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Entrainment of Micromechanical Limit Cycle
Oscillators in the Presence of Frequency Instability

David B. Blocher, Alan T. Zehnder, and Richard H. Rand

Abstract—The nonlinear dynamics of micromechanical oscil-
lators are explored experimentally. Devices consist of singly and
doubly supported Si beams, 200 nm thick and 35 μm long.
When illuminated within a laser interference field, devices self-
oscillate in their first bending mode due to feedback between laser
heating and device displacement. Compressive prestress buckles
doubly supported beams leading to a strong amplitude–frequency
relationship. Significant frequency instability is seen in doubly
supported devices. Self-resonant beams are also driven inertially
with varying drive amplitude and frequency. Regions of primary,
sub-, and superharmonic entrainment are measured. Statistics
of primary entrainment are measured for low drive amplitudes,
where the effects of frequency instability are measurable. Sub-
and superharmonic entrainment are not seen in singly supported
beams. A simple model is built to explain why high-order
entrainment is seen only in doubly supported beams. Its analysis
suggests that the strong amplitude–frequency relationship in
doubly supported beams enables hysteresis, wide regions of
primary entrainment, and high orders of sub- and superharmonic
entrainment. [2012-0225]

Index Terms—Limit cycles, micromechanical devices, optical
resonators, oscillators, thermomechanical processes.

I. Introduction

IN RESONANT sensing applications, the frequency of
oscillation of a microelectromechanical systems (MEMS)

device carries information about the quantity of interest.
Devices have been built to transduce a number of quanti-
ties that interact with their frequency, such as temperature
[1], pressure [2], [3], or bound-mass [4]–[7]. To obtain pe-
riodic motion, devices may be driven electrostatically [8],
piezoelectrically [9], magnetically [10], or thermo-optically
[11]–[14] using an externally modulated drive. Such designs
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require an external highly stable frequency source. Resonant
MEMS have also been fabricated within active-electrical [15],
active-optical [16], or natural-optical [17]–[23] feedback loops
to demonstrate self-oscillation. In such systems, DC electricity
or unmodulated light is converted into harmonic power, mak-
ing them particularly useful for MEMS clocks [24] or filters
[25], if frequency instability is sufficiently low.

For MEMS resonators,1 illuminated within an optical inter-
ference field, coupling between displacement and either photo-
thermal stress [17]–[20], [22], [23], [26]–[29], electric charge
[21], or light pressure [30]–[36] may lead to a natural closed
feedback loop. The sign of the feedback gain is determined
by the length of the interference cavity or wavelength of
the light used for illumination. For negative feedback gain,
damping of thermal vibrations occurs that decreases the quality
factor and is termed cavity- or self-cooling [28], [32], [33].
For positive feedback gain, the back-action reduces damp-
ing resulting in a higher quality factor [37]. In this case,
when the illumination power is increased beyond a threshold
value, PHopf , the damping becomes negative, destabilizing the
equilibrium configuration and leading to large amplitude self-
sustained vibrations termed limit cycle oscillations (LCOs).
Such devices have drawn attention due to applications in
resonant sensing [15] and detection of gravity waves [38].

Since LCOs exhibit periodic motion in the absence of
any external periodic forcing, their forced response is quite
different than that of a resonator. When a LCO, operating
with frequency fLCO, is externally driven at a separate drive
frequency, fD, and drive amplitude, AD, the type of response
depends on the strength of forcing and the level of frequency
detuning [39]–[41]. For hard forcing near the limit cycle
frequency, the limit cycle will be entrained to respond at fD

whereas for soft forcing away from the limit cycle frequency,
both fD, and fLCO will be seen in the frequency of the
response. Thus, the frequency of response depends on the
amplitude of the forcing. Super- and subharmonic entrainment
may also occur when the fD:fLCO ratio is near 1:n and n:1,
respectively. In this case, for sufficiently hard forcing near
a super- or subharmonic resonance, the response frequency
will be shifted to the nearest integer fraction or multiple of
the drive frequency, respectively [39]–[42]. Hyugens originally

1We use the term oscillator to refer to a device that exhibits sustained
periodic motion, and resonator to refer to a device characterized by damped
periodic motion. In addition, we use the term natural feedback to refer to
feedback due to intrinsic device physics, and active feedback to refer to
feedback due to external electronics.
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discovered primary-entrainment2 in the 1600s while studying
pendula clocks. Mathematical analyses of LCOs themselves
were later developed by Van der Pol [43], who also discovered
higher order entrainment while studying relaxation oscillations
in electrical circuits [42].

