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ABSTRACT

We investigate the dynamics of a system consisting of a sim-
ple harmonic oscillator with small nonlinearity, small damping
and small parametric forcing in the neighborhood of 2:1 reso-
nance. We assume that the unforced system exhibits the birth
of a stable limit cycle as the damping changes sign from pos-
itive to negative (a supercritical Hopf bifurcation). Using per-
turbation methods and numerical integration, we investigate the
changes which occur in long-time behavior as the damping pa-
rameter is varied. We show that for large positive damping, the
origin is stable, whereas for large negative damping a quasiperi-
odic behavior occurs. These two steady states are connected by
a complicated series of bifurcations which occur as the damping
is varied.

1 INTRODUCTION

It is well-known that a limit cycle may be born in a
process called a Hopf bifurcation. A typical setting is given
by the autonomous equation:

z̈ + z + εAż + ε(β1z
3 + β2z

2ż + β3zż
2 + β4ż

3) = 0 (1)

where ε << 1 is a perturbation parameter. Here εA is
a linear damping coefficient and the εβi are coefficients of
nonlinear terms. Perturbation theory [1] shows that eq.(1)
exhibits a limit cycle with amplitude r, where

r2 = − 4A
3β4 + β2

(2)

1

In the case that 3β4 + β2 > 0, eq.(2) gives that the limit
cycle occurs for A < 0. From (1), the origin z = ż = 0 is
unstable for A < 0 (negative damping), and so the limit cy-
cle, which has the opposite stability from that of the origin,
is in this case stable, a situation which is referred to as a
supercritical Hopf.

In this work we shall be interested in what happens
when the system (1) is parametrically excited at close to
twice the natural frequency of the linearized undamped sys-
tem:

z̈ + (1 + εk1 + εB cos 2t)z + εAż

+ ε(β1z
3 + β2z

2ż + β3zż
2 + β4ż

3) = 0 (3)

In eq.(3), εk1 is a detuning coefficient and εB is the ampli-
tude of parametric forcing.

The linearized undamped version of eq.(3) is known as
Mathieu’s equation:

z̈ + (1 + εk1 + εB cos ωt)z = 0 (4)

where ω is the frequency of the parametric excitation. It is
well-known [1] that for small ε the largest instability occurs
for ω = 2, a situation referred to as parametric resonance,
which motivates our choice of ω = 2 in eq.(3).

Our interest in this problem is motivated by two appli-
cations. The first is a model of the El Nino Southern Oscil-

Copyright c© 2005 by ASME



lation (ENSO) coupled tropical ocean-atmosphere weather
phenomenon [2],[3] in which the state variables are temper-
ature and depth of a region of the ocean called the thermo-
cline. The annual seasonal cycle is the parametric excita-
tion. The model exhibits a Hopf bifurcation in the absence
of parametric excitation.

The second application involves a MEMS device [4] con-
sisting of a 30 µm diameter silicon disk which can be made
to vibrate by heating it with a laser beam resulting in a
Hopf bifurcation. The parametric excitation is provided by
making the laser beam intensity vary periodically in time.

2 PERTURBATION METHOD

In order to investigate the dynamics of eq.(3) for small ε,
we will use the two-variable expansion method (also known
as multiple scales) [1],[6]. We define two new time scales,
ξ = t and η = εt. Here η is referred to as slow time. Eq.(3)
becomes:

zξξ + 2εzξη + (1 + εk1 + εB cos 2ξ)z + εAzξ

+ ε(β1z
3 + β2z

2zξ + β3zzξ
2 + β4zξ

3) = O(ε2) (5)

Next we expand z = z0 + εz1 + O(ε2) and collect terms,
giving:

z0ξξ + z0 = 0 (6)

z1ξξ + z1 = − 2z0ξη − k1z0 − Bz0 cos 2ξ −Az0ξ

− (β1z0
3 + β2z0

2z0ξ + β3z0z0ξ
2 + β4z0ξ

3)(7)

We take the solution of (6) to be

z0 = u cos ξ + v sin ξ (8)

where u and v depend only on slow time η. Substituting
(8) into (7) and removing secular terms gives the following
slow flow:

uη = −A
2
u+

(
k1

2
− B

4

)
v +

1
8
(Γ1v − Γ2u)(u2 + v2) (9)

vη = −A
2
v+

(
−k1

2
− B

4

)
u+

1
8
(−Γ1u−Γ2v)(u2+v2) (10)
2

where

Γ1 = 3β1 + β3, Γ2 = β2 + 3β4 (11)

In polar coordinates u = r cos θ, v = r sin θ the slow flow
(9),(10) becomes:

rη = −r
8
(4A+ Γ2r

2 + 2B sin 2θ) (12)

θη = −1
8
(4k1 + Γ1r

2 + 2B cos 2θ) (13)

where r >0 and θ depend only on slow time η.

