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ABSTRACT
Coexistence phenomenon refers to the absence of expected

tongues of instability in parametrically excited systems. In this
paper we obtain sufficient conditions for coexistence to occur in
the generalized Ince equation:

(1 + a1 cos t + a2 cos 2t) v̈

+(b1 sin t + b2 sin 2t) v̇

+(δ + c1 cos t + c2 cos 2t) v = 0

The results are applied to the stability of motion of a nonlinear
normal mode, the x-mode, in a class of conservative two degree
of freedom systems.

1 INTRODUCTION

1.1 Introductory Example

This paper concerns the stability of nonlinear normal
modes in two degree of freedom systems. Instabilities in
such cases are due to autoparametric excitation (Minorsky,
1962), that is, parametric excitation which is caused by the
system itself, rather than by an external periodic driver.
The investigation of stability involves the solution of a sys-
tem of linear differential equations with periodic coefficients
(Floquet theory). The typical behavior of such a system
involves tongues of instability representing parametric reso-
nances (Mathieu’s equation for example). Coexistence phe-
nomenon refers to the circumstance in which some of these
tongues of instability have closed up and disappeared. Their
absence cloaks hidden instabilities which may emerge due
to small changes in the system. This effect is important
1

because it occurs in various mechanical systems.

We begin by illustrating the phenomenon with a phys-
ical example. This example, called “the particle in the
plane” by Yang and Rosenberg (Yang and Rosenberg, 1967),
(Yang and Rosenberg, 1968) who first studied it, involves
a unit mass which is constrained to move in the x-y plane,
and is restrained by two linear springs, each with spring
constant of 1

2 . The anchor points of the two springs are
located on the x axis at x = 1 and x = −1. Each of the two
springs has unstretched length L. See Fig.1.

This autonomous two degree of freedom system has the
following equations of motion (Yang and Rosenberg, 1967):

ẍ + (x + 1)f1(x, y) + (x − 1)f2(x, y) = 0 (1)
ÿ + yf1(x, y) + yf2(x, y) = 0 (2)

where

f1(x, y) =
1
2

(
1 − L√

(1 + x)2 + y2

)
(3)

f2(x, y) =
1
2

(
1 − L√

(1 − x)2 + y2

)
(4)

This system exhibits an exact solution corresponding to
a mode of vibration in which the particle moves along the
Copyright c© 2005 by ASME



Figure 1. The Particle in the Plane.

x axis (the x-mode):

x = A cos t, y = 0 (5)

In order to determine the stability of this motion, one must
substitute x = A cos t + u, y = 0 + v into the equations
of motion (1),(2) where u and v are small deviations from
the motion (5), and then linearize in u and v. The result is
two linear differential equations on u and v. The u equation
turns out to be the simple harmonic oscillator, and cannot
produce instability. The v equation is:

d2v

dt2
+
(

δ − A2 cos2 t

1 − A2 cos2 t

)
v = 0 (6)

where δ = 1−L. For a particular pair of parameters (A, δ),
eq.(6) is said to be stable if all solutions to (6) are bounded,
and unstable if an unbounded solution exists. A stability
chart for eq.(6) may be obtained by using either perturba-
tion theory or numerical integration together with Floquet
theory (see (Rand, 2004) for example). See Fig.2. Note
that although this equation exhibits an infinite number of
tongues of instability, only one of them (emanating from
2

Figure 2. Stability chart for Eq.(6). S=stable, U=unstable. Curves obtained

by perturbation analysis.

the point δ = 4, A = 0) is displayed, for convenience. (The
tongues of instability emanate from δ = 4N2, A = 0 for
N = 1, 2, 3, · · ·, and becomes progressively narrower for in-
creasing N .) Since the unstretched spring length L > 0,
the parameter δ = 1 − L < 1. Thus the only tongue of
instability for eq.(6) which has physical significance is the
one which emanates from δ = 0, see Fig.2.

Now we wish to compare the behavior of this system
with a slightly perturbed system in which some extra stiff-
ness is added. We add a spring which gives a force −Γy
in the y-direction. This adds a term +Γy to the left hand
side of eq.(2). The new system still exhibits the periodic
solution (5), and its stability turns out to be governed by
the O.D.E.

d2v

dt2
+
(

δ + Γ − (1 + Γ)A2 cos2 t

1 − A2 cos2 t

)
v = 0 (7)
Copyright c© 2005 by ASME



Note that eq.(7) reduces to (6) for Γ = 0. Fig.3 shows the
stability chart for eq.(7).

