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ABSTRACT
In this work we study a system of three van der Pol oscilla-

tors, x, y and w, coupled as follows:

ẍ − ε(1 − x2)ẋ + x = εµ(w − x)

ÿ − ε(1 − y2)ẏ + y = εµ(w − y)

ẅ − ε(1 − w2)ẇ + p2w = εµ(x − w) + εµ(y − w)

Here the x and y oscillators are identical, and are not directly
coupled to each other, but rather are coupled via the w oscilla-
tor. We investigate the existence of the in-phase mode x = y for
ε << 1. To this end we use the two variable expansion pertur-
bation method (also known as multiple scales) to obtain a slow
flow, which we then analyze using the software products MAC-
SYMA and AUTO.

Our motivation for studying this system comes from the
presence of circadian rhythms in the chemistry of the eyes. We
model the circadian oscillator in each eye as a van der Pol oscil-
lator (x and y). Although there is no direct connection between
the two eyes, they are both connected to the brain, especially to
the pineal gland, which is here represented by a third van der
Pol oscillator (w).

1 INTRODUCTION

In this work we study a system of three van der Pol
oscillators, x, y and w, coupled as follows:

ẍ − ε(1 − x2)ẋ + x = εµ(w − x) (1)
1

1

ÿ − ε(1 − y2)ẏ + y = εµ(w − y) (2)
ẅ − ε(1− w2)ẇ + p2w = εµ(x − w) + εµ(y − w) (3)

Here the x and y oscillators are identical, and are not di-
rectly coupled to each other, but rather are coupled via the
w oscillator.

Our motivation for studying this system comes from
the presence of circadian rhythms in the chemistry of the
eyes. We model the circadian oscillator in each eye as a van
der Pol oscillator (x and y). Although there is no direct
connection between the two eyes, they are both connected
to the brain, especially to the pineal gland, which is here
represented by a third van der Pol oscillator (w).

Experiments on quail chicks have shown that when they
are placed in constant light conditions (representing an au-
tonomous system with no external forcing), their two eyes
are found to be in phase after a couple of days (Steele et
al., 2003). This seems to be the case for a wide range of
initial conditions, even, e.g., if the two eyes are initially
light-loaded to be out of phase. (This is accomplished ex-
perimentally by placing an opaque patch on the left eye
(but none on the right eye) for 12 hours, then switching
the opaque patch to the right eye for 12 hours, and then
repeating this for several days.)

In a previous attempt to explain this phenomenon, the
system was modeled as two van der Pol oscillators coupled
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by a “bath” (Wirkus, Rand and Howland, 2004):

ẍ − ε(1 − x2)ẋ + x = k(z − x) (4)
ÿ − ε(1 − y2)ẏ + y = k(z − y) (5)

ż = k(x − z) + k(y − z) (6)

The idea of this model is that the two eyes influence
each other by affecting the concentration of a substance
(melatonin) in the bloodstream. Here the non-oscillatory
bath represents the bloodstream. Unfortunately this model
predicted that the out-of-phase mode had greater stability
than the in-phase mode, contrary to the experimental re-
sults.

Thus we were led to consider the system (1)-(3), which
replaces the bath coupling z by coupling via the pineal
gland in the brain, represented by the w oscillator. The
question which we are most interested in answering is what
are the stabilities of the in-phase and out-of-phase modes?
The present paper does not answer this question, but rather
considers just the question of the existence of the in-phase
mode. The in-phase mode x = y satisfies the equations:

ẍ − ε(1 − x2)ẋ + x = εµ(w − x) (7)
ẅ − ε(1 − w2)ẇ + p2w = 2εµ(x − w) (8)

Eqs.(7),(8) represent a 4-dimensional invariant manifold
which sits inside the 6-dimensional phase space of eqs.(1)-
(3). In this paper we are interested in asking for which
parameters a stable periodic motion exists in eqs.(7),(8).
It should be noted that although a periodic motion is sta-
ble in the 4-dimensional invariant manifold of eqs.(7),(8),
it may not be stable in the larger 6-dimensional space of
eqs.(1)-(3).

