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ABSTRACT

We analyze a model of gene transcription and protein syn-
thesis which has been previously presented in the biological lit-
erature. The model takes the form of an ODE (ordinary differ-
ential equation) coupled to a DDE (delay differential equation),
the state variables being concentrations of messenger RNA and
protein. The delay is assumed to depend on the concentration of
mRNA and is therefore state-dependent. Linear analysis gives a
critical time delay beyond which a periodic motion is born in a
Hopf bifurcation. Lindstedt’s method is applied to the nonlinear
system, resulting in closed form approximate expressions for the
amplitude and frequency of oscillation.

INTRODUCTION

This work deals with a mathematical model of gene ex-
pression (Monk, 2003a),(Lewis, 2003). The biology of the
problem may be described as follows: A gene, i.e. a section
of a DNA molecule, is copied (transcribed) into messenger
RNA (mRNA), which is transported out of the nucleus of
the cell into the cytoplasm, where it enters a subcellular
structure called a ribosome. In the ribosome the genetic
information encoded in the mRNA produces a protein (a
process called translation). The protein then enters the nu-
cleus where it represses the transcription of its own gene.

This process has been modeled by two differential equa-
tions (Monk, 2003a):

Ṁ = αm

(

1

1 +
(

P
P0

)n

)

− µm M (1)

Ṗ = αp M − µp P (2)
1

where M(t) is the concentration of mRNA and P (t) is the
concentration of the associated protein, and where dots rep-
resent differentiation with respect to time t. The model
constants are as given in (Monk, 2003a): αm is the rate
at which mRNA is transcribed in the absence of the associ-
ated protein, αp is the rate at which the protein is produced
from mRNA in the ribosome, µm and µp are the rates of
degradation of mRNA and of protein, respectively, P0 is
a reference concentration of protein, and n is a parameter
known as a Hill coefficient. After (Monk, 2003a), we assume
µm=µp=µ.

In laboratory experiments, the dynamics of the process
of gene copying has been observed to sometimes result in a
steady state equilibrium, in which case the concentrations
of mRNA and protein are constant, and to sometimes result
in an oscillation in which these concentrations vary period-
ically in time. However, it is easy to see that the system
(1),(2) cannot support oscillations, as follows: Differentiat-
ing (2) and substituting (1) into the result gives the second
order equation:

P̈ + (µm + µp)Ṗ + F (P ) = 0 (3)

where

F = µmµpP − αmαp

1 +
(

P
P0

)n (4)

Eq.(3) is a linearly damped oscillator with nonlinear con-
servative restoring force F and as such cannot oscillate.

A natural question arises as to how the model (1),(2)
can be changed to be more realistic so that it will oscillate.
Copyright c© 2007 by ASME



One possibility involves coupling a series of such systems
together. For example, (Elowitz and Leibler, 2000) have
shown that three such systems (a “repressilator”) can be
coupled in such a way as to exhibit a periodic motion. An-
other approach involves introducing delay into the model.

Sources of the delay include the time required for tran-
scription and translation to occur. (Monk, 2003a) states
that transcription has an average delay time of about 10-20
min while translation delays are about 1-3 min. He posits
the following delayed version of Eqs.(1),(2):

Ṁ = αm

(

1

1 +
(

Pd

P0

)n

)

− µm M (5)

Ṗ = αp M − µp P (6)

where the subscript d denotes a variable which is delayed by
time T , that is, Pd = P (t−T ). In (Monk, 2003b) it is shown
that (5),(6) are equivalent to a system which contains both
transcriptional and translational delays.

Oscillations in the system (5),(6) have been studied pre-
viously for constant delay in (Verdugo and Rand, 2007a)
and (Verdugo and Rand, 2007b). In the present work

we extend previous results to include delays which

are state-dependent, that is, where the delay T de-

pends on M , the concentration of mRNA. This effect
is important in systems where the mechanisms which trans-
port the mRNA from the nucleus to the cytoplasm (through
the nuclear membrane) become saturated, in which case the
delay will increase with the concentration of mRNA.

HOPF BIFURCATION WITH STATE-DEPENDENT DELAY

In this section we use Lindstedt’s perturbation method
to investigate periodic solutions to the system (5),(6) in the
case that the delay depends on the state of the system. Hopf
bifurcations in state-independent delay equations have been
treated previously by (Hassard et al., 1981) and (Kalmar-
Nagy et al., 2001). State-dependent delay equations have
recently been investigated by (Insperger et al., 2005) and
(Insperger et al., 2007), who have provided linearized con-
stant delay DDE’s which govern the stability of an equi-
librium solution. Periodic solutions of Eqs.(5),(6) in the
case that the delay is constant have been investigated ear-
lier by (Verdugo and Rand, 2007a) and (Verdugo and Rand,
2007b). We will follow (Verdugo and Rand, 2007a) in our
treatment of the state-dependent delay problem.