Figure 3. Stability chart for Eq.(7) for Γ = 0.2. S=stable, U=unstable.

Note the presence of an additional tongue of instability compared to Fig.2.

See text.

Comparison of Figs.2 and 3 shows that a new region of
instability has occurred due to the small change made in
the system. If an engineering design was based on Fig.2,
and if the actual engineering system involved slight depar-
tures from the model of eq.(6), the appearance of such an
unexpected region of instability could cause disastrous con-
sequences. In this paper we investigate the possibility of
the occurrence of such hidden instabilities in a class of two
degree of freedom systems.
3

1.2 Coexistence Phenomenon

The appearance of an unexpected instability region in
the foregoing example may be explained by stating that
eq.(6) had buried in it an instability region of zero thickness
(Rand and Tseng, 1969). This is shown in Fig.4, which is
a replot of Fig.2 with the zero-thickness instability region
displayed as a dashed line. This curve, which happens to
have the simple equation δ = 1, is characterized by the
coexistence of two linearly independent periodic solutions
of period 2π. This condition is singular and so we are not
surprised to find that nearly any perturbation of the original
system (6), such as the reassignment of spring stiffnesses
in (7), will produce an opening up of the zero-thickness
instability region.

Figure 4. Stability chart for Eq.(6) showing coexistence curve as a dashed

line (here δ = 1). Note that although the coexistence curve is itself stable,

it may give rise to a tongue of instability if the system is perturbed.
Copyright c© 2005 by ASME



It should be mentioned that there are various other
physical systems which are known to exhibit coexistence.
These include a simplified model of a vibrating elastica
(Pak, Rand and Moon, 1992), the elastic pendulum (Rand,
2004), rain-wind induced vibrations (Rtono and van der
Burgh, 2001), Josephson junctions (Doedel, Aronson and
Othmer, 1988) and coupled nonlinear oscillators (Pecelli
and Thomas, 1978).

Coexistence phenomenon has been treated from a the-
oretical point of view in (Magnus and Winkler, 1966), and
more recently in (Rand, 2004) and (Ng and Rand, 2003).
In this paper we use perturbation methods to rederive and
extend the results given in (Magnus and Winkler, 1966),
(Rand, 2004) and (Ng and Rand, 2003). In particular, we
address the question of finding conditions under which a
class of linear O.D.E.’s with periodic coefficients will ex-
hibit coexistence phenomenon.

2 MOTIVATING APPLICATION

We wish to study autoparametric excitation in a class of
systems which on the one hand have the following very gen-
eral expressions for kinetic energy T and potential energy
V :

T = β1(x, y)ẋ2 + β2(x, y)ẋẏ + β3(x, y)ẏ2 (8)

V =
1
2
ω2

1x
2 +

1
2
ω2

2y
2

+α40x
4 + α31x

3y + α22x
2y2 + α13xy3 + α04y

4 (9)

and on the other hand generalize the particle in the plane
example by exhibiting an x-mode of the form of eq.(5):

x = A cos t, y = 0 (10)

Writing Lagrange’s equations for the system (8),(9), we find
that in order for (10) to be a solution, we must have α40 = 0,
α31 = 0, β2 = 0 and β1 = ω2

1/2. Choosing ω1 = 1 without
loss of generality, we obtain the following expressions for T
and V :

T =
1
2
ẋ2 + β3(x, y)ẏ2 (11)

V =
1
2
x2 +

1
2
ω2

2y
2 + α22x

2y2 + α13xy3 + α04y
4 (12)
4

We further assume that β3(x, y) has the following form:

β3(x, y) = β00 + β01x + β10y + β02x
2 + β11xy + β20y

2 (13)

Now we investigate the linear stability of the x-mode (10).
We set x = A cos t + u, y = 0 + v in Lagrange’s equations
and then linearize in u and v. This gives the u equation as
ü + u = 0 and the v equation as:

(2β00 + A2β02 + 2Aβ01 cos t + A2β02 cos 2t) v̈

+(−2Aβ01 sin t − 2A2β02 sin 2t) v̇

+(ω2
2 + A2α22 + A2α22 cos 2t) v = 0 (14)

This leads us to consider the following abbreviated form of
(14):

(1 + a1 cos t + a2 cos 2t) v̈

+(b1 sin t + b2 sin 2t) v̇

+(δ + c1 cos t + c2 cos 2t) v = 0 (15)

where

a1 =
2Aβ01

2β00 + A2β02

a2 =
A2β02

2β00 + A2β02

b1 =
−2Aβ01

2β00 + A2β02
= −a1

b2 =
−2A2β02

2β00 + A2β02
= −2a2

δ =
ω2

2 + A2α22

2β00 + A2β02

c1 = 0

c2 =
A2α22

2β00 + A2β02

(16)

3 GENERALIZED INCE’S EQUATION

We come now to the main content of this paper, namely
a study of the coexistence phenomenon in the O.D.E. (15):

(1 + a1 cos t + a2 cos 2t) v̈

+(b1 sin t + b2 sin 2t) v̇

+(δ + c1 cos t + c2 cos 2t) v = 0 (17)
Copyright c© 2005 by ASME



In the case that a2 = 0, b2 = 0 and c2 = 0, eq.(17) re-
duces to a well-known O.D.E. called Ince’s equation. Coex-
istence in Ince’s equation has been studied in (Magnus and
Winkler, 1966), (Rand, 2004) and (Ng and Rand, 2003). In
the rest of this paper, we generalize the previously obtained
results for Ince’s equation to apply to the generalized Ince’s
equation (17).

Eq.(17) is a linear O.D.E. with periodic coefficients hav-
ing period 2π. From Floquet theory we know that the tran-
sition curves separating regions of stability from regions of
instability are defined by sets of parameter values that al-
low periodic solutions of period 2π or 4π. These curves can
be found by using the method of harmonic balance. Peri-
odicity enables the solution to be written in the form of a
Fourier series:

v(t) = A0 +
∞∑

n=1

An cos
nt

2
+

∞∑

n=1

Bn sin
nt

2
(18)

Substituting (18) into (17) and trigonometrically reduc-
ing and collecting terms gives an infinite set of coupled equa-
tions. These uncouple into four sets of equations on even
and odd cosine (An) and sine (Bn) coefficients. For exam-
ple, the A-even coefficients satisfy the following equations:

A-even




δ − 1
2

a1 − 1
2

b1 + 1
2

c1 − 2 a2 − b2 + 1
2

c2 0 ...

c1 δ − 1 − 1
2

a2 − 1
2

b2 + 1
2

c2 −2 a1 − b1 + 1
2

c1 ...

c2 − 1
2

a1 + 1
2

b1 + 1
2

c1 δ − 4 −9
2

a1 − 3
2

b1 + 1
2

c1 ...

0 − 1
2

a2 + 1
2

b2 + 1
2

c2 −2 a1 + b1 + 1
2

c1 δ − 9 ...
...

...
...

...
. . .







A0

A2

A4

A6

...




= 0

To simplify the notation, we introduce the following
substitutions:

T (n) = δ −
(

n
2

)2

M (n) = 1
2

(
−
(

n
2

)2
a1 + n

2 b1 + c1

)

P (n) = 1
2

(
−
(

n
2

)2
a2 + n

2 b2 + c2

)
(19)
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The four sets of penta-diagonal matrix equations may
then be written:

A-even




T (0) M (−2) P (−4) 0 0 0 ...

2M (0) T (2) + P (−2) M (−4) P (−6) 0 0 ...

2P (0) M (2) T (4) M (−6) P (−8) 0 ...

0 P (2) M (4) T (6) M (−8) P (−10) ...

0 0 P (4) M (6) T (8) M (−10) ...

0 0 0 P (6) M (8) T (10) ...
...

...
...

...
...

...
. . .







A0

A2

A4

A6

A8

A10

...




= 0

B-even




T (2) − P (−2) M (−4) P (−6) 0 0 ...

M (2) T (4) M (−6) P (−8) 0 ...

P (2) M (4) T (6) M (−8) P (−10) ...

