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ABSTRACT

Optically actuated Radio Frequency MEMS devices are

seen to self oscillate or vibrate under illumination of sufficient

strength [1]. These oscillations can be frequency locked to a

periodic forcing, applied through an inertial drive at the forc-

ing frequency, or subharmonically via a parametric drive, hence

providing tunability. In a previous work [2] this MEMS device

was modeled by a three dimensional system of coupled thermo-

mechanical equations requiring experimental observations and

careful finite element simulations to obtain the model parame-

ters. The resulting system of equations is relatively computa-

tionally expensive to solve which could impede its usage in a

complex network of such resonators. In this paper we present a

simpler model which shows similar behavior to the MEMS de-

vice. We investigate the dynamics of a Mathieu-van der Pol-

Duffing equation, which is forced both parametrically and non-

parametrically. It is shown that the steady state response can con-

sist of either 1:1 frequency locking, or 2:1 subharmonic locking,

or quasiperiodic motion. The system displays hysteresis when

the forcing frequency is slowly varied. We use perturbations to

obtain a slow flow, which is then studied using the bifurcation

software package AUTO.

INTRODUCTION

Tunable limit cycle MEMS oscillators and resonators are be-

coming important components in RF microsystems where they

are used as electromechanical filters [3], amplifiers and non-

linear mixers [4]. They also find use in different kinds of scan-

ning probe microscopes [5,6], as well as biological and chemical

sensors [7].
1

In previous works MEMS devices consisting of a thin, pla-

nar, radio frequency resonator [1, 2, 8, 9] were studied. These

devices were shown to self-oscillate in the absence of external

forcing, when illuminated by a DC laser of sufficient amplitude.

This system can also be forced externally either parametrically,

by modulating the incident laser, or nonparametrically, by using

a piezo drive at the natural frequency of the device. In the pres-

ence of external forcing of sufficient strength and close enough in

frequency to that of the unforced oscillation, the device will be-

come frequency locked or get entrained by the forcer. A model

was presented in [1, 2, 8, 9] which consisted of a third order sys-

tem of ODE’s. Figure 1 shows the experimentally observed am-

plitude and frequency response close to entrainment. The limit

cycle oscillation is entrained by the forcing, close to the natural

frequency of the oscillator. Parametric variation of the entrain-

ment region as a function of forcing amplitude is shown in Figure

1c. The outer boundaries in Figure 1c separate entrained regions

from quasi-periodic response.

In this paper a simpler model is studied, which still shows all

the relevant phenomena seen in the disc resonator, namely limit

cycles, parametric excitation and nonparametric excitation. The

essential features of the entrainment in a disc resonator can be

listed as follows:

1. For a DC laser of sufficient power, the disc resonator

starts to self oscillate at constant amplitude. The simplest canon-

ical model which captures this behavior is a van der Pol (vdP)

oscillator [10]. It consists of an −εẋ(1− x2) term added to a 1D

simple harmonic oscillator (SHO), which in the absence of forc-

ing leads to a steady state vibration called a limit cycle. For small

values of ε the limit cycle has frequency close to 1, which is the
Copyright c© 2007 by ASME



frequency of the unforced linear oscillator.

2. The limit cycle in the system can be periodically forced

either parametrically, by modulating the laser, or nonparametri-

cally, by using a piezo drive. The Mathieu equation [10], which

consists of adding a εαcos(2ωt)x term to a 1D SHO, can model

parametric forcing of the system applied at twice the natural fre-

quency of the resonator. This term in the absence of the vdP

term, renders the origin unstable when the parametric forcing

frequency 2ω is close to twice the frequency of the unforced lin-

ear oscillator. Nonparametric forcing can be modeled by a term

of form F0 sinωt .

3. When entrained, the system shows a backbone-shaped

amplitude vs forcing frequency response. This kind of behavior

is typical of the large amplitude response of structures and can

be modeled by a Duffing’s equation term [10], εβx3, added to the

SHO.

This paper concerns the following differential equation,

which may be thought of as a forced Mathieu-van der Pol-

Duffing equation:

ẍ+(1+εα cos(2ωt +φ))x−εẋ(1−x2)+εβx3 = εF cosωt (1)

where εα is the magnitude of parametric forcing applied at fre-

quency 2ω, and εF is the magnitude of nonparametric forcing

applied at frequency ω while φ is the phase difference between

the parametric and the nonparametric forcing. β is the coefficient

of the cubic nonlinearity term and ε is a small parameter which

will be used in the perturbation method. Eq.(1) is combination of

a van der Pol (vdP) equation term [10], −εẋ(1− x2), a Mathieu

equation term [10], εαcos(2ωt)x, and Duffing’s equation term,

(εβx3), added to a forced SHO.

