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ABSTRACT
In this paper we investigate the dynamics of a Mathieu-

van der Pol equation, which is forced both parametrically and
nonparametrically. It is shown that the steady state response
can consist of either 1:1 frequency locking, or 2:1 subharmonic
locking, or quasiperiodic motion. The system displays hysteresis
when the forcing frequency is slowly varied. We use pertur-
bations to obtain a slow flow, which is then studied using the
bifurcation software package AUTO. This study was motivated
by an application to a MEMS device.

INTRODUCTION

This paper concerns the following differential equation,
which may be thought of as a forced Mathieu-van der Pol
equation:

ẍ + (1 + εα cos 2ωt)x − εẋ(1 − x2) = εF cos ωt (1)

where εα is the magnitude of parametric forcing applied
at frequency 2ω, and εF is the magnitude of nonparamet-
ric forcing applied at frequency ω. ε is a small parame-
ter which will be used in the perturbation method. Eq.(1)
is a combination of two well known dynamical equations.
The first results from a van der Pol (vdP) equation term
(Nayfeh and Mook, 1979), −εẋ(1 − x2), which, in the ab-
sence of forcing, leads to a steady state vibration called a
limit cycle. For small values of ε the limit cycle has fre-
quency close to 1, which is the frequency of the unforced
linear oscillator. A study of entrainment in a forced VdP
equation is given in (Rand, 2004) where it is shown that in
the absence of parametric forcing (α = 0), eq.(1) exhibits
1
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entrainment when ω ≈ 1. A second well known equation
results from a Mathieu equation term (Nayfeh and Mook,
1979), (1 + εα cos 2ωt)x, which, in the absence of the vdP
term, renders the origin unstable when the parametric forc-
ing frequency 2ω is close to the twice the frequency of the
unforced linear oscillator. When the vdp term is added, the
resulting limit cycle can be entrained at a 2:1 subharmonic.
Thus in the case of both parametric and nonparametric forc-
ing, eq.(1) can exhibit entrainment when ω ≈ 1.

Looking ahead, we may expect eq.(1) to exhibit the
following two types of dynamical behavior:

• A quasiperiodic motion corresponding to the two fre-
quencies of a) the limit cycle , and b) the forcing terms.
This case is expected if the forcing amplitude is too
small to produce entrainment.

• A periodic motion if the forcing amplitudes are suf-
ficiently large. This could result from either 1:1 reso-
nance if the nonparametric forcing frequency, ω, is close
to 1, and/or 2:1 subharmonic resonance if the paramet-
ric forcing frequency, 2ω, is close to 2.

Our motivation for studying eq.(1) comes from pre-
vious studies of a MEMS device consisting of a thin,
planar, radio frequency resonator (Zalalutdinov et al.,
2003a),(Zalalutdinov et al., 2003b),(Pandey, 2005). These
devices have been shown to self-oscillate in the absence of
external forcing, when illuminated by a DC laser of suffi-
cient amplitude. This system can also be forced externally
either parametrically, by modulating the incident laser or
nonparametrically, by using a piezo drive at the natural
frequency of the device. In the presence of external forc-
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ing of sufficient strength and close enough in frequency to
that of the unforced oscillation, the device will become fre-
quency locked. The model presented in (Zalalutdinov et al.,
2003a),(Zalalutdinov et al., 2003b) consisted of a third order
system of ODE’s. Our interest in eq.(1) comes from it being
a simpler model which still involves all of the relevant phe-
nomenon, namely limit cycles, parametric excitation and
nonparametric excitation.

1 NUMERICAL INTEGRATION

We begin by numerically integrating eq.(1) and display-
ing the results in Fig.1, which shows the response amplitude
as a function of forcing frequency ω for parameters ε = 0.1,
α = 1 and F = 0.3. Quasiperiodic behavior (QP) is ob-
served in the regions located approximately at ω < 0.97
and ω > 1.03. Periodic behavior at the forcing frequency
is observed in the rest of the plot, corresponding to en-
trainment. As we sweep the frequency forward inside the
entrained region, the amplitude jumps to a higher value at
a frequency ω ≈ 1.015. No comparable jump is seen when
the frequency is swept backward, indicating hysteresis.