0 P (4) M (6) T (8) M (−10) ...

0 0 P (6) M (8) T (10) ...
...

...
...

...
...

. . .







B2

B4

B6

B8

B10

...




= 0

A-odd




T (1) + M (−1) M (−3) + P (−3) P (−5) 0 0 ...

M (1) + P (−1) T (3) M (−5) P (−7) 0 ...

P (1) M (3) T (5) M (−7) P (−9) ...

0 P (3) M (5) T (7) M (−9) ...

0 0 P (5) M (7) T (9) ...
...

...
...

...
...

. . .







A1

A3

A5

A7

A9

...




= 0

B-odd




T (1) − M (−1) M (−3) − P (−3) P (−5) 0 0 ...

M (1) − P (−1) T (3) M (−5) P (−7) 0 ...

P (1) M (3) T (5) M (−7) P (−9) ...

0 P (3) M (5) T (7) M (−9) ...

0 0 P (5) M (7) T (9) ...
...

...
...

...
...

. . .







B1

B3

B5

B7

B9

...




= 0
6 Copyright c© 2005 by ASME



Each of the four above sets of equations is homogeneous
and of infinite order, so for a nontrivial solution the determi-
nants must vanish. Note that the resulting determinants for
A-odd and B-odd are identical except for the first row and
the first column. A comparable similarity exists between
the determinants for A-even and B-even. Although gener-
ally the vanishing of, say, the A-odd determinant will give
a completely different result than that of the B-odd deter-
minant, nevertheless there may exist a special relationship
between the coefficients such that the two results will give
infinitely many identical branches, that is, infinitely many
of the transition curves will be identical, in which case the
associated instability regions will disappear (or rather will
have zero width). On such transition curves we will have
both an odd and an even periodic motion, that is, two lin-
early independent periodic motions will coexist. In order
to derive conditions for coexistence, we write any one of the
above infinite penta-diagonal determinants in the form:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R R R 0 0 0 0 0 0 ...

R R R R 0 0 0 0 0 ...

R R R R Y 0 0 0 0 ...

0 R R R Y Y 0 0 0 ...

0 0 X X S S S 0 0 ...

0 0 0 X S S S S 0 ...

0 0 0 0 S S S S S ...

0 0 0 0 0 S S S S ...

0 0 0 0 0 0 S S S ...
...

...
...

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (20)

If all three of the X terms vanish, or if all three of
the Y terms vanish, the determinant will decompose into
two determinants, one involving only the R terms, and the
other involving only the S terms. Since the A-odd and
B-odd determinants are identical except for the upper left
hand corner, the corresponding determinant of (20) involv-
ing only the S terms will be the same for both A-odd and
B-odd, and we will have coexistence. The vanishing of the
three X terms or of the three Y terms turns out to give the
following conditions:

P (n − 2) = 0, M (n) = 0, P (n) = 0 (21)
7

where n can be any integer,

n = · · · ,−3,−2,−1, 0, 1,2,3, · · ·

From our definitions (19) of M and P , we are left with the
following conditions for coexistence in the generalized Ince’s
equation (17):

c1 =
(

n
2

)2
a1 − n

2 b1

b2 = (n − 1) a2

c2 =
(

n
2

)2
a2 − n

2
b2

(22)

Thus coexistence will occur in the generalized Ince
equation (17) if eqs.(22) hold for any integer n, positive,
negative or zero.

Note that in the special case a2 = b2 = c2 = 0, eq.(17)
becomes Ince’s equation:

(1 + a1 cos t) v̈ + (b1 sin t) v̇ + (δ + c1 cos t) v = 0 (23)

In this case the matrices (3)-(3) become tri-diagonal
(instead of penta-diagonal) and the condition for coexis-
tence reduces to just a single equation (Magnus and Win-
kler, 1966),(Rand, 2004):

c1 =
(n

2

)2

a1 −
n

2
b1 (24)

Note also that in the parallel case a1 = b1 = c1 = 0,
eq.(17) again becomes a version of Ince’s equation:

(1 + a2 cos 2t) v̈ + (b2 sin 2t) v̇ + (δ + c2 cos 2t) v = 0 (25)