NUMERICAL SIMULATIONS

Numerical results and subsequent analysis are presented for

two cases. To begin with, only non-parametric excitation is ap-

plied to the system. This corresponds to using α = 0 in equa-

tion 1. The numerical results in Figure 2 show that as ω is in-

creased (quasistatically) from 1, the response first consists of a

quasiperiodic motion, which is a combination of contributions

from the limit cycle and from the forcing. As the frequency is

swept forward, the relatively-constant amplitude quasiperiodic

motion suddenly jumps onto a single frequency response which

increases in amplitude with a further increase in the forcing fre-

quency. Beyond a certain forcing frequency (around ω=1.13

in Figure 2) the motion jumps back to the lower amplitude

quasiperiodic response. Hysteresis is seen when the frequency

is swept back. This response is similar to the experimentally ob-

tained response for the disk resonator.

Next the parametric forcing is also switched on and response

amplitude as a function of forcing frequency ω for a case with pa-

rameters ε = 0.1, α = 1 , F = 0.3, β = 0.0 and φ = 0 is shown
2

in Figure 3. The cubic nonlinearity (β) is not considered here to

simplify the subsequent analysis. Quasiperiodic behavior (QP)

is observed in the regions located approximately at ω < 0.97

and ω > 1.03. Periodic behavior at the forcing frequency is ob-

served in the rest of the plot, corresponding to entrainment. As

we sweep the frequency forward inside the entrained region, the

amplitude jumps to a higher value at a frequency ω ≈ 1.015. No

comparable jump is seen when the frequency is swept backward,

indicating hysteresis.

We note that the parameters used in Figures 2 and 3 have

been chosen to illustrate the hysteresis exhibited by the model

system of Equation 1, and are not obtained from the MEMS de-

vice referred to in Figure 1.

PERTURBATION SCHEME

We use the two variable expansion method (also known as

the method of multiple scales) to obtain an approximate analytic

solution for equation 1. The idea of this method is to replace time

t by two time scales, ξ = ωt , called stretched time, and η = εt ,

called slow time. The forcing frequency ω is expanded around

the natural frequency of the oscillator (ω= 1), i.e.

ω = 1 + k1ε+O(ε2) (2)

where k1 is a detuning parameter at order ε. Next, x is expanded

in a power series in ε:

x = x0(ξ,η)+ εx1(ξ,η)+O(ε2) (3)

Substituting Equations 2,3 into 1 and collecting terms gives:

x0ξξ + x0 = 0 (4)

x1ξξ + x1 = −2k1x0ξξ −2x0ξη +(1− x2
0)x0ξ

−αx0 cos (2ξ+φ)−βx3
0 +F cosξ (5)

We take the solution to Equation 4 in the form:

x0(ξ,η) = A(η) cosξ+B(η) sinξ (6)

Substitution of Equation 6 into 5 and removal of secular terms

gives the following slow flow, where primes represent differenti-

ation with respect to η:
Copyright c© 2007 by ASME



A′ = −Bk1 +
A

2
−

A

8
(A2 +B2)−

α

4
(Asinφ +Bcosφ)

+
3βB

8
(B2 +A2) (7)

B′ = Ak1 +
B

2
−

B

8
(A2 +B2)−

α

4
(Acosφ−Bsinφ)

−
3βA

8
(B2 +A2)+

F

2
(8)

From Equation 6 we see that a fixed point in the slow flow

corresponds to a periodic motion in the original equation, while

a limit cycle in the slow flow corresponds to a quasiperiodic mo-

tion in the original equation.

PERTURBATION RESULTS FOR NONPARAMETRIC
EXCITATION

In this section results are shown for the case when paramet-

ric forcing is switched off (α=0). The slow flow in this case

reduces to

A′ = −Bk1 +
A

2
−

A

8
(A2 +B2)+

3βB

8
(B2 +A2) (9)

B′ = Ak1 +
B

2
−

B

8
(A2 +B2)−

3βA

8
(B2 +A2)+

F

2
(10)

See Figure 4 which shows the results of applying the contin-

uation software AUTO [11] to Equations 9 and 10. The ampli-

tude of the fixed point and the radius of the limit cycle are dis-

played as functions of forcing frequency. The phase plane plots

associated with different regions are also shown.

