrium solution from which the motion was born.
Note that for a given laser power, the amplitudes of stable limit
cycles differ by roughly the period of the interferometer,
l=2� 316 nm. Thus the multiplicity of stable limit cycles is due
to periodicity in the interference field, and each higher amplitude
stable limit cycle shows motion between similar points in the
phase of the interference field, but includes more or less periods.
For example, if the lowest amplitude limit cycle shows motion
between one peak of absorption in the interference field and the
first subsequent peak in the interference field, then the second
lowest amplitude limit cycle shows motion between one peak of
the absorption in the interference field and the second subsequent
peak (see Fig. 1). See Fig. 4 for a phase portrait of the equilibrium
solution and limit cycles for P¼135 mW when a stable and
unstable limit cycle have just been born in a fold of limit cycles.

The period of oscillation along the first Hopf branch is depicted in
Fig. 5. Note that the limit cycle initially has non-dimensional period
of � 2p. As the laser power is increased two competing factors
influence the period of oscillation. The temperature dependence of
the linear stiffness causes the period to increase with temperature
and so the period increases with laser power for a given stable limit
cycle. At the same time, the cubic stiffness due to membrane
stresses causes the period to decrease with increasing amplitude
of oscillation. Thus at a fixed laser power, high amplitude limit
cycles have lower periods. Competition between different frequency
tuning mechanisms has been noted elsewhere [24].

It is numerically observed that as damping is increased, high
amplitude limit cycles become unattainable at low laser power.
Increased damping flattens out these curves in the first Hopf
branch, reducing the number of stable limit cycles accessible at a
given laser power (see Fig. 6). For sufficiently high damping, the
Hopf bifurcation becomes supercritical and a unique stable limit
cycle exists in this branch for P4PHopf .

Although the results presented here are for 10 mm beams
subject to 50 MPa of pre-compression, we have estimated para-
meters for beams of length 7, 10, 15 and 20 mm with varying
amounts of pre-compression. Continuation of the model equations
using these parameters shows that multiplicity of stable limit
cycles in the first Hopf branch is a robust feature of the model for
lightly damped pre-buckled beams and occurs at laser powers
which are realizable in experimental setups. In the following
section, we describe the rest of the bifurcation structure for
10 mm beams, including bifurcations occurring at laser powers
above the thermal buckling power. We also describe the jump
phenomenon associated with the destruction of stable limit cycles.
5. Complete bifurcation diagram

In this section we build up the complete picture of the
bifurcation structure, by describing each additional bifurcation
separately. To begin with, we return to the regions of period
doubling along the first Hopf branch (see Fig. 3). Here we see that
as we increase the laser power, our original limit cycle goes
unstable and a new stable limit cycle is born with twice the
period of the original. Continuing this new limit cycle, there is a
cascade of period doubling where this process continues with
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increasing frequency as we increase the laser power (see Fig. 7).
Direct numerical integration is used to verify the existence of
these special solutions. Period doubling is a well-known route to
chaos, and chaos has been experimentally observed in the forced
vibration of buckled beams [40], thus it is likely that chaos exists
in the model in this range of laser powers.

For all the parameter sets studied, there were additional Hopf
bifurcations from the equilibrium branches for laser powers
above the buckling power. Following the limit cycle emerging
from the second Hopf bifurcation, we see a fold of limit cycles and
then the cycle coalesces with an unstable equilibrium point in a
homoclinic bifurcation. See Fig. 8 for a bifurcation diagram of this
region and a phase portrait just before the homoclinic bifurcation.
Accounting for the limit cycles born in the other Hopf bifurcations
gives a complete bifurcation diagram shown in Fig. 9.
6. Jump phenomenon