Models of primary entrainment typically result in sharply
defined V-shaped regions of entrainment in the fD − AD

parameter space emanating from (fLCO, 0) [39]–[41]. In this
picture, for a (fD, AD) inside the V, the limit cycle is entrained,
if outside the V the limit cycle is not entrained. In addition, no
matter how small the drive amplitude, AD, a drive frequency
fD sufficiently close to fLCO will guarantee entrainment. Prior
modeling and experimental work on LCOs in MEMS has
illustrated hysteresis in the region of entrainment [44]–[47], a
tilt toward higher frequency of primary entrainment at higher
drive amplitudes in amplitude-hardening limit cycles [45], and
explored the regions of subharmonic entrainment in a force
relaxation oscillator [48].

Natural limit cycles were first demonstrated in a MEMS
device by Langdon and Dowe [17]. Zalalutdinov et al. [44].
later demonstrated the use of 1:1 and 2:1 entrainment to reduce
the frequency instability of a LCO to that of a highly stable
external drive. Inertial drive was used to obtain 1:1 entrainment
and 2:1 entrainment was obtained by amplitude modulation of
the laser power. Feng et al. [9]. demonstrated 1:2 entrainment
in mechanically-coupled cantilevers driven piezoelectrically.

Extensive work exists on the related phenomena of sub-
harmonic and superharmonic resonance, where a resonator
(i.e., not self-oscillating) shows a large amplitude response
when driven at a frequency near a multiple or submultiple
of its natural frequency. Unlike the case of entrainment of
an LCO, the response frequency does not depend on the
drive amplitude for such resonances. Shim et al. demonstrated
superharmonic resonance up to 1:7 in addition to other reso-
nances in mechanically-coupled MEMS beams [10].

Finally, if periodic forcing modulates a system parameter
(such as the stiffness), parametric resonance may occur where
the resonator response amplitude is a discontinuous function
of the drive frequency [41], [49]. This effect is most prominent
for forcing near twice the natural frequency, and the resulting
separation in drive and detection frequencies has been used to
prevent capacitive coupling in RF electronics [50].

While this and past experimental work [44] uses an external
stable frequency source to reduce the frequency instability of
the LCO, recent theoretical work has focused on increasing
frequency precision [51] or reducing frequency instability via
coupling of multiple oscillators [52]. As such, experimental
work on entrainment of a noisy LCO via a stable external
drive is one step toward on-chip coupling of multiple noisy
LCOs. Though our work makes use of natural optical feedback
to obtain self-oscillation, it is equally applicable to oscillators
using active optical [53] or electronic feedback [15].

We show experimentally that for a noisy LCO, entrainment
is an inherently statistical phenomenon, and hard forcing is
required to get persistent locking. This result is in contrast

2The term primary is used to denote 1:1 entrainment as distinct from higher
order sub- or superharmonic entrainment.

Fig. 1. Microscope image of a 35 μm doubly supported device. Overlayed is
a plot of the out-plane displacement measured using optical profilometry. The
bare substrate appears brown, while the beam and undercut support appear
orange. Singly supported devices (not pictured) are free on one end.

to the traditional analysis of sharply defined V-shaped regions
of entrainment. In addition, experimental data show that for
doubly and singly supported beams of the same length, the size
of the region of primary entrainment and the order of sub-
and superharmonic entrainment attainable are dramatically
different. Modeling suggests that this difference may be caused
by the differing level of displacement nonlinearity in singly
and doubly supported beams.

In the following sections, the fabrication and characteriza-
tion of devices tested is described, as are the experimental
setup and procedures. Then, experimental results are presented
and discussed, followed by a review of prior modeling work
and an extension of that work to the current experimental data.
This paper focuses on the juxtaposition of devices with and
without amplitude–frequency relationships and the affect of
frequency instability on entrainment.