In this case we set τ = 2t giving

(1 + a2 cos τ ) v̈ + (
b2

2
sin τ ) v̇ + (δ∗ +

c2

4
cos τ ) v = 0 (26)

which is of the form of eq.(23) with a1 = a2, b1 = b2/2,
c1 = c2/4 and δ∗ = δ/4, whereupon the condition (24) for
coexistence becomes:

c2 = n2 a2 − n b2 (27)
Copyright c© 2005 by ASME



In related work, it has been shown (Rectenwald, 2005)
that even more complicated versions of Ince’s equation can-
not support coexistence. For example, the equation

(1 + a1 cos t + a2 cos 2t + a3 cos 3t) v̈

+(b1 sin t + b2 sin 2t + b3 sin 3t) v̇

+(δ + c1 cos t + c2 cos 2t + c3 cos 3t) v = 0 (28)

gives rise to four 7-diagonal determinants (cf. eqs.(3)-(3))
and requires 6 conditions to be met in order for coexistence
to occur (cf. eqs.(21)). These conditions turn out to be self-
contradictory, so eq.(28) cannot support coexistence (unless
some of the coefficients are zero, thereby reducing it to the
form of eq.(17)).

Note that the coexistence conditions (22) do not involve
the parameter δ in eq.(17). Once the parameters of the sys-
tem have been chosen to satisfy the coexistence conditions
(22), the vanishing of the associated determinant (20) will
relate δ to the other parameters of the system.

4 APPLICATION TO STABILITY OF MOTION

Earlier in this paper we showed that the stability of
the x-mode, eq.(10), in the system (11),(12),(13) was gov-
erned by the generalized Ince’s equation (17) with coeffi-
cients given by eq.(16). From (16) we substitute c1 = 0 and
b1 = −a1 into the first of the coexistence conditions (22)
with the result:

0 =
(n

2

)2

a1 −
n

2
(−a1) (29)

which is satisfied by either n = −2 or n = 0 or a1 = 0.

Next, from (16) we substitute b2 = −2a2 into the second
of the coexistence conditions (22) with the result:

−2a2 = (n − 1)a2 (30)

which is satisfied by either n = −1 or a2 = 0.

Thus we see that if both a1 and a2 are non-zero, then
coexistence cannot occur in the general system defined by
eqs.(11),(12),(13), since there is no integer n which can sat-
isfy the conditions (22). From the definitions (16) of a1 and
a2, this assumes that both β01 and β02 are nonzero (assum-
ing A > 0). (Recall that the βij coefficients occur in the
kinetic energy T , see eqs.(11),(13)).
8

Note that if β01=0 but β02 does not vanish, then coex-
istence is possible. However in this case eq.(17) reduces to
Ince’s equation, which is well-known to support coexistence
(Magnus and Winkler, 1966),(Rand, 2004).

5 ANOTHER APPLICATION

In this section we extend the foregoing work by consid-
ering systems in which the x-mode satisfies the nonlinear
ODE:

ẍ + x + x3 = 0 (31)

which has a solution in terms of the Jacobian elliptic func-
tion cn:

x = A cn(αt, k) (32)

where ((Rand, 1994), p.80)

α =
√

A2 + 1, k =
A√

2(A2 + 1)
(33)

This requires that we relax the condition that α40 = 0 (cf.
eqs.(9) and (12)), and we take:

T =
1
2
ẋ2 + β3(x, y)ẏ2 (34)

V =
1
2
x2 +

1
4
x4 +

1
2
ω2

2y
2 + α22x

2y2 + α13xy3 + α04y
4 (35)

β3(x, y) = β00 + β01x + β10y + β02x
2 + β11xy + β20y

2 (36)

We set x = A cn(αt, k) + u, y = 0 + v in Lagrange’s equa-
tions and then linearize in u and v. This gives the v equation
as

2(β02A
2 cn2(αt, k) + β01A cn(αt, k) + β00) v̈

−α dn(αt, k) sn(αt, k)(2β01A + 4β02A
2 cn(αt, k)) v̇

+(2α22A
2 cn2(αt, k) + ω2

2) v = 0
(37)
Copyright c© 2005 by ASME



Although eq.(37) has coefficients involving Jacobian elliptic
functions, we may transform it to a generalized Ince equa-
tion by utilizing a transformation given in (Magnus and
Winkler, 1966). We begin by replacing t with a new time
variable T = αt, so that cn(αt, k) = cn(T, k). Then we
replace T by τ , where

dT =
dτ√

1 − k2 sin2 τ
(38)