Finally direct integration is used to illustrate the hysteresis
possible in the system. Although the bifurcation structure illustrates
the types of stable and unstable behaviors possible in the model, it
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does not tell us which behaviors would be seen experimentally as we
change the laser power – a question dealing with the basins of
attraction for different stable behaviors. We explore these basins
using direct integration. For each Hopf bifurcation or fold of limit
cycles where an equilibrium solution loses stability or stable motion
disappears, respectively, we use a point along that motion as an initial
condition, increase or decrease the laser power slightly beyond the
bifurcation and integrate until the trajectory settles onto a new steady
behavior. See Fig. 10 for a plot of the jump phenomenon. As we quasi-
statically increase the laser power from zero beyond the first Hopf
bifurcation at P� 18 mW, the beam begins to oscillate in the lowest
amplitude limit cycle. Once oscillating, we have to decrease the
power below the lowest fold of limit cycles at P� 4:5 mW in order to
jump back onto the stable equilibrium solution. At each fold of limit
cycles along the first Hopf branch, jumps occur up to the next highest
amplitude stable limit cycle when increasing the laser power, or
down to the next lowest amplitude stable limit cycle when decreas-
ing the laser power. Entering the region of period doubling, stable
n-cycles give rise to stable 2n-cycles and so there are no jumps.
However, it is unclear if stable periodic motions exist over the entire
interval or if there are regions of chaos.
7. Comparison with previous work

Previous work [17,26] on modeling limit cycle oscillations in
optically driven MEMS resonators has assumed small displacement,
and expanded the optical Eq. (3) in a power series losing the
periodicity in the process, but making the equations amenable to
approximate analytic methods. This small displacement approxima-
tion predicts a single Hopf bifurcation, either subcritical or super-
critical, leading to a stable/unstable pair or single stable limit cycle,
respectively. Thus series expanding the optical equation suppresses
secondary Hopf bifurcations and folds of limit cycles. For compar-
ison, a bifurcation diagram for Eqs. (1) and (2) is given in Fig. 11,
where the parameters from Table 2 are used but Eq. (3) has been
Taylor expanded in z, keeping the first two terms.
8. Conclusion

A MEMS device illuminated within an interference field will
self-oscillate due to feedback between absorption and displace-
ment. Models in the form of coupled differential equations have
been used to describe the dynamics of such vibrations
[17,20,41,24,26–28,15], and analyzed under the assumption of
small displacement. In this work, we show that if we relax that
assumption then multiple stable limit cycles are possible due to
the periodicity of the interference field. The frequency of these
oscillations is shown to depend sensitively on the laser power.
Other complex motions exist for high laser power.

The analysis presented is applicable to any interferometrically
driven MEMS device with a temperature dependent stiffness and
static deflection, though clamped–clamped beams were chosen to
analyze here due to their relatively simple structure. Physical
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where Eq. (3) has been expanded in a first-order Taylor series. Buckling has not

been suppressed, but secondary Hopf bifurcations and folds of limit cycles have

been lost. The approximate equations give a similar value for PHopf but not of the

limit cycle amplitude or equilibrium solution.
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devices exhibiting multiple stable limit cycles due to the phenom-
enon presented are expected to share some common characteristics:
(a)
 The need for a temperature dependent stiffness and deflection
suggests the use of devices that can generate tension across
the device, i.e. clamped–clamped beams or domes rather than
cantilevers or disks.
(b)
 Damping has been shown to decrease the number of stable
limit cycles accessible at a given power, thus devices would
need to be high-Q.
(c)
 Stable limit cycles are seen to be separated in amplitude by
DxCl=2. To permit n-stable limit cycles, devices must have an
initial gap-to-substrate of greater than nl=2 in order to prevent
contact with the substrate. Excitation with a HeNe laser would
require a gap of \1 mm in order to see three limit cycles.
Although rigorously derived and analyzed, the results are
expected only to present a qualitative picture of the dynamics
of interferometrically driven MEMS devices, i.e. that multiple
stable periodic motions are to be expected in large clamped–
clamped beams and domes in low damping environments. Note
that these motions are seen for low laser powers (below the
buckling temperature). Above the buckling temperature, the
frequency–compression relationship changes and the model
may lose validity. A description of the bifurcation structure in
this region of high laser power (P4168 mW for the parameters
used here) is presented and represents simply an analysis of the
model, which suggests the possibility of period doubling, chaos
and secondary Hopf bifurcations in the physical system.
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