As stated in the Introduction, the delay associated with
the transport of mRNA from the DNA copying site to the
ribosome, will increase with the concentration of mRNA in
systems where passage through the nuclear membrane is

2

saturated. This leads us to propose the following form for
the state-dependent delay T :

T = T0 + c̄M (7)

where T0 and c̄ are parameters, and where M(t) is the con-
centration of mRNA.

Stability of Equilibrium

We begin by rescaling Eqs.(5) and (6). We set m = M
αm

,

p = P
αmαp

, and p0 = P0

αmαp
, giving:

ṁ =
1

1 +
(

pd

p0

)n − µm (8)

ṗ = m − µp (9)

In Eq.(8), pd = p(t−T ) = p(t−T0 − c̄M) = p(t−T0 − cm),
where c = c̄αm.

Equilibrium points, (m∗, p∗), for (8) and (9) are found
by setting ṁ = 0 and ṗ = 0

µm∗ =
1

1 +
(

p∗

p0

)n (10)

m∗ = µp∗ (11)

Solving Eqs.(10) and (11) for p∗ we get

(p∗)n+1 + pn
0 p∗ − pn

0

µ2
= 0. (12)

Next we define ξ and η to be deviations from equi-
librium: ξ=ξ(t)=m(t)-m∗ , η=η(t)=p(t)-p∗, and ηd=η(t-T ).
This results in the nonlinear system:

ξ̇ =
1

1 +
(

ηd+p∗

p0

)n − µ(m∗ + ξ) (13)

η̇ = ξ − µη (14)

Expanding for small values of ηd, Eq.(13) becomes:

ξ̇ = −µξ − K ηd + H2 η2
d + H3 η3

d + · · · (15)
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where K, H2 and H3 depend on p∗, p0, and n as follows:

K =
nβ

p∗(1 + β)2
, where β =

(

p∗

p0

)n

(16)

H2 =
β n (β n − n + β + 1)

2 (β + 1)
3

p∗ 2
(17)

H3 =

−
β n

(

β2 n2 − 4 β n2 + n2 + 3 β2 n − 3 n + 2 β2 + 4 β + 2
)

6 (β + 1)
4

p∗ 3

(18)

Next we analyze the system coming from Eqs.(15) and
(14):

ξ̇ = −µ ξ − K ηd (19)

η̇ = ξ − µ η (20)

Although this equation would be linear for a constant delay,
it is nonlinear for a state-dependent delay due to the term
ηd:

ηd = η(t − T0 − cm) = η(t − T0 − cm∗ − c ξ) (21)

where m∗ is the equilibrium value of m, related to the pro-
tein equilibrium p∗ by Eq.(11). In order to linearize eq.(19),
we must develop ηd in Eq.(21) in a Taylor series for small
values of ξ and η. We obtain

ηd = η(t − T0 − cm∗) + nonlinear terms (22)

Thus the stability of the equilibrium point (m∗, p∗) will be
determined by the linearized system:

ξ̇ = −µ ξ − K η(t − T0 − cm∗) (23)

η̇ = ξ − µ η (24)

Stability analysis of Eqs.(23) and (24) shows that for
T=T0 +cm∗=0 (no delay), the equilibrium point (m∗, p∗) is
a stable spiral. Increasing the delay, T , in the linear system
(23)-(24) will yield a critical delay, Tcr , such that for T>Tcr ,
(m∗, p∗) will be unstable, suggesting a Hopf bifurcation.
For T=T0 + cm∗=Tcr the system (23)-(24) will exhibit a
3

pair of pure imaginary eigenvalues ±ωi corresponding to
the solution

ξ(t) = B cos(ωt + φ) (25)

η(t) = A cos ωt (26)

where A and B are the amplitudes of the η(t) and ξ(t) os-
cillations, and where φ is a phase angle. Note that we have
chosen the phase of η(t) to be zero without loss of general-
ity. For values of delay T close to Tcr , we may introduce a
detuning parameter ∆:

T = Tcr + ∆ + c ξ (27)