2 PERTURBATION METHOD

In order to better understand the foregoing numerical
results, and to study the effect of changing parameters, in
this section we use the two variable expansion method (also
known as the method of multiple scales) to obtain an ap-
proximate analytic solution. The idea of this method is to
replace time t by two time scales, ξ = ωt, called stretched
time, and η = εt, called slow time. The forcing frequency ω
is expanded around the natural frequency of the oscillator
(= 1), i.e.

ω = 1 + k1ε + O(ε2) (2)

where k1 is a detuning parameter at order ε. Next, x is
expanded in a power series in ε:

x = x0(ξ, η) + εx1(ξ, η) + O(ε2) (3)

Substituting (2),(3) into (1) and collecting terms gives:

x0ξξ + x0 = 0 (4)

x1ξξ+x1 = −2k1x0ξξ+(1−x2
0)x0ξ−αx0 cos 2ξ+F cos ξ (5)
2

We take the solution to eq.(4) in the form:

x0(ξ, η) = A(η) cos ξ + B(η) sin ξ (6)

Substitution of (6) into (5) and removal of secular terms
gives the following slow flow:

A′ = −k1B +
A

2
− A

8
(A2 + B2) − B

4
α (7)

B′ = k1A +
B

2
− B

8
(A2 + B2) − A

4
α +

F

2
(8)

Equilibrium points in the slow flow (7),(8) correspond to
periodic motions in eq.(1), whereas limit cycles in the slow
flow correspond to quasiperiodic motions in (1).

3 INVARIANCES OF THE SLOW FLOW

The slow flow (7),(8) contains 3 parameters: detun-
ing k1, parametric forcing amplitude α, and nonparametric
forcing amplitude F . We shall be interested in understand-
ing how the phase portrait of the slow flow is determined
by these parameters. However, before discussing this we
note that eqs.(7),(8) exhibit some invariances which permit
useful conclusions to be drawn. For example, eqs.(7),(8) re-
main unchanged when A, B and F are replaced respectively
by −A, −B and −F . Since such a change does not alter the
nature of the phase portrait, we see that we may consider
F ≥ 0 without loss of generality.

In addition, we see that eqs.(7),(8) remain unchanged
when A, k1 and α are replaced respectively by −A, −k1 and
−α. Since changing the sign of A does not alter the nature
of the phase portrait, we see that we may consider α ≥ 0
without loss of generality since negative α corresponds to
flipping a k1 − F bifurcation diagram (such as shown in
Fig.2) about a vertical axis (so that k1 is replaced by −k1).

4 AUTO BIFURCATION SOFTWARE

In order to understand how the dynamical behavior
varies as k1, α, and F are changed, we used the AUTO
bifurcation software package (Doedel et al., 2002).

Fig.2 shows the results of the AUTO analysis for α = 1,
where k1 and F are varied. Region A contains 5 slow flow
equilibria, consisting of 2 sinks, 2 saddles and 1 source, i.e.,
only 2 are stable. These stable equilibria correspond to fre-
quency locked periodic motions in eq.(1). The presence of
two such steady states signals the possibility of hysteresis.
Copyright c© 2005 by ASME

2 Copyright © 2005 by ASME



This same (stable) steady state occurs in region D, which
lies above region A in Fig.2. The difference between these
two regions is that D contains only 3 slow flow equilibria,
namely 2 sinks and a saddle. As we cross the curve separat-
ing A and D, two of the saddles in A merge with the source
in A in a pitchfork bifurcation, leaving a single saddle in
their place.