3 ANALYSIS OF THE SLOW FLOW

From (8), the nontrivial (r 6= 0) equilibria of the slow
flow (12),(13) correspond to limit cycles in the original
eq.(3). These equilibria satisfy the equations:

4A+ ΛΓ1ρ+ 2B sin 2θ = 0 (14)

4κA+ Γ1ρ + 2B cos 2θ = 0 (15)

where we have set:

ρ = r2, k1 = κA, Λ =
Γ2

Γ1
=
β2 + 3β4

3β1 + β3
(16)

Note that although ρ = r2 must be positive for real solu-
tions, there are no sign restrictions on κ and Λ.

Solving (14),(15) respectively for sin 2θ and cos 2θ, and
using the identity sin2 2θ + cos2 2θ = 1, we obtain the fol-
lowing condition on ρ:

(Λ2+1)Γ2
1ρ

2+8A(Λ+κ)Γ1ρ+4[4A2(1+κ2)−B2] = 0 (17)

Eq.(17) is a quadratic on ρ. For real roots, the discriminant
must be positive. This turns out to give the condition:

A2

B2
<

1
4

1 + Λ2

(1 − κΛ)2
(18)
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From this we are led to define P = A/B, being the ra-
tio of linear damping coefficient A to parametric forcing
amplitude B. P turns out to be an important bifurcation
parameter for this system.

In addition, ρ = r2 must be nonnegative. Allowable
(nonnegative) values of ρ will be separated from rejected
(negative) values of ρ by the condition ρ = 0, which gives,
from (17):

P 2 =
A2

B2
=

1
4(1 + κ2)

(19)

If we fix the parameters βi and κ, then we may envision
a line parameterized by P = A/B which contains 4 key
bifurcation points, P1 ≤ P2 < P3 ≤ P4:

P1 = −
1
2

√
1 + Λ2

(1 − κΛ)2
, P2 = −

1
2

1√
(1 + κ2)

,

P3 =
1
2

1√
(1 + κ2)

, P4 =
1
2

√
1 + Λ2

(1 − κΛ)2
(20)

From eqs.(18) and (19) we see that each of these points
may represent a change in the number of slow flow equilib-
ria. Eq.(18) tells us that there are no nontrivial slow flow
equilibria to the left of P1 and to the right of P4. It also
tells us that there are 2 real roots for ρ = r2 in the interval
between P1 and P4. However, this does not mean that there
are two allowable values of r > 0 in this region because some
or all of these roots ρ may be negative.

We will now appeal to Descartes’ Rule of Signs to draw
conclusions as to the number of admissible values of r in the
interval between P1 and P4. To be specific, we will assume
(Λ + κ)Γ1 and B are positive, although similar conclusions
can be drawn in the general case. Consider first the case
that A > 0. If P > P3 then the signs in eq.(17) are + + +
which tells us that there are no positive roots ρ to the right
of P3, and hence no nontrivial slow flow equilibria to the
right of P3. If 0 < P < P3 then the signs in eq.(17) are
+ + − which tells us that there is one positive and one
negative root ρ, which means there is a single admissible
value of r in the interval between P = 0 and P = P3.

Next let us consider the case that A < 0. If −P2 <
P < 0 the signs are + − − which again means that there
is a single admissible value of r, this time in the interval
between P = P2 and P = 0. On the other hand, if P < P2
3

the signs are + − + which means that there are no nega-
tive roots ρ in the interval between P1 and P2. However, we
have seen that there are 2 real roots ρ in this interval (from
the positiveness of the discriminant), and thus we may con-
clude that there are 2 positive roots ρ and thus 2 admissible
values for r between P1 and P2.

Now it turns out that each of the admissible values of
r corresponds to a pair of nontrivial slow flow equilibria.
This may be seen by considering the value of θ at these
equilibrium points. Eliminating ρ from eqs.(14),(15) gives

− sin 2θ + Λ cos 2θ = 2
A

B
(1 − Λκ) (21)

which may be written as

cos(2θ + ψ) = 2
A

B

1 − Λκ√
1 + Λ2

(22)

where the phase angle ψ satisfies cotψ = Λ. Now if A/B
in eq.(22) corresponds to a value which gives a real positive
value for r, then eq.(22) gives two values for θ which dif-
fer by 180 degrees. Thus each admissible value of r found
above corresponds to two slow flow equilibria which are lo-
cated symmetrically with respect to the origin.