As expected, away from the resonance a limit cycle is seen

to coexist with an unstable fixed point, which is close to zero. As

the forcing frequency gets closer to the resonant frequency, the

unstable fixed point increases in amplitude and undergoes super-

critical Hopf bifurcation at point 1, becoming a stable fixed point

in the process. The stable limit cycle disappears at this point and

the motion jumps onto the stable fixed point. If the forcing fre-

quency continues to increase (quasistatically), the system follows

the resonance curve in Figure 4 from point 1 to point 3, increas-

ing in amplitude all the while. For these values of ω, the system

is said to be entrained by the forcing function since it responds

at the forcing frequency. A saddle point arises at point 4 from a
3

saddle node bifurcation and has amplitude close to but lower than

the mentioned stable fixed point of the resonance curve. The sta-

ble fixed point disappears next in a saddle node bifurcation with

the saddle point, close to the resonance curve at point 3. Further

increases in ω beyond point 3 cause the motion to jump back to

the limit cycle, producing quasiperiodic motion which involves

both the frequency of the forcer and the frequency of the un-

forced limit cycle. When the frequency is swept back, it is clear

that the point at which the limit cycle would be entrained must

be different from the point at which the resonance curve disap-

pears. The entrainment in this case is achieved when the limit

cycle undergoes a fold by coalescing with an unstable limit cycle

which is born in a homoclinic bifurcation near point 4 and hence

the motion jumps back to the stable fixed point at 4. The system

then follows the resonance curve until the Hopf bifurcation point

1. Hysteresis is seen in the dependence of the entrainment region

on the direction of sweep.

PERTURBATION RESULTS FOR PARAMETRIC EXCI-
TATION

In this section we study the effect of switching on the para-

metric forcing (α 6= 0). We set β = 0 (no Duffing x3 term) to

simplify the analysis. Thus 7 and 8 reduce to following

A′ = −Bk1 +
A

2
−

A

8
(A2 +B2)−

α

4
(Asinφ +Bcosφ) (11)

B′ = Ak1 +
B

2
−

B

8
(A2 +B2)−

α

4
(Acosφ−Bsinφ)+

F

2
(12)

Invariances of the slow flow

The slow flow 11,12 contains 4 parameters: detuning k1,

parametric forcing amplitude α, nonparametric forcing ampli-

tude F and the phase difference φ. We shall be interested in

understanding how the phase portrait of the slow flow is deter-

mined by these parameters. However, before discussing this we

note that Equations 11,12 exhibit some invariances which permit

useful conclusions to be drawn. For example, 11,12 remain un-

changed when A, B and F are replaced respectively by −A, −B

and −F . Since such a change does not alter the nature of the

phase portrait, we see that we may consider F ≥ 0 without loss

of generality.

In addition, we see that Equations 11 and 12 remain un-

changed when A, k1, α and φ are replaced respectively by −A,

−k1, −α and −φ. Since changing the sign of A does not alter the

nature of the phase portrait, we see that we may consider α ≥ 0

without loss of generality since negative α just reverses the k1

and φ axes in the k1 −F −φ bifurcation diagram, which leaves it

essentially unchanged.

By the same reasoning, we may consider φ ≥ 0 without loss

of generality, since replacing φ by -φ leaves the k1 −F −α bifur-

cation diagram essentially unchanged. However since Equations
Copyright c© 2007 by ASME



11,12 are 2π-periodic in φ, we may equally well choose φ to lie

in any interval of length π. Hence we may consider −π
2

< φ <
π
2

without loss of generality.

Parametric Study

Figure 5 shows the results of the AUTO [11] analysis for

α = 1 and φ = 0, where k1 and F are varied. Region A con-

tains 5 slow flow equilibria, consisting of 2 sinks, 2 saddles and

1 source, i.e., only 2 are stable. These stable equilibria corre-

spond to frequency locked periodic motions in Equation 1. The

presence of two such steady states signals the possibility of hys-

teresis. This same (stable) steady state occurs in region D, which

lies above region A in Figure 5. The difference between these

two regions is that D contains only 3 slow flow equilibria, namely

2 sinks and a saddle. As we cross the curve separating A and D,

two of the saddles in A merge with the source in A in a pitchfork

bifurcation, leaving a single saddle in their place.