II. Setup and Procedure

Devices are fabricated out of single crystal silicon using
a silicon-on-insulator (SOI) process. Singly and doubly sup-
ported beams, 2μm wide and 7–40 μm long, are patterned
using photolithography and defined with dry etching. Beams
are aligned along the crystal symmetry planes of Si in order
to avoid bending–twisting coupling [54]. Devices are released
with a wet etch and critical point drying is used to avoid
stiction. Final device thickness is measured to be 201 nm.
SEM imaging and optical profilometry indicate that doubly
supported beams, 15 μm and longer, are buckled up due
to residual compressive stress in the device layer. In doubly
supported beams, midplane stretching [55] leads to amplitude-
hardening in prebuckled beams [56] due to a nonlinear load–
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Fig. 2. Diagram of experimental setup. The gap between the beam and substrate below forms a Fabry–Pérot interferometer. Deflection of the beam x changes
the fraction of light absorbed, leading to self-oscillation in the first bending mode when the laser power is higher than a threshold value, Pcrit. Modulation of
the reflected light is measured in a high-speed photodiode and used to transduce motion. Beams may also be driven inertially through the piezoshaker.

displacement curve, and amplitude-softening in postbuckled
beams [57] due to symmetry breaking. The following discus-
sion and the data presented here are for 35 μm long singly and
doubly supported beams. This length of beams was selected
for the low PHopf value in doubly supported beams, allowing
us to study illumination at P >> PHopf .

Devices are indium bonded to a piezoelectric disk, used
to provide inertial drive, and loaded into a high vacuum
chamber evacuated to 10−7 mbar to effectively eliminate
viscous damping. A continuous wave HeNe laser is focused
to a ∼ 5 μm diameter spot on the devices using a microscope,
and interferometric drive and detection is used to induce LCOs
and transduce their motion (see Fig. 2). Further details can be
found in [58]. Singly supported beams are illuminated near
their tip and doubly supported beams at their midline.

The beams are observed to spontaneously transition into
LCO at their first mode frequency when the laser power
on sample is increased beyond Pcrit = 75 μW for doubly
supported beams and Pcrit = 480 μW for singly supported
beams, respectively. Further increase in the laser power in-
creases the amplitude of oscillation. The doubly supported
beams are seen to be amplitude-softening: with the frequency
of oscillation decreasing from 1.93 MHz at the minimum
detectable laser power down to 1.68 MHz at 1785 μW on
sample. In addition, a high level of frequency instability is
observed in doubly supported beams with a sweep-to-sweep
deviation in frequency of �f

f
= 4×10−3 measured at 1050 μW

with τ = 161 ms sweep time. Singly supported beams are
seen to be highly linear and stable, with frequency detuning
of only −0.023% as the amplitude varies over three orders
of magnitude, and a frequency deviation of �f

f
= 3 × 10−5

measured at 700 μW. See the insets of Figs. 6 and 9 for
the measured amplitude–frequency relationships in doubly and
singly supported beams, respectively—the curve describing
this relationship is termed the backbone curve [41].

To study entrainment, the laser power on sample is increased
beyond Pcrit to a fixed power so that the devices exhibit LCO
at fixed Frequency, fLCO. Then, the self-oscillating devices

Fig. 3. Sample data showing measured region of 1:1 entrainment using
filtered-sweeps. Upward sweep is in red, and downward sweep in black. Note
the logarithmic y-scale. Amplitude of motion is not proportional to the return
signal due to nonlinearities in the detection scheme. Thus, the amplitude of
motion cannot be inferred from spectral data alone. See [59] for a description
of the methodology used to obtain calibrated displacement data.