In summary then, we have shown that the number of
slow flow equilibria (including the origin r = 0) depends on
the value of P = A/B, as follows:

[−∞, P1] 1 equilibrium
[P1, P2] 5 equilibria
[P2, P3] 3 equilibria

[P3,+∞] 1 equilibrium

This chart is based on the following assumptions which we
have made on parameters:

(Λ + κ)Γ1 > 0, Γ2 = ΛΓ1 > 0, B > 0, ε << 1 (23)

Thus we may say that as A/B is decreased, a pitchfork
bifurcation occurs as P3 is crossed, resulting in 3 slow flow
equilibria (the origin and the pair just born). Continuing
to decrease A/B, another pitchfork occurs as P2 is crossed,
and now there are 5 slow flow equilibria. Finally a pair of
saddle-node bifurcations occur as P1 is crossed, in which all
of the 4 slow flow equilibria which were created in the 2
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pitchforks now come together in pairs and disappear. The
result is that only the origin is left.

This summarizes the occurrence of slow flow equilibria.
What about limit cycles in the slow flow phase plane? One
way that limit cycles can occur is through Hopf bifurcations
off of slow flow equilibria. The condition for a Hopf can be
stated in terms of the 2x2 matrix M of the linearized slow
flow about an equilibrium point. For a Hopf, trace(M )=0
and det(M )>0 (see [1] for example). From eqs.(9),(10), we
obtain the following expression for M :

M =
[
M11 M12

M21 M22

]
(24)

where

M11 = −A
2
− 3

8
Γ2u

2 − 1
8
Γ2v

2 +
1
4
Γ1uv

M12 =
k1

2
− B

4
+

1
8
Γ1u

2 +
3
8
Γ1v

2 − 1
4
Γ2uv

M21 = −k1

2
− B

4
− 1

8
Γ1v

2 − 3
8
Γ1u

2 − 1
4
Γ2uv

M22 = −A
2
− 3

8
Γ2v

2 − 1
8
Γ2u

2 − 1
4
Γ1uv

where u and v are to be evaluated at the slow flow equilib-
rium. From (24) we obtain:

trace(M ) = −A− 1
2
Γ2ρ (25)

Setting the trace(M )=0 for a Hopf, we find:

trace(M ) = 0 ⇒ A = −1
2
Γ2ρ (26)

and since ρ ≥ 0, we note that for a Hopf, A must have the
opposite sign of Γ2, in agreement with eq.(2).
Next we solve (25) for ρ and substitute it into (17), obtain-
ing the condition:

P 2
Hopf =

1
1 + 1

Λ2 + 4κ
(
κ− 1

Λ

) (27)

Condition (27) is necessary for a Hopf bifurcation, but it
is not sufficient. We also need to require that det(M )>0.
4

From eq.(24), we obtain:

det(M ) =
A2

4
−
B2

16
+
k2
1

4
+

(
AΓ2

4
−
BΓ1

16
+
k1Γ1

4

)
ρ

+
3
64

(Γ2
1 + Γ2

2)ρ
2 +

BΓ1

8
v2 − BΓ2

8
uv (28)

This expression may be simplified by multiplying the RHS
of eq.(9) by u and adding it to the RHS of (10) multiplied
by v, which gives:

uv = −
ρ(4A + Γ2ρ)

4B
(29)

Similarly we multiply the RHS of (9) by v and subtract from
it the RHS of (10) multiplied by u, which gives:

v2 =
ρ(4k1 + 2B + Γ1ρ)

4B
(30)

Substituting (29) and (30) into (28), we obtain the following
expression for det(M ):

det(M ) =
A2

4
− B2

16
+
k2
1

4
+

3
8
(AΓ2+k1Γ1)ρ+

5
64

(Γ2
1+Γ2

2)ρ
2

(31)
The condition det(M )=0 corresponds to saddle-node bifur-
cations. Eliminating ρ between det(M )=0 in eq.(31) and
the slow flow equilibrium condition (17) gives:

(4(κ2+1)A2−B2)(4A2κ2Λ2−B2Λ2−8A2κΛ−B2+4A2) = 0
(32)

Solving (32) for P 2 = A2/B2, we obtain:

P 2 =
A2

B2
=

1
4(1 + κ2)

,
1 + Λ2

4(1 − κΛ)2
(33)

in agreement with the values computed in eqs.(18),(19).