Using (27), the nonlinear system (8)-(9) is expected to
exhibit a periodic solution (a limit cycle) which can be writ-
ten in the approximate form of Eqs.(25), (26). Substituting
Eqs.(25) and (26) into Eqs.(23) and (24) and solving for ω
and Tcr we obtain

ω =
√

K − µ2 (28)

Tcr =
arctan

(

2µ
√

K−µ2

K−2µ2

)

√

K − µ2
(29)

Lindstedt’s Method

We use Lindstedt’s Method (Rand, 2005),(Rand and
Verdugo, 2007) on Eqs.(15) and (14). We begin by changing
the first order system into a second order DDE. This results
in the following form

η̈ + 2 µ η̇ + µ2 η = −K ηd + H2 η2
d + H3 η3

d + · · · (30)

where K, H2 and H3 are defined by Eqs.(16)-(18) and where
ηd is given by Eq.(21). We eliminate the appearance of ξ in
the expression for the delay in Eq.(21) by using Eq.(20):

ξ = η̇ + µ η (31)

We introduce a small parameter ε via the scaling

η = εu (32)

The detuning ∆ of Eq.(27) is scaled like ε2:

T = Tcr+∆+c ξ = Tcr+∆+c(η̇+µ η) = Tcr+ε2δ+cε(u̇+µ u)
(33)
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Next we stretch time by replacing the independent variable
t by τ , where

τ = Ω t (34)

This results in the following form of Eq.(30):

Ω2 d2u

dτ2
+ 2 µ Ω

du

dτ
+ µ2 u = −K ud + ε H2 u2

d + ε2 H3 u3
d

(35)
where ud = u(τ −Ω T ). We expand Ω in a power series in ε,
omitting the O(ε) term for convenience, since it turns out
to be zero:

Ω = ω + ε2k2 + . . . (36)

Next we expand the delay term ud:

ud = u(τ − ΩT ) (37)

= u(τ − Ω(Tcr + ε2δ + c ε(Ω u′(τ ) + µu(τ )))) (38)

= u(τ − ωTcr) +

ε[−c ω(ωu′(τ ) + µu(τ ))u′(τ − ωTcr)] +

ε2[
1

2
c2ω2(ωu′(τ ) + µu(τ ))2 u′′(τ − ωTcr)

−(δω + k2Tcr)u
′(τ − ωTcr)] + O(ε3) (39)

where primes represent differentiation with respect to τ .
Now we expand u(τ ) in a power series in ε:

u(τ ) = u0(τ ) + εu1(τ ) + ε2u2(τ ) + . . . (40)

Substituting and collecting terms, we obtain equations on
u0, u1 and u2. Each of these involves the same linear
differential-delay operator L:

Lf ≡ ω2 d2f

dτ2
+ 2µω

df

dτ
+ Kf(τ − ωTcr) + µ2f (41)

Lu0 = 0 (42)

Lu1 = H2 u2
0(τ − ωTcr) +

cKω(ωu′

0(τ ) + µu0(τ ))u′

0(τ − ωTcr) (43)

Lu2 = . . . (44)
4

where . . . stands for terms in u0 and u1, omitted here for
brevity. We take the solution of the u0 equation as:

u0(τ ) = Â cos τ (45)

where from Eqs.(26) and (32) we know A = Âε. Next we
substitute (45) into (43) and obtain the following expression
for u1:

u1(τ ) = m1 sin 2τ + m2 cos 2τ + m3 (46)

where m1 is given by the equation:

m1 =
Â2 µ

√

K − µ2 Φ

2 K (16 µ6 − 39 K µ4 + 18 K2 µ2 + 9 K3)
(47)

where

Φ = 4 c K2 µ4 − 8 H2 µ4 − 11 c K3 µ2 + (48)

20 H2 K µ2 + 9 c K4 − 12 H2 K2 (49)

and where m2 and m3 are given by similar equations, omit-
ted here for brevity. We substitute Eqs.(45) and (46) into
(44), and, after trigonometric simplifications have been per-
formed, we equate to zero the coefficients of the resonant
terms sin τ and cos τ . This yields the amplitude, A, of the
limit cycle that was born in the Hopf bifurcation:

A2 =
P

Q
∆ (50)

where

P = 16K2
(

µ4 − K2
)

×
(

16µ6 − 39Kµ4 + 18K2µ2 + 9K3
)

(51)

Q = Q0 Tcr + Q1 (52)

and

Q0 = 32 c2 K3 µ12 − 62 c2 K4 µ10

+
(

7 c2 K5 + 140 c H2 K3 − 96 H3 K2 − 32 H2
2 K
)