are driven inertially with the piezoelectric disk at a separate
drive frequency, fD. Thus, the unmodulated laser creates a
limit cycle and the periodic inertial drive is used to entrain
it. Entrainment is measured in terms of either frequency-
matching or phase locking. The first method employed, termed
filtered-sweep, uses the spectrum analyzer as both the source
for the drive signal and the instrument for measuring the fre-
quency content of the motion. The spectrum analyzer outputs a
swept sine wave that is fed through a high-frequency amplifier
and applied to the piezoelectric drive disk. The peak-to-peak
voltage across the piezo is recorded and is used as a measure
of the drive amplitude, AD. The response signal from the
photodiode is input into the spectrum analyzer and filtered
at the drive frequency (see Fig. 2). When the limit cycle
is entrained, the response and drive frequencies match, the
response signal passes through the filter, and a large amplitude
response is measured. When entrainment is lost, the response
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frequency does not match the drive frequency and is filtered
out, leading to a low amplitude signal. Thus, the measured
response is a plateau whose endpoints show the frequency at
which entrainment begins and ends (see Fig. 3): note that the
region of entrainment depends on the direction of sweep [44],
[45]. The sweep rate is kept low enough (≤ 0.2%/s) that the
frequency may be assumed to change quasistatically, and the
finite width bandpass filter limits measurements to regions of
entrainment wider than 2 kHz. This method is precise and
automatable, allowing for measurement of the statistics of
entrainment for weak forcing. Measured deviation in the drive
signal frequency is less than �f

f
= 5×10−7, but total harmonic

distortion up to 10% (power ratio) is seen at the highest drive
amplitude due to limitations of the RF amplifier.

For sub- and superharmonic entrainment, the response is
at an integer multiple or fraction of the drive frequency, and
an unfiltered-sweep is used to measure entrainment in terms
of phase locking (see Fig. 4). A function generator supplies
the swept sine drive signal and a frequency counter is used
to accurately track its frequency. Drive and response signal
are viewed on an oscilloscope: when entrained, the signals
are phase locked and the response will appear coherent when
triggering on the drive; when entrainment is lost, the response
phase will drift with respect to the drive and appear as high
amplitude noise. Using this method, frequency instability of
the swept sine from the function generator limits measure-
ments to regions of entrainment wider than ∼ 0.5 kHz. Note
that this width is an order of magnitude smaller than the
measured frequency instability of the limit cycle itself.

III. Results

At low drive amplitude, self-oscillating doubly supported
beams were seen to jump in and out of entrainment for a
fixed drive frequency and amplitude. To study the statistics of
entrainment, we measured the region of entrainment for 100
successive sweeps using a filtered sweep with sweep rate of
1kHz/s. The laser power is set to P = 1050 μW on sample,
giving mean frequency fLCO = 1.63 MHz. The points at which
locking starts and stops vary from sweep to sweep, and on a
given sweep the oscillator moves in and out of entrainment
(i.e., multiple plateaus). Statistics of entrainment are given in
Fig. 5. For the lowest drive amplitude plotted, AD = 0.078 V ,
there is no drive frequency for which the oscillator is entrained
on every sweep. Note that the range of frequencies, for which
statistics are important, is orders of magnitude larger than the
measured frequency deviation of �f

f
= 4 × 10−3. As the drive

amplitude is increased, the width of the region of entrainment
grows and the boundaries become sharp. For AD = 0.622 V ,
the statistical nature of entrainment has become insignificant.

For a larger range of forcing amplitudes, the region of 1:1
entrainment was measured with laser power on sample of 105,
525, and 1050 μW. See Fig. 6 for results—points plotted are
the average of two unfiltered sweeps. It has been shown that
an amplitude-hardening limit cycle oscillator is constrained to
the backbone curve when entrained, giving asymmetry in the
region of entrainment with a right tilted V shape [44], [45].
Here, we see that the same is true for amplitude-softening limit

Fig. 4. Oscilloscope traces showing 1:3, 1:1, and 3:1 entrainment. Signal
from the photodiode (response) is plotted along with the input to the
piezoshaker (drive). Note that for 1:n entrainment, the response completes
exactly n cycles in the time the drive goes through one cycle. The flattening
of the trough in the response is due to the motion of the beam through a peak
in the optical interference field, moving power in the reflected signal into 2f
and higher harmonics. For n:1 subharmonic entrainment, at given phase in
the drive the limit cycle is at one of n different phases, thus we trigger on
the return signal. As a result, the drive signal appears noisy due to noise in
the (triggered) response signal. (a) 1:3 Superharmonic entrainment. (b) 1:1
Primary entrainment. (c) 3:1 Subharmonic entrainment.