This turns out to convert the Jacobian elliptic functions to
trig functions (Byrd and Friedman, 1954) as follows:

sn(T, k) = sin τ

cn(T, k) = cos τ

dn(T, k) =
√

1 − k2 sin2 τ

(39)

The result of these transformations is to replace eq.(37) by
the following generalized Ince equation:

(1 + a1 cos τ + a2 cos 2τ + a3 cos 3τ + a4 cos 4τ ) v′′

+(b1 sin τ + b2 sin 2τ + b3 sin 3τ + b4 sin 4τ ) v′

+(δ + c1 cos τ + c2 cos 2τ + c3 cos 3τ + c4 cos 4τ ) v = 0
(40)

where the coefficients ai, bi and ci are given as follows:

a1 =
2Aβ01(1 − 1

4k2)
a0

(41)

a2 =
β00k

2 + β02A
2

a0
(42)

a3 =
1
2β01Ak2

a0
(43)

a4 =
1
4A2k2β02

a0
(44)

b1 =
−β01A(2 − k2)

a0
(45)

b2 =
−2β02A

2(1 − 1
4k2) − β00k

2

a0
(46)

b3 =
−β01Ak2

a0
(47)
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b4 =
−3

4 A2k2β02

a0
(48)

δ =
ω2

2 + α22A
2

a0α2
(49)

c1 = 0 (50)

c2 =
α22A

2

a0α2
(51)

c3 = 0 (52)

c4 = 0 (53)

where

a0 = β00(2 − k2) + β02A
2(1 − 1

4
k2) (54)

As mentioned in connection with eq.(28) above, eq.(40)
cannot in general support coexistence. However, if β01 = 0,
the trigonometric terms in eq.(40) with arguments of τ and
3τ will vanish, leaving an equation which can easily be
transformed into the generalized Ince eq.(17) by replacing
τ by z = 2τ . Once this transformation is completed, condi-
tions for coexistence in the resulting equation will be given
by eqs.(22). Carrying out this plan yields three eqs. cor-
responding to eqs.(22). The equation which corresponds to
the second of eqs.(22) turns out to be:

(n + 1/2)α2β02A
2k2 = 0 (55)

which requires that n = −1/2 and thus cannot be satisfied
by any integer value of n. However, eq.(55) as well as the
other two eqs. coming from eqs.(22) can be satisfied by tak-
ing β02 = 0.

So we conclude that in order for coexistence to occur
in eq.(37), both β01 and β02 must be taken equal to zero.
This simplifies eq.(40) to the following:

(1 + a2 cos 2τ) v′′ + (b2 sin 2τ ) v′ + (δ + c2 cos 2τ) v = 0
(56)

This is of the form of eq.(25) and as was discussed
above, involves a single condition (27) for coexistence:
Copyright c© 2005 by ASME



Copyright c© 2005 by ASME
c2 = n2 a2 − n b2 (57)

Using eqs.(41)-(53), eq.(57) becomes:

(−α2β00k
2)n2 + (−α2β00k

2)n + α22A
2 = 0 (58)

which becomes simplified by using eqs.(33):

n2 + n − 2α22

β00
= 0 (59)

The condition for coexistence therefore becomes simply:

α22

β00
=

n(n + 1)
2

(60)

where n is an integer, positive, negative or zero.

6 EXAMPLE

As an example, we may take β00 = 1/2 and α22 = 1/2,
which from eq.(60) corresponds to n = 1 and n = −2.
Eqs.(34),(35) become:

T =
1
2
ẋ2 +

(
1
2

+ β10x + β20x
2 + β11xy

)
ẏ2 (61)

V =
1
2
x2 +

1
4
x4 +

1
2
ω2

2y
2 +

1
2
x2y2 + α13xy3 + α04y

4 (62)

In order to consider the simplest possible such example, we
take β10 = β20 = β11 = α13 = α04 = 0, for which case
Lagrange’s equations become:

ẍ + x + x3 + xy2 = 0 (63)
ÿ + ω2

2y + x2y = 0 (64)

This system exhibits the exact solution (the x-mode):

x = A cn(αt, k), y = 0 (65)
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where α and k are given by eq.(33). The stability of the
x-mode depends upon the two parameters ω2 and A, and is
governed by the ODE (37), which becomes:

v̈ + (ω2
2 + A2 cn2(αt, k)) v = 0 (66)

The stability chart corresponding to eq.(66) consists of tran-
sition curves which maybe displayed in the ω2

2-A
2 plane.