We next consider regions E and B which lie to the left
and right of region A in Fig.2. The slow flow phase por-
trait for points in these two regions are qualitatively the
same, consisting of 3 slow flow equilibria, namely a source,
a saddle and a sink. Only one of these slow flow equilib-
ria is stable, and corresponds to a periodic motion at the
forcing frequency in eq.(1). This same (stable) steady state
occurs in region C2, which lies above region D in Fig.2. The
difference between region C2 and regions E and B is that
C2 contains just 1 slow flow equilibrium point, namely a
sink. As we cross the curve separating C2 from one of the
regions E, D or B below it (each of which contains 3 slow
flow equilibria), a saddle-node bifurcation occurs leaving a
single sink in region C2.

We have now discussed all regions in Fig.2 except for
regions C1 which lie in the lower left and right portions of
Fig.2. Regions C1 contain a single unstable slow flow equi-
librium point, namely a source. However, unlike the other
regions in Fig.2, regions C1 also contain a stable slow flow
limit cycle. This motion corresponds to a stable quasiperi-
odic motion in eq.(1). Hopf bifurcations occur along the
curves separating regions C1 and C2.

We offer the following summary of predicted (stable)
steady state behavior of eq.(1): In regions A and D we have
2 distinct stable periodic motions; in regions E, C2 and B
we have a single stable periodic motion; and in regions C1

we have a stable quasiperiodic motion.

The discussion thus far has fixed α at unity (Fig.2). We
next look at the effect of changing α. See Fig.3. We see that
the width of the region corresponding to 2 distinct steady
state periodic motions (regions A and D) decreases as we
decrease α. In addition the regions B and E become more
symmetrical. For α = 0.2 we see that the region D has dis-
appeared and the regions E and B have merged to give just
one region. At α = 0 the region with 2 stable steady states
has disappeared. This case corresponds to nonparametric
periodic forcing of a van der Pol oscillator, and has been
discussed in (Rand, 2004).

Thus the presence of the regions A and D which con-
tain 2 stable periodic motions may be associated with the
3
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parameter α. Since α is the coefficient of the parametric
excitation term which has frequency 2ω, we may associate
these regions with 2:1 subharmonic response. This is in con-
trast to regions E, B and C2, which may be associated with
1:1 frequency locking.

5 CONCLUSION

We have shown that the steady state response of the
forced Mathieu-van der Pol equation (1) can consist of ei-
ther 2:1 subharmonic periodic motion or 1:1 periodic motion
or quasiperiodic motion, depending on the forcing frequency
and the forcing amplitudes, both parametric and nonpara-
metric.

The hysteresis observed in numerical simulations with
slowly varying forcing frequency (Fig.1) is explained by
changes in the nature of the steady state due to bifurca-
tions in the slow flow equilibria. For example, the jump
upwards in Fig.1 is due to passage from region A to region
B in the process of which a saddle-node bifurcation occurs
and a stable periodic motion disappears.

Our findings may be summarized briefly in words (for
fixed α) by stating that parametric excitation is most im-
portant when ω is close to the unforced frequency of the
oscillator (here taken as unity), or, in other words, when
the detuning k1 is close to zero, and when F is small. Non-
parametric forcing takes over when |k1| is a little larger or
when F is larger. Quasiperiodic behavior occurs when |k1|
becomes sufficiently large for given F .
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Figure 1: Results of numerical integration of eq.(1) for parameters ε = 1, α = 1 and F = 0.3.
Response amplitude R is plotted against forcing frequency ω. Quasiperiodic behavior (QP) is
observed in the regions located approximately at ω < 0.97 and ω > 1.03. Periodic behavior at
the forcing frequency is observed in the rest of the plot, with hysteresis as shown.
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Figure 2: Behavior of the slow flow (7),(8). Bifurcation curves (obtained using AUTO) and
sketches of corresponding slow flow phase portraits are displayed for α = 1.
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Figure 3: Bifurcation curves (obtained using AUTO) for slow flow (7),(8), for α = 1, 0.2 and 0.
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