2 PERTURBATION EXPANSION

We study the in-phase mode eqs.(7),(8) for small values
of ε. We use the two variable expansion method (Rand,
2004) and replace t by two new independent variables, ξ = t
and η = εt. Eqs.(7),(8) become, neglecting terms of O(ε2):

∂2x

∂ξ2
+ 2ε

∂2x

∂ξ∂η
− ε(1 − x2)

∂x

∂ξ
+ x = εµ(w − x) (9)

∂2w

∂ξ2
+ 2ε

∂2w

∂ξ∂η
− ε(1 − w2)

∂w

∂ξ
+ p2w = 2εµ(x − w)(10)
2

2

Next we assume that the frequency p of the w oscillator is
close to that of the x and y oscillators, and we expand

p = 1 + ε∆ (11)

We expand both x and w in power series of ε:

x = x0(ξ, η) + εx1(ξ, η), w = w0(ξ, η) + εw1(ξ, η) (12)

We substitute eqs.(11),(12) into (9),(10) and collect terms,
giving at O(ε0):

∂2x0

∂ξ2
+ x0 = 0,

∂2w0

∂ξ2
+ w0 = 0 (13)

while at O(ε1):

∂2x1

∂ξ2
+ x1 = −2

∂2x0

∂ξ∂η
− (1 − x2

0)
∂x0

∂ξ
+ µ(w0 − x0) (14)

∂2w1

∂ξ2
+w1 = −2

∂2w0

∂ξ∂η
− (1−w2

0)
∂x0

∂ξ
−2∆w0+2µ(x0−w0)

(15)
We take the solutions of eqs.(13) in the form:

x0 = R1(η) cos(ξ − θ1(η)), w0 = R2(η) cos(ξ − θ2(η))
(16)

where R1, R2, θ1 and θ2 are as yet undetermined functions
of slow time η. Next we substitute (16) into (14),(15) and
eliminate secular terms. This gives the following slow flow:

dR1

dη
=

R1

2
− R3

1

8
− µ

R2

2
sin φ (17)

dR2

dη
=

R2

2
− R3

2

8
+ µR1 sin φ (18)

dθ1

dη
= −µ

2
+

µ

2
R2

R1
cos φ (19)

dθ2

dη
= −∆ − µ + µ

R1

R2
cos φ (20)
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where we have set φ = θ2 − θ1. Subtracting (19) from (20),
we obtain:

dφ

dη
= −∆ − µ

2
+

µ

2

(
2
R1

R2
− R2

R1

)
cos φ (21)

The three slow flow eqs.(17),(18),(21) are defined on a
phase space with topology R+ × R+ × S1. An equilibrium
point in this slow flow corresponds to a periodic motion of
the system (7),(8), that is, to an in-phase mode of the 3-
oscillator system (1),(2),(3).

3 BIFURCATION ANALYSIS

Using the computer algebra system MACSYMA, we
manipulate the RHS’s of eqs.(17),(18),(21) to compute con-
ditions on the parameters µ an ∆ for saddle-node and Hopf
bifurcations. The details of this complicated calculation
are given in the Appendix. The results are plotted in Fig.1.
The condition (24) for saddle-node bifurcations plots as two
triangular-shaped curves in Fig.1 and corresponds to a pair
of slow flow equilibria merging together. The condition (27)
for Hopf bifurcations plots as two parabola-shaped curves
in Fig.1 and corresponds to an equilibrium point of the fo-
cus (or spiral) type which changes stability, giving birth to
a limit cycle. The portions of the Hopf curves which lie in-
side the triangular regions (shown dashed in Fig.1) do not
represent a bifurcation, as explained at the end of the Ap-
pendix.

The bifurcation curves in Fig.1 are shown in Fig.2,
along with four additional bifurcation curves which were ob-
tained numerically, resulting in ten regions in the parameter
space, each having distinct dynamical features and behav-
ior. Numerical integration of the slow-flow equations reveals
three primary types of behavior in our original in-phase sub-
space: (i) phase-drift (positive and negative), (ii) weakly
phase-locked motions, and (iii) phase-locked motions.