4 EXAMPLE 1

We take as an example the following system:

z̈ + (1 + ε cos 2t)z + εAż + ε(−2z3 + ż3) = 0 (34)

This corresponds to the choice of parameters β1 = −2, β2 =
0, β3 = 0, β4 = 1, κ = 0, B = 1 which gives Γ1 = −6,
Copyright c© 2005 by ASME



Γ2 = 3 and Λ = −1/2. From eqs.(20) we obtain:

P1 = −
√

5
4
, P2 = −1

2
, P3 =

1
2
, P4 =

√
5

4
(35)

and from eq.(27) we find:

P 2
Hopf =

1
5

(36)

This system has the single parameter A, and from the fore-
going analysis we can say that the number of slow flow
equilibria changes with A as follows:

[−∞,−0.559] 1 equilibrium
[−0.559,−0.5] 5 equilibria

[−0.5, 0.5] 3 equilibria
[0.5,+∞] 1 equilibrium

From (36), a Hopf bifurcation may occur when A =
−1/

√
5 = −0.447, if det(M )>0. (Here we used the fact

that A must have the opposite sign to Γ2 for a Hopf.) In
order to compute det(M ) from eq.(31), we need ρ at the
Hopf. From (25) we find that ρ = 2

3
√

5
, and substituting

this value for ρ into (31), we find det(M )=3/20>0.

In order to confirm these results, and to determine any
other bifurcations which occur in (37) as A is varied, we
numerically integrated the slow flow eqs.(9),(10) for the
present parameters. See Fig.1. We found that the limit
cycles born in the Hopf at A = −0.447 are unstable and ex-
ist in the range −0.447 < A < −0.377 (region IV of Fig.1).
As A is increased beyond −0.377, a symmetry-breaking bi-
furcation occurs in which each of the two limit cycles born
in the Hopf unite into one large unstable limit cycle which
is point-symmetric about the origin in the u-v plane (region
III of Fig.1). Further increases in A increase the size of the
symmetric limit cycle until A = −0.364, at which point it
coalesces with a larger stable limit cycle in a limit cycle fold.

5 EXAMPLE 2

The following example exhibits qualitatively different
behavior from Example 1 above:

z̈ + (1 − ε A+ ε cos 2t)z + εAż + ε(−2z3 + ż3) = 0 (37)
5

Figure 1. Sketch of slow flows in the u-v plane for Example 1. κ = 0.
ULC=unstable limit cycle, SLC=stable limit cycle.

This corresponds to the choice of parameters β1 = −2, β2 =
0, β3 = 0, β4 = 1, κ = −1, B = 1 which gives Γ1 = −6,
Γ2 = 3 and Λ = −1/2. From eqs.(20) we obtain:

P1 = −
√

5
2
, P2 = − 1

2
√

2
, P3 =

1
2
√

2
, P4 =

√
5

2
(38)

and from eq.(27) we find:

P 2
Hopf = 1 (39)

As with Example 1, this system has the single parameter A,
and from the foregoing analysis we can say that the number
of slow flow equilibria changes with A as follows:

[−∞,−1.118] 1 equilibrium
Copyright c© 2005 by ASME



[−1.118,−0.3535] 5 equilibria
[−0.3535, 0.3535] 3 equilibria

[0.3535,+∞] 1 equilibrium

From (39), a Hopf bifurcation may occur when A = −1, if
det(M )>0. (Here we again used the fact that A must have
the opposite sign to Γ2 for a Hopf.) In order to compute
det(M ) from eq.(31), we need ρ at the Hopf. From (25)
we find that ρ = 2

3
, and substituting this value for ρ into

(31), we find det(M )=−1/4<0. Thus there is no Hopf in
this example.

Numerical integration of the slow flow eqs. (9),(10) for
the present parameters reveals that a stable limit cycle is
born in a saddle connection bifurcation at A = −1.012. See
Fig.2.

6 DISCUSSION

The main difference between these two examples is that
Example 1 involves the occurrence of a Hopf bifurcation,
whereas Example 2 does not. Since both examples cor-
respond to the parameter value Λ = −1/2, we may gain
insight into the dependence of the dynamical structure on
parameters by varying κ and A as in Fig.3. Here Example
1 corresponds to the horizontal line κ = 0, and Example
2 corresponds to the horizontal line κ = −1. As can be
seen from this figure, the branch of Hopf bifurcations exists
for κ > −3/4. As expected, the horizontal line κ = −3/4,
which corresponds to a system for which both the trace(M )
and the det(M ) simultaneously vanish, lies between Exam-
ples 1 and 2.