µ8

+
(

20 c2 K6 − 428 c H2 K4 + 138 H3 K3 − 64 H2
2 K2

)

µ6

+
(

−6 c2 K7 + 396 c H2 K5 + 126 H3 K4 + 324 H2
2 K3

)

µ4

+
(

42 c2 K8 − 84 c H2 K6 − 162 H3 K5 − 216 H2
2 K4

)

µ2

−33 c2 K9 − 24 c H2 K7 − 54 H3 K6 − 60 H2
2 K5

(53)
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Q1 = 96 c2 K3 µ11

+
(

−354 c2 K4 + 48 c H2 K2 − 192 H3 K − 128 H2
2
)

µ9

+
(

560 c2 K5 − 172 c H2 K3 + 276 H3 K2 + 32 H2
2 K
)

µ7

+
(

−556 c2 K6 + 308 c H2 K4 + 252 H3 K3 + 616 H2
2 K2

)

µ5

+
(

368 c2 K7 − 340 c H2 K5 − 324 H3 K4 − 592 H2
2 K3

)

µ3

+
(

−114 c2 K8 + 156 c H2 K6 − 108 H3 K5 − 24 H2
2 K4

)

µ

(54)

Eq.(52) depends on µ, K, H2, H3, and Tcr. By using
Eq.(29) we may express Eq.(52) as a function of µ, K, H2,
and H3 only. Removal of secular terms also yields a value
for the frequency shift k2 (cf. Eq.(36) above):

k2 = −R

Q
δ (55)

where Q is given by (52) and

R =
√

K − µ2 Q0 (56)

An expression for the amplitude B of the periodic so-
lution for ξ(t) (see Eq.(25)) may be obtained directly from
Eq.(14) by writing ξ = η̇+µη, where η ∼ A cos ωt. We find:

B =
√

KA (57)

where K and A are given as in (16) and (50) respectively.

Numerical Example

Using the same parameter values as in (Monk, 2003a)

µ = 0.03/min , p0 = 100 , n = 5 (58)

we obtain

p∗ = 145.9158 , m∗ = 4.3774 (59)

K = 3.9089×10−3 , H2 = 6.2778×10−5 , H3 = −6.4101×10−7

(60)

Tcr = 18.2470 , ω = 5.4854× 10−2 ,
2π

ω
= 114.5432 (61)
5

Here the delay Tcr and the response period 2π/ω are given
in minutes. Substituting (58)-(61) into (50)-(57) yields the
following equations:

A =
27.0203√

0.0544 c2 − 0.05656 c + 1.0

√
∆ (62)

k2 =
−8.39065 · 10−5 c2 − 4.00072 · 10−4 c − 0.00245

0.0544 c2 − 0.05656 c + 1.0
δ

(63)
Note that since Eq.(62) requires ∆ > 0 for the limit cycle to
exist, and since we saw in Eqs. (23) and (24) that the origin
is unstable for T > Tcr , i.e. for ∆ > 0, we may conclude
that the Hopf bifurcation is supercritical, i.e., the limit cy-
cle is stable. This conclusion is based on the assumption
of the existence of a two dimensional center manifold. This
has been proven in the case in which the delay is state-
independent in (Verdugo and Rand, 2007b), but has not
been proven for the case of state-dependent delay. Never-
theless numerical simulation has shown that the limit cycle
is stable in the latter case.

Figure 1 shows a plot of p versus t for c = 1 and ∆ =
0.16 in which the results of the perturbation theory (solid
line) are compared to those of numerical simulation (broken
line) in Matlab using the function ddesd.

CONCLUSIONS

In this paper we investigated the effect of state-
dependency on delay by using a perturbation method valid
in the neighborhood of a Hopf bifurcation. We showed
how Lindstedt’s method can be used to deal with state-
dependent delays. Figure 1 shows that the resulting approx-
imate expressions for amplitude and frequency of the steady
state oscillation are in good agreement with those obtained
by numerical integration. On the other hand, Eqs.(62) and
(63) show that the effect of c on amplitude and frequency
is small for O(1) values of c.
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Figure 1. Comparison of perturbation results (P) with those of numerical

integration (N) for c = 1 and ∆ = 0.16. The perturbation solution is

p(t) = 145.91 + 10.82 cos(0.05438 t). Since the system is autonomous,

the phase of the steady state solution is arbitrary, which accounts for the

difference in phase between the displayed solutions.
Copyright c© 2007 by ASME