Since the period of the variable coefficient cn2(αt, k)) ap-
proaches π as A approaches zero, we may expect instability
tongues to emanate from the ω2

2 axis at each of the points
ω2

2 = n2, where n = 1, 2, 3, · · ·. However, because α22 and
β00 have been chosen to satisfy the coexistence condition
(60) for n = 1 and n = −2, there are no even tongues
and only one odd tongue, which emanates from the point
ω2

2 = 1, A2 = 0 (Rand, 2004). See Fig.5, which shows this
single instability tongue as well as a coexistence curve ema-
nating from ω2

2 = 4, A2 = 0. Fig.5 was obtained as follows:

Eq.(66) is a version of Lame’s equation (Arscott, 1964).
Following the procedure given in eqs.(38),(39), it can be
transformed to:

(3A2 + 4 + A2 cos 2τ ) v′′ − A2 sin 2τ v′

+(4ω2
2 + 2A2 + 2A2 cos 2τ) v = 0 (67)

Note that eq.(67) has the exact solution v = cos τ corre-
sponding to the parameter ω2

2 = 1. Therefore the straight
line ω2

2 = 1 is a transition curve as shown in Fig.5. Simi-
larly, eq.(67) has the exact solution v = sin τ corresponding
to the parameter ω2

2 = 1 + A2/2, which also plots as a
straight line in Fig.5.

In order to obtain an expression for the coexistence
curves, we may use a regular perturbation method (Stoker,
1950). We expand

ω2
2 = n2 + k1A

2 + k2A
4 + · · · (68)

v =
{

sin nτ
cos nτ

}
+ v1A

2 + v2A
4 + · · · (69)

We substitute eqs.(68),(69) into eq.(67), collect terms, and
choose the values of the coefficients ki to eliminate secular
terms at each order of A2, as usual in regular perturbations
(Stoker, 1950). Doing this for n = 2 we obtain the same
result for both sin and cos choices in eq.(69), signifying



coexistence. The resulting curve is displayed in Fig.5 and
has the equation (obtained by using macsyma to do the
computer algebra):

ω2
2 = 4 +

5 A2

2
− 5 A4

96
+

5 A6

128
− 26665 A8

884736

+
9385 A10

393216
− 19720235 A12

1019215872
+ · · · (70)

Figure 5. Stability chart for Eq.(66). S=stable, U=unstable. Curves ob-

tained by perturbation analysis. The dashed line is a coexistence curve, which

is stable.
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7 CONCLUSIONS

We have obtained conditions (22) for coexistence to oc-
cur in the generalized Ince equation (17). These conditions
are more numerous and thus more difficult to meet than the
comparable condition for Ince’s equation:

(1 + a1 cos t) v̈ + b1 sin t v̇ + (δ + c1 cos t) v = 0 (71)

The necessary and sufficient condition for coexistence to
occur in (71) has been obtained in (Magnus and Winkler,
1966) and can be written in the form:

M (n) =
1
2

(
−
(n

2

)2

a1 +
n

2
b1 + c1

)
= 0 (72)

where n can be any integer,

n = · · · ,−3,−2,−1, 0, 1,2,3, · · ·

That is, coexistence will occur in (71) iff condition (72) is
satisfied for any integer value of n.

In applications to the stability of the x-mode in the
class of two degree of freedom systems (8),(9) considered
in this paper, we have shown that in general coexistence
will not occur if the system is sufficiently complicated, i.e.
if both of the coefficients β01 and β02 occurring in eq.(13)
are non-zero. The reason for this is that the equation gov-
erning stability is the generalized Ince’s equation (17), and
the conditions for coexistence to occur in this equation are
more difficult to meet than for Ince’s equation (71).

We have also shown that the same general procedure
can be used on problems in which the x-mode satisfies a
nonlinear ODE, eq.(31).
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