cycle oscillators with the direction of tilt switched. In addition,
by selecting our operating point, we can tune the level of
asymmetry in the region of entrainment. Examining the data
for P = 105 μW, we see that when sweeping up in frequency,
locking does not occur until fD is very close to fLCO, and
then is quickly lost. When sweeping down, locking persists
as the limit cycle is detuned by −15%. Changing the laser
power changes the location of the oscillator on the backbone
curve, with higher laser powers yielding lower frequencies and
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Fig. 5. Measured statistics of 1:1 entrainment for a 35 μm doubly supported beam with P = 1050 μW on sample. The drive amplitude (AD) was held fixed,
as the drive frequency (fD) was repeatedly swept between 90% and 110% of the limit cycle frequency. Plotted is the percentage of sweeps during which the
limit cycle was entrained at a given frequency of drive. Drive frequency is normalized by the undriven limit cycle frequency, fLCO, and lines show data for
various drive amplitudes. (a) Sweep up. (b) Sweep down.

a locally flat amplitude–frequency relationship. Higher up the
backbone curve, the region of entrainment still shows hys-
teresis but is less asymmetric. This effect has been previously
noted in a research letter [44], though data were not presented.

Initial results showed that the order of sub- or superhar-
monic entrainment attainable for the device did not depend on
the laser power used and so these regions were measured at the
single laser power of P = 1050 μW. See Figs. 7 and 8 for re-
sults. Superharmonic entrainment of order 1:7 is only observed
in the doubly supported beam at the highest achievable drive
level, and 1:8 entrainment is not seen. Care must be taken to
ensure that we truly measure 1:n superharmonic entrainment
via the drive signal at fD and not primary entrainment via the
small harmonic distortion at n × fD. Our measured regions
of superharmonic entrainment are significantly wider than
the measured region of 1:1 entrainment with drive amplitude
scaled by harmonic distortion, ruling out the latter scenario.
Subharmonic entrainment of order 3:1 was seen for a range
of forcing levels, while 4:1 or higher was not seen. The
largest region of entrainment at a given forcing level was
seen for 1:1 forcing, where energy transfer is most efficient.
Finally, we note that superharmonic entrainment is seen to
occur at a frequency slightly less than (1/n)fLCO. Amplitude-
hardening devices have previously been shown to entrain
at higher frequencies as the drive amplitude increases [45].
Thus, we believe that the measured frequency shift to lower
frequencies for superharmonic entrainment in our device is
related to the amplitude-softening of the device combined with
a frequency-dependent piezoshaker having greater output at
lower frequencies. However, more work is needed to determine
the exact cause.

Primary entrainment was also observed in 35 μm singly
supported beams over a narrow range of frequencies, and is
shown in Fig. 9 along with a plot of the amplitude–frequency
relationship. Due to their relative compliance and low resonant

frequency, the drive amplitude for singly supported beams was
limited by the 400-nm gap between device and substrate rather
than harmonic distortion. However, data are plotted for the
same range of forcing levels as the doubly supported beams.
Note that the width of the entrainment region at a given forcing
level is orders of magnitude lower in the singly supported
beams (see Fig. 9) than the doubly supported beams (see
Fig. 6). Direct comparison of drive amplitudes between singly
and doubly supported beams is tenuous due to the difference in
resonant frequencies, combined with the frequency-dependent
mechanical and electrical impedance of the piezodisk and drive
electronics, respectively. However, sub- and superharmonic
entrainment were not seen for any forcing amplitude in singly
supported devices.

IV. Modeling

Prior analytic work on entrainment of optically transduced
MEMS limit cycle oscillators has been performed by Zala-
lutdinov et al. [44] and Pandey et al. [45], who examined
entrainment via inertial drive and laser power modulation.
Experimental results for a disk-shaped oscillator [44] were
fit using a 10-parameter model derived in [18]. First mode
vibration was assumed, and a lumped parameter thermal
model governing the average temperature, T , was coupled
to a nonlinear oscillator model governing the displacement at
the point of illumination, z. The model exhibited amplitude-
hardening and parametric forcing via external modulation of
the laser power in addition to direct inertial forcing.