In addition to the saddle-node bifurcations, pitchfork
bifurcations and Hopfs, which are shown in Fig.3, and for
which we obtained analytical expressions, this system also
exhibits limit cycle folds, symmetry-breaking bifurcations
and saddle-connection bifurcations, for which we have no
analytical expressions. We obtained numerical approxima-
tions for these bifurcations and they are shown in Figs.4
and 5.

Although Figs.3-5 are drawn for the specific value Λ =
−1/2, certain features of the bifurcation set will occur for
a generic value of Λ. These include:
1. Places where the Hopf curve becomes tangent to the
P1 or P4 saddle-node bifurcation curve and terminates. As
just mentioned, both the trace(M ) and the det(M ) vanish
at such a point. The corresponding value of κ is κ = 1

2Λ− Λ
2 .

2. Places where the P1 and P2 bifurcation curves are tan-
6

Figure 2. Sketch of slow flows in the u-v plane for Example 2. κ = −1.
ULC=unstable limit cycle, SLC=stable limit cycle. SC=saddle-connection

bifurcation, which occurs at A = −1.012.

gent. By symmetry, the P4 and P3 curves are also tangent
there. The associated value of κ is κ = −Λ.
3. Places where the P1 and P4 branches go off to infin-
ity. These come from the vanishing of the denominators in
eq.(20) and correspond to κ = 1

Λ .

7 CONCLUSIONS

We have studied the dynamics of a system (3) which
exhibits the simultaneous phenomena of both parametric
resonance and Hopf bifurcation. Imagine that we hold all
parameters fixed except for the damping coefficient A, and
that we ask what is expected to happen as A decreases
through the parametric resonance/Hopf region. We begin
with a stable equilibrium point at the origin of the slow
Copyright c© 2005 by ASME



Figure 3. Partial bifurcation set in the A-κ parameter plane for Λ = −1/2,

B = 1, β1 = −6 and β2 = 3. P1 and P4 are saddle-node bifurcations, P2

and P3 are pitchforks, and H is Hopfs. These curves are given by eqs.(20)

and (27). Not shown are limit cycle folds, symmetry-breaking bifurcations and

saddle-connection bifurcations, see Figs.4,5.

flow which corresponds to a stable trivial solution of eq.(3).
Then the first bifurcation is reached while A is still posi-
tive, giving rise to a pair of stable equilibria in the slow flow
which correspond to a single stable period-2 subharmonic
motion in eq.(3). As A decreases and becomes negative, a
variety of bifurcations may occur which culminate for suffi-
ciently negative A in a slow flow which exhibits only a stable
limit cycle and an unstable equilibrium at the origin. This
limit cycle corresponds in eq.(3) to a stable quasiperiodic
motion which may be thought of as combining the peri-
odic motion which would have been created in the Hopf (in
the absence of parametric excitation) with a motion coming
from the periodic parametric forcing.
7

Figure 4. Bifurcation set in the A-κ parameter plane for Λ = −1/2, B =
1, β1 = −6 and β2 = 3. P1 and P4 are saddle-node bifurcations, P2 and

P3 are pitchforks, H is Hopfs, LCF is limit cycle folds, SB is symmetry-

breaking bifurcations and SC are saddle-connection bifurcations.

In many applications, a limit cycle created in a Hopf
bifurcation is destroyed in a saddle-connection bifurcation
in the unforced system. This scenario occurs, for exam-
ple, in the Takens-Bogdanov (double-zero eigenvalue) sys-
tem (see [5], p.371). Such a situation also occurs in the
ENSO system [2],[3] described briefly in the introduction.
When such a system is parametrically excited, the analysis
in the present paper shows that a quasiperiodic motion may
be expected to occur in the neighborhood of the Hopf bi-
furcation. It is still an open question as to what happens to
that motion as the bifurcation parameter proceeds towards
the value corresponding to the saddle-connection bifurca-
tion in the unforced system.
Copyright c© 2005 by ASME



Figure 5. Enlargement of a portion of Fig.4. P1 is saddle-node bifurcations,

P2 is pitchforks, H is Hopfs, LCF is limit cycle folds, SB is symmetry-

breaking bifurcations and SC are saddle-connection bifurcations.
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