(i) Phase-drift occurs when the phase-difference φ(η)
between the pineal (w) oscillator and the eye (x = y) os-
cillators increases (or decreases) without bound. In the
R+ × R+ × S1 phase space, phase-drift appears as a closed
curve (a limit cycle) which is cyclic in φ. Positive (negative)
drift refers to the direction of the flow in φ. We will refer
to such a motion as an

LCD (=limit cycle with drift).

(ii) A weakly phase-locked motion occurs when φ(η) is
periodic. It is represented in the phase space by a limit cycle
3

which is topologically distinct from the drift limit cycle. In
this system, such weakly phase-locked limit cycles are born
in a Hopf bifurcation, that is, they start out as very small
topological circles. We will refer to such a motion as an

LCW (=limit cycle with weak phase-locking).

(iii) Phase-locked motions are motions where φ(η) re-
mains constant. These motions correspond to equilibria in
the slow-flow phase space.

The particular features found in each region are de-
scribed as follows:

REGION I - There exist two unstable equilibrium points
and a stable LCD. All trajectories in the phase space expe-
rience negative drift.
REGION II - There exist two unstable equilibrium points
and a stable LCD. All trajectories in the phase space expe-
rience positive drift.
REGION III - There exist one stable and three unstable
equilibrium points. All trajectories tend to the stable equi-
librium point.
REGION IV - There exist one stable and one unstable equi-
librium point. All trajectories tend to the stable equilibrium
point.
REGION V - There exist two stable and two unstable equi-
librium points. All trajectories are attracted to one of the
two stable equilibrium points.
REGION VI - There exist two stable equilibrium points.
All trajectories are attracted to one of the two stable equi-
librium points. There also exists an unstable LCD.
REGIONS A and D - There exist two unstable equilibrium
points and a stable LCW. All trajectories approach the sta-
ble limit cycle.
REGIONS B and C - There exist one stable and one un-
stable equilibrium point and a stable LCW. All trajectories
are attracted to either the stable equilibrium point or to
the stable LCW. In addition there exists an unstable mo-
tion which an LCD at the region VI side of regions B,C, but
which is an LCW at the region IV side of regions B,C. The
change from LCD to LCW occurs along an curve (unmarked
in Fig.2) in each of regions B,C via a saddle-connection bi-
furcation (Rompala, 2005).

Of particular interest are the bifurcations occurring on
the lower boundaries of regions A and D. These involve
the conversion of stable LCW’s to stable LCD’s via colli-
sions with the singular surfaces R1 = 0 or R2 = 0 and the
formation of saddle-connections (Chakraborty and Rand,
1988). Starting in region IV, we have one stable and one
Copyright c© 2005 by ASME
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unstable equilibrium point. Crossing from region IV to re-
gion D, a supercritical Hopf bifurcation occurs and a stable
LCW (weakly phase-locked motion) appears. As we con-
tinue traveling further into region D the limit cycle increases
in size until it collides with a singular surface and forms a
saddle-connection. The LCW then changes its topology to
that of LCD (phase-drift). This bifurcation occurs on the
lower boundary of region D. The same scenario occurs in
region A.

The LCD which is born out of an LCW on the lower
boundary of region D continues to exist throughout region
I. However, it is destroyed in an infinite period bifurcation
as we cross from region I to region III. This infinite period
bifurcation is, in addition, a saddle-node bifurcation, which
increases the number of slow flow equilibria from two in re-
gion I to four in region III. The same scenario occurs in
regions A-II-III.

A supercritical Hopf bifurcation occurs and a stable
LCW is born as we cross the boundary between regions
VI and C. This LCW is destroyed as we move into region
IV, where it coalesces with an unstable LCW. The same
scenario occurs in regions VI-B-IV.