Integration of the model equations for 1:1 inertial forcing
matched experimental data [45], with a right tilted V-shaped
region, significant asymmetric hysteresis, and a corner in the
graph of ffree-up. These qualities were attributed to amplitude-
hardening of the limit cycle. Further simulations indicated that
a parametric term was required to obtain 2:1 entrainment via
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Fig. 6. Measured region of 1:1 entrainment in a 35 μm doubly supported beam as a function of laser power on sample. AD is held fixed, while fD is
swept up and down quasi-statically. Plotted are the points at which entrainment begins (closed triangle) and ends (open triangle), for a given drive amplitude
and direction of sweep. Note that the region of entrainment depends on the direction of sweep. (Inset) Data showing the amplitude–frequency relationship,
i.e., backbone curve, measured by continuously increasing the laser power beyond the Hopf, with no external forcing. For P = 1050 μW, the frequency of
oscillation is 1.63 MHz (not shown).
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Fig. 7. Measured regions of subharmonic entrainment in a 35 μm doubly
supported beam. The drive frequency fD is normalized by the undriven limit
cycle frequency fLCO.

laser modulation, and that increasing the CW laser power
shifted the region of 1:1 entrainment under inertial forcing,
but did not change the level of hysteresis or asymmetry of the
region. A perturbation analysis of the same model equations
was performed in [46].

In [47], a simpler forced Mathieu-van der Pol-Duffing
model was considered, which reproduces the essential features
of experimental data in [44]: LCOs (van der Pol term), an
amplitude–frequency relationship (Duffing term), and paramet-
ric forcing (Mathieu term). Perturbation theory was used to
derive the slow flow equations assuming no parametric forcing,
and numerical continuation of the slow flow for an amplitude-
hardening limit cycle indicated partial hysteresis, specifically
a distinction between ffree-up and flock-down but not between
ffree-down and ffree-up.

In this paper, we attempt to explain the measured difference
in entrainment regions between singly and doubly supported
beams, specifically that doubly supported beams display sig-
nificant hysteresis and asymmetry in a wide region of 1:1
entrainment and support sub- and superharmonic entrainment.
Model equations are not intended to accurately reproduce
all experimental data, but rather to explain a specific aspect
of it. The qualitative features of the experiments that our
model reproduces are an LCO (van der Pol term), and a
stiffness nonlinearity (Duffing term). We assume first mode
vibration, and model our system as a forced van der Pol-
Duffing oscillator. Letting the centerline displacement (or tip
deflection) be x, we get the following differential equation:

ẍ + x − c
(
1 − x2

)
ẋ + βx3 = AD cos (2πfDt) (1)

where AD and fD are the drive amplitude and frequency. The
van der Pol term, c

(
1−x2

)
produces a limit cycle of amplitude

2 [41], with c determining its shape and strength. The Duffing
term, βx3, leads to an amplitude–frequency relationship in the
undamped system (c = 0), with the magnitude of the nonlinear
stiffness, β, determining the strength of the relationship. The
Duffing term also leads to an anharmonic response for large

amplitude or large nonlinearity. Units in (1) are as follows:
1) time is nondimensionalized such that the device has linear
resonant frequency of 1; and 2) displacement is nondimension-
alized by the measured limit cycle amplitude (discussed later).
Model equations are a simplification of those presented in
[47]. For doubly supported beams that support tension across
their length, the linear stiffness is temperature dependent,
thus, forcing via laser modulation will parametrically drive
the device. When forcing is inertial (as in our case), out-of-
plane displacement will modulate the absorptive heating, and
thus the stiffness, however, this is a second-order effect. Thus,
we drop the parametric term from [47].

In order to determine c, we set β and AD = 0 and integrate
(1) to steady state. For c � 1, a strong limit cycle exists with
anharmonic shape and two-time scale motion (i.e., relaxation
oscillation). For c � 1, the limit cycle is weak but sinusoidal.
Low-amplitude LCOs in our devices are seen to be nearly
sinusoidal with frequency-tuning and shape of the motion
coming from the nonlinear stiffness. Thus, we select c = 1/100,
whereby the limit cycle is sinusoidal to within 0.2% for β = 0.

To determine the nonlinear stiffness, β, we set c = 0 and
least squares fit the analytic approximation for the backbone
curve of a Duffing oscillator [41] to the measured data (inset
Fig. 6). We select units of x to be (x) = 50 nm so that the
model limit cycle amplitude of 2 corresponds to an amplitude
of 100 nm in the physical device, giving βeff = −0.032 1

(x)2

for doubly supported beams. The nonlinear stiffness for
singly supported beams is effectively zero (see the measured
amplitude–frequency relationship in Fig. 9).

To examine the effects of stiffness nonlinearity on the
regions of primary, sub-, and superharmonic entrainment, (1)
is integrated for a range nonlinearities, β = βeff , 0.5×βeff and
0.1 × βeff , between that of our doubly supported beams (βeff )
and singly supported beams (β = 0). Results for β = 0.1×βeff

were only slightly different from those for β = 0 and thus
the former was chosen as a lower bound. For a given drive
amplitude, AD, we step the angular drive frequency, 2πfD, in
increments of 1 × 10−4 − 1 × 10−3, integrate to steady state,
and seed the initial condition of the next frequency step using
the solution for the current step. The steady state solution is
sampled 213–218 times over 28–212 periods, and the Fourier
transform taken: when entrained, the spectral content of the
response shows peaks at fD and its harmonics; when not
entrained, sidebands are seen in the response in addition to
peaks at fD and fLCO.

Integration results for 1:1 entrainment are plotted in Fig. 10.
For AD = 0.2 the width of the region of entrainment with
β = βeff is approximately equal to the maximum width
measured experimentally in our doubly supported devices;
thus, we restrict forcing levels in the model to AD ≤ 0.2.
For AD ≥ 0.25 with β = βeff , the limit cycle is seen to be
rendered unstable at certain detunings and trajectories escape
to infinity—an unphysical feature of the model. Note that
reducing β shrinks the region of primary entrainment for a
given forcing level. For sufficiently small β, the nonlinear
stiffness has negligible effect on the region of 1:1 entrainment,
which reduces to that of the van der Pol model alone. While
hysteresis is present in the model for high β, we note that:
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Fig. 8. Measured regions of superharmonic entrainment in a 35 μm doubly supported beam. The drive frequency fD is normalized by the undriven limit cycle
frequency fLCO. A logarithmic frequency scaling is used in order to display all measured regions on a single plot. Note that 1:n superharmonic entrainment
occurs at a frequency less than (1/n)fLCO.

Fig. 9. Measured region of 1:1 entrainment in a 35 μm singly supported beam. (Inset) Data showing the measured amplitude–frequency relationship.

it is not present to the same extent seen in experimental
results; the model does not appear to distinguish between
flock−up and ffree-down until the forcing reaches a critical level;
and numerical integration shows a slight distinction between
flock-down and ffree-up for hard forcing with strong nonlinear
stiffness.

We also examine the region of sub- and superharmonic
entrainment in the model for the maximum forcing level
of AD = 0.2. Frequency steps were scaled by order of
entrainment such that the minimum step measured at the
response frequency was 5×10−5×fLCO. Using the two variable
expansion perturbation method, the cubic Duffing nonlinearity
only produces resonant terms for 1:3 and 3:1 entrainment. Sub-

or superharmonic entrainment at other orders were not de-
tected in this simple model using direct numerical integration
with the minimum frequency step and maximum forcing level.
See Table I for results—note that the width of the sub- and
superharmonic entrainment regions are a strong function of
the level of stiffness nonlinearity. Significant hysteresis was
not seen.

While use of a cubic stiffness term, βx3, to produce an
amplitude–frequency relationship is traditional, it has limita-
tions.3 A cubic term can be amplitude-softening or hardening

3The use of the van der Pol term to create a limit cycle in the dynamics
is also common, though this formulation is not unique. Further work might
explore the impact this choice has on model predictions.
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Fig. 10. Predicted region of 1:1 entrainment for 1 as the nonlinear stiffness β is decreased. Results are calculated using direct numerical integration. Results
for β = 0 (not shown) were found to be similar to those for β = 0.1 × βeff .