4 CONCLUSIONS

In this paper we have investigated the existence of
the in-phase mode in a particular system of three weakly-
coupled van der Pol oscillators, eqs.(1)-(3). Although the
setting for original problem is a six-dimensional phase space,
the in-phase mode lives in a four-dimensional invariant sub-
space given by eqs.(7),(8). Using the two-variable expan-
sion perturbation method, we reduced the four-dimensional
in-phase subspace to a three-dimensional slow-flow given
by eqs.(17),(18),(21). Using computational tools (AUTO,
MACSYMA, MATLAB) we were able to successfully com-
pute (both numerically and analytically) the bifurcation
curves for the slow flow. The qualitative behavior in the
slow flow and in the four-dimensional in-phase subspace was
determined for each distinct region in the parameter plane
of Fig.2.

It is interesting to compare the dynamics of the in-phase
mode in the present problem with the dynamics of two di-
rectly coupled van der Pol oscillators (Rand, 2004):

ẍ − ε(1 − x2)ẋ + x = εµ(w − x) (22)
ẅ − ε(1 − w2)ẇ + p2w = εµ(x − w) (23)

Comparison of eqs.(22),(23) with eqs.(7),(8) reveals the

4

presence of an extra factor of 2 on the RHS of eq.(8)
compared with the RHS of eq.(23). Fig.3 (Rand, 2004)
shows the bifurcation curves for eqs.(22),(23) comparable
to Fig.1. Various types of dynamical behavior found in
eqs.(22),(23) also occur in eqs.(7),(8), including stable and
unstable phase-locked motion, phase-entrained motion, and
drift. However, as Figs.1-3 show, eqs.(7),(8) involve four
new regions of the parameter plane which do not occur in
eqs.(22),(23), namely regions V, VI, B and C. All of these
four regions contain multiple steady states. Regions V and
VI contain two stable phase-locked motions while regions
B and C contain one stable phase-locked motion and one
stable phase-entrained motion.

In the context of our biological application, the in-phase
motion investigated in this paper corresponds to the syn-
chronized periodic behavior of circadian rhythms in each
of the two eyes (modeled by x and y oscillators), as well
as in the brain (modeled by the w oscillator). Of biolog-
ical importance is the existence of stable equilibria in the
slow-flow (all regions except I and II). These correspond to
stable phase-locked in-phase motions of the original four-
dimensional in-phase problem. The biological phenomenon
associated with the four regions which exhibit multiple
steady states will include dependence of the steady state
on initial conditions and associated hysteresis. Note that
this interesting dynamical behavior occurs when ∆ < 0 (as-
suming µ > 0). This corresponds to the situation where the
eye oscillators have a higher frequency (and thus shorter pe-
riod) than the brain oscillator.

It is important to realize that we have not yet stud-
ied the stability of the in-phase subspace. Thus although
a slow flow equilibrium (and associated periodic motion of
eqs.(7),(8)) may be stable with respect to the in-phase sub-
space, it may turn out to be unstable with respect to the
original six-dimensional phase space of eqs.(1)-(3). We plan
to investigate the stability of such motions in the original
six-dimensional phase space in future work.

5 APPENDIX

The following scheme by which we determine conditions
for saddle-node and Hopf bifurcations of slow flow equilibria
is based on the treatment of two coupled van der Pol oscilla-
tors in Chapter 9 of (Rand, 2004). This calculation is alge-
braically complicated and was done using the computer al-
gebra system MACSYMA. We begin by algebraically elimi-
nating R2 and φ from the three equilibrium equations repre-
sented by the vanishing of RHS’s of (17),(18),(21), thereby
leaving an equation which depends on R1 only. We multiply
(17) by 2R1 and (18) by R2, and add them together. This

Copyright c© 2005 by ASME
4 Copyright © 2005 by ASME



yields an algebraic eq. which involves R1 an R2, but not φ.
Let us refer to it as eq.A. Next we multiply (17) by R2 and
(18) by R1, and subtract them. We solve the resulting eq.
for sin φ and refer to the result as eq.B. Next we solve (21)
for cos φ and refer to the result as eq.C. Then we combine
eqs.B and C using the identity sin2 φ + cos2 φ = 1 and ob-
tain an equation which involves R1 an R2, but not φ. We
refer to it as eq.D. Next we algebraically eliminate R2 from
eqs.A and D, yielding an eq. on R1 only (no φ or R2). We
refer to it as eq.E. Now for a saddle-node bifurcation, eq.E
must have a double root. Thus we differentiate eq.E with
respect to R2, obtaining an eq. which we refer to as eq.F.
Then we eliminate R2 between eqs.E and F, which gives the
condition for a saddle-node as eq.(24). This equation plots
as triangle-shaped curves in Fig.1:

45349632 µ14 + 221709312 ∆ µ13

+690508800 ∆2µ12 + 9027936 µ12 + 1492475904 ∆3µ11

+38320128 ∆ µ11 + 2529857536 ∆4µ10 + 105827328 ∆2µ10

−4323051 µ10 + 3420995584 ∆5µ9 + 231647232 ∆3µ9

−15105708 ∆ µ9 + 3827613696 ∆6µ8 + 453522432 ∆4µ8

−35909484 ∆2µ8 + 539217 µ8 + 3541827584 ∆7µ7

+721944576 ∆5 µ7 − 63304320 ∆3µ7 + 3036832 ∆ µ7

+2745761792 ∆8µ6 + 919879680 ∆6µ6 − 80637888 ∆4µ6

+8802064 ∆2 µ6 − 12636 µ6 + 1759248384 ∆9µ5

+912162816 ∆7µ5 − 38032128 ∆5µ5 + 7835616 ∆3µ5

−183192 ∆ µ5 + 930873344 ∆10µ4 + 701669376 ∆8µ4

40007424 ∆6µ4 − 3381904 ∆4µ4 − 841176 ∆2µ4

−81 µ4 + 392167424 ∆11µ3 + 410910720 ∆9µ3

+81358848 ∆7 µ3 − 3334912 ∆5µ3 − 1019520 ∆3µ3

+2640 ∆ µ3 + 128974848 ∆12µ2 + 177340416 ∆10µ2

+65590272 ∆8µ2 + 7929600 ∆6µ2 + 231360 ∆4µ2

+20304 ∆2 µ2 + 29360128 ∆13µ + 51904512 ∆11µ

+30167040 ∆9µ + 7749632 ∆7µ + 889344 ∆5 µ

+35328 ∆3 µ + 16 ∆ µ + 4194304 ∆14

+8650752 ∆12 + 6033408 ∆10 + 1937408 ∆8

+296448 ∆6 + 17664 ∆4 + 16 ∆2 = 0 (24)

To find a comparable condition for a Hopf bifurcation,
we compute the 3 × 3 Jacobian matrix based on eqs.
(17),(18),(21) and use eqs.B and C to eliminate φ from the
matrix elements. Then we compute the characteristic poly-
nomial of this matrix, which is of the form:

λ3 + c2λ
2 + c1λ + c0 = 0 (25)
5

5

For a Hopf bifurcation, we require λ to be pure imaginary.
Thus the eigenvalues λ will include a pure imaginary pair,
±iβ, and a real eigenvalue, γ. This requires the character-
istic polynomial to have the form:

λ3 − γλ2 + β2λ − β2γ = 0 (26)

Comparing eqs.(25) and (26), we see that a necessary con-
dition for a Hopf is:

c0 = c1c2

Let us call this eq.G. Next we use eq.A to eliminate R2 from
eq.G. The resulting equation contains R1 only (no φ or R2).
We refer to it as eq.H. Finally we use eq.E to eliminate R1

from eq.H, which gives the following condition (27) for a
Hopf bifurcation:

206046997776 µ16 + 128246239872 ∆ µ15

−1055299653504 ∆2µ14 + 151716144096 µ14

−4792910330880 ∆3µ13 − 959470912224 ∆ µ13

−10067384941056 ∆4µ12 − 4022175416544∆2µ12

−76183604811 µ12− 13620666378240∆5µ11

−8422624949760 ∆3µ11 − 1162076374872 ∆ µ11

−11038023456768 ∆6µ10 − 9771098692608∆4µ10

−2453769115848 ∆2µ10 − 53727633963 µ10

−1633265565696 ∆7µ9 − 5111334563328 ∆5µ9

−2698414682336 ∆3µ9 − 368730619308 ∆µ9

+10450239639552 ∆8µ8 + 4596633773568 ∆6µ8

−930295796592 ∆4µ8 − 500042378940 ∆2µ8

−10567871928 µ8 + 18955313086464 ∆9µ7

+14654584700928 ∆7µ7 + 2928072365568 ∆5µ7

−65251243872 ∆3µ7 − 43666800936 ∆ µ7

+20325924864000∆10µ6 + 19734795325440 ∆8µ6

+6459457683968 ∆6µ6 + 646749530928 ∆4µ6

−25863482760 ∆2µ6 − 842897393 µ6

+15864307384320∆11µ5 + 18526299439104 ∆9µ5

+7894980157440 ∆7µ5 + 1385895931968 ∆5µ5

+75604570176 ∆3µ5 − 1221626868 ∆ µ5

+9417278619648 ∆12µ4 + 12970012852224∆10µ4

+6670762715136 ∆8µ4 + 1563045302976 ∆6µ4

+151762831008 ∆4µ4 + 2639537484 ∆2µ4

−16895076 µ4 + 4277139406848∆13µ3
Copyright c© 2005 by ASME
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+6902205382656 ∆11µ3 + 4225522688000 ∆9µ3

+1243790340096 ∆7µ3 + 175856646912 ∆5µ3

+9882465920 ∆3µ3 + 104063568 ∆ µ3

1433187385344∆14µ2 + 2690954035200 ∆12µ2

+1939282108416 ∆10µ2 + 685956946944 ∆8µ2

+123792201984 ∆6µ2 + 10341576000 ∆4µ2

+273469584 ∆2µ2 + 1086528 µ2

+328866988032 ∆15µ + 711039909888 ∆13µ

+596824129536 ∆11µ + 250006241280 ∆9µ

+55862845440 ∆7µ + 6480411648 ∆5µ

+338812032 ∆3µ + 5262144 ∆ µ

+41108373504 ∆16 + 101577129984 ∆14

+99470688256 ∆12 + 50001248256 ∆10

+13965711360 ∆8 + 2160137216 ∆6

+169406016 ∆4 + 5262144 ∆2 + 43264 = 0 (27)

Note that when eq.(27) is plotted in Fig.1, the portion
of each of the two branches which lies inside the triangu-
lar regions is shown dashed. In these regions the quantity
β2 referred to in eq.(26) is negative so that the eigenvalue
λ = ±iβ is not imaginary, and no Hopf occurs there.

6 ACKNOWLEDGMENT

Portions of this work were supported by NIH NEI grant
02994 to HCH.

REFERENCES

Chakraborty,T., Rand, R.H. The Transition from
Phase Locking to Drift in a System of Two Weakly Coupled
Van der Pol Oscillators, International J. Nonlinear Mechan-
ics 23:369-376, 1988.

Rand, R.H. Lecture Notes in Nonlinear Vibrations (ver-
sion 45), Published on-line by The Internet-First University
Press, Ithaca, NY, 2004:
http://dspace.library.cornell.edu/handle/1813/79

Rompala, K., M.S. thesis, Cornell University, 2005.
Steele, C. T., Zivkovic, B D., Siopes, T. , and Under-

wood, H., Ocular clocks are tightly coupled and act as pace-
makers in the circadian system of japanese quail, Am. J.
Physiol. Regulatory, Integrative and Comparative Physiol.
284:R208-R218, 2003.

Wirkus, E., Rand, R. and Howland, H., Dynamics of
Two van der Pol Oscillators Coupled via a Bath , Interna-
tional J. Solids and Structures 41:2133-2143, 2004.
6 Copyright c© 2005 by ASME

6 Copyright © 2005 by ASME



Figure 1: Bifurcation curves.
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Figure 2: Bifurcation set.
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Figure 3: Bifurcation curves for two directly coupled van der Pol oscillators.
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