TABLE I

Regions of 1:3, 1:1, and 3:1 Entrainment in Cubically Nonlinear Model (1) as a Function of Nonlinear Stiffness, β, for Fixed

Forcing Level, AD = 0.2. Drive Frequencies Are Normalized by fLCO

βeff 0.5×βeff 0.1 ×βeff

1:3 Region [2.9750–3.0139] [2.9946–3.0054] [2.9997–3.0007]
1:1 Region [0.84781–1.0930] [ 0.89441–1.0797] [0.92996–1.0691]
3:1 Region [0.33278–0.33308] N/A N/A

TABLE II

Regions of Sub- and Superharmonic Entrainment in Model With Quadratic and Cubic Nonlinearities (2) for Fixed Forcing Level,

AD = 0.2 (Drive Frequencies are Normalized by fLCO )

Order of Entrainment 1:3 1:2 2:1 3:1
Region [2.9967–3.0039] [1.9360–2.0610] [0.489750–0.508500] [0.332800–0.333767]

depending on the sign of β and preserves the (odd) symmetry.
However, for a beam in the buckled state, the symmetry
is broken due to the presence of the (unstable) unbuckled
state and other (stable) buckled state to one side of the
configuration. This produces a quadratic stiffness [57], αx2,
which is always softening in addition to the cubic stiffness
[60], [61], and produces even harmonics in the motion for
large amplitude. Competition/collaboration between quadratic
softening and cubic hardening/softening yields an equivalent

(cubic) nonlinearity β −
(

10
9ω2

o

)
α2. Assuming that half of the

amplitude-softening comes from the quadratic nonlinearity and
half from the cubic, we get

ẍ + x − c
(
1 − x2

)
ẋ +

√
−9βeff

20
x2 +

βeff

2
x3

= AD cos (2πfDt). (2)

To lowest order, (2) has the same backbone curve as (1) with
β = βeff [40], [41], [62]. Our analysis of sub- and super-
harmonic entrainment was repeated using (2), and results are
presented in Table II. Inclusion of the quadratic nonlinearity
produces resonant terms that allow for 1:2 and 2:1 entrainment
in the model, though other orders of entrainment are still not
seen for the minimum frequency step used.

V. Conclusion

In this paper, we contrasted entrainment in optically self-
resonant 35 micrometer doubly supported and singly sup-
ported beams. Doubly supported beams were seen to be
buckled leading to a strong amplitude–frequency relationship.
This allowed for considerable frequency tuning of the limit
cycle with laser power, but also allowed for laser power
instability to be mapped into frequency instability via the
(power)–amplitude–frequency relationship. In contrast, singly
supported beams showed orders of magnitude less frequency
tuning and frequency instability. Results indicated a tradeoff
between tunability and noise in self-resonant devices.

Self-oscillating devices were inertially driven and regions
of primary, sub- and superharmonic entrainment measured.
We demonstrated for the first time the effect of frequency
instability on the region of 1:1 entrainment showing that in
the presence of frequency instability, the limit cycle may jump
in and out of entrainment for a fixed forcing frequency and
amplitude, and that hard forcing is required to get persistent
locking. In addition, the range of frequencies over which
transient locking was measured was much larger than the
variation in frequency of the limit cycle itself, illustrating how
disruptive frequency instability was to entrainment. Results
suggested that in order for entrainment to be a viable means
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of reducing frequency instability, forcing (i.e., coupling) must
be sufficiently strong to prevent transient locking.

A wide region of 1:1 entrainment was measured for doubly
supported devices, with considerable hysteresis and asym-
metry, as well as sub- and superharmonic entrainment at
orders from 3:1 to 1:7. Singly supported beams exhibited a
narrow region of 1:1 entrainment and no measurable sub- or
superharmonic entrainment. Subsequent modeling suggested
that frequency tunability in the doubly supported beam made
possible by nonlinear stiffness allows for a wide region of 1:1
entrainment as well as high-order sub- and superharmonic en-
trainment. In the model, the effect of nonlinear stiffness on the
width of and hysteresis in the region of 1:1 entrainment was
modest, though the increase in the width of sub- and superhar-
monic entrainment with nonlinearity is pronounced. Our sim-
ple model does not reproduce entrainment of every order mea-
sured. In particular, an even ordered nonlinear stiffness term
is needed to capture even ordered entrainment, suggesting that
the traditional use of a cubic stiffness to produce an amplitude–
frequency relationship is insufficient to capture high-order
entrainment, and full expansion of the load curve is important.
We noted, however, that no parametric term was included that
was shown in the past to allow for 2:1 laser entrainment.
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