We next consider regions E and B which lie to the left and

right of region A in Figure 5. The slow flow phase portrait for

points in these two regions are qualitatively the same, consisting

of 3 slow flow equilibria, namely a source, a saddle and a sink.

Only one of these slow flow equilibria is stable, and corresponds

to a periodic motion at the forcing frequency in Equation 1. This

same (stable) steady state occurs in region C2, which lies above

region D in Figure5. The difference between region C2 and re-

gions E and B is that C2 contains just 1 slow flow equilibrium

point, namely a sink. As we cross the curve separating C2 from

one of the regions E, D or B below it (each of which contains 3

slow flow equilibria), a saddle-node bifurcation occurs leaving a

single sink in region C2.

We have now discussed all regions in Figure 5 except for re-

gions C1 which lie in the lower left and right portions of Figure

5. Regions C1 contain a single unstable slow flow equilibrium

point, namely a source. However, unlike the other regions in Fig-

ure 5, regions C1 also contain a stable slow flow limit cycle. This

motion corresponds to a stable quasiperiodic motion in Equation

1. Hopf bifurcations occur along the curves separating regions

C1 and C2.

We offer the following summary of predicted (stable) steady

state behavior of Equation 1: In regions A and D we have 2 dis-

tinct stable periodic motions; in regions E, C2 and B we have a

single stable periodic motion; and in regions C1 we have a stable

quasiperiodic motion.

The discussion thus far has fixed α at unity (Figure 5). We

next look at the effect of changing α. See Figure 6. We see that

the width of the region corresponding to 2 distinct steady state

periodic motions (regions A and D) decreases as we decrease

α. In addition the regions B and E become more symmetrical.

For α = 0.2 we see that the region D has disappeared and the

regions E and B have merged to give just one region. At α = 0

the region with 2 stable steady states has disappeared. This case
4

corresponds to nonparametric periodic forcing of a van der Pol

oscillator, and has been discussed in [12].

Thus the presence of the regions A and D which contain 2

stable periodic motions may be associated with the parameter

α. Since α is the coefficient of the parametric excitation term

which has frequency 2ω, we may associate these regions with

2:1 subharmonic response. This is in contrast to regions E, B

and C2, which may be associated with 1:1 frequency locking.

The dependence of the bifurcation curves of Figure 5 on φ
is displayed in Figure 7. The diagram is seen to be symmetric

about k1 = 0 for φ = π
2

and φ = −π
2

. As long as the nonpara-

metric forcing leads the parametric forcing (i.e. −π
2

< φ < 0),

decreasing phase magnitude |φ| bends the region of 2:1 entrain-

ment (regions A and D) to the left. As a result, region E becomes

very small for φ = 0. On the other hand when the parametric forc-

ing leads the nonparametric forcing (i.e. 0 < φ <
π
2

), increasing

φ causes region E to increase in size at the expense of region D,

until at φ = π
2

region D completely disappears and the region E

is the same size as B. For values of φ in the range [ π
2
,

3π
2

], the

k1 −F bifurcation diagram is essentially the same as shown in

Figure 7 , as discussed earlier in the section on invariances of the

slow flow.

CONCLUSION

In this paper we have presented the analysis of entrainment

behavior in simplified canonical models of forced limit cycle os-

cillators. We showed that these models captured many details of

the steady state response of a MEMS disk oscillator which had

been studied in previous works. The models studied in this paper

are substantially simpler than the third order system of ODE’s

which was previously used to model the MEMS device, and as a

result, the models presented here are expected to be more useful

in studies of networks of coupled disk oscillators.

In the case of nonparametric excitation, we treated a forced

van der Pol-Duffing system, Equation 1 with α=0, which ex-

hibited a limit cycle being entrained by a periodic forcing func-

tion when the forcing frequency is close to the natural frequency

of the system. In particular, Figure 4 shows how the classic

amplitude-frequency relation of the forced Duffing equation be-

comes modified when the unforced system exhibits a limit cycle.

In the case of parametric excitation, we treated a forced

Mathieu-van der Pol system, Equation 1 with β = 0, which ex-

hibited either 2:1 subharmonic motion, or 1:1 periodic motion,

or quasiperiodic motion, depending on the forcing frequency and

the forcing amplitudes, both parametric and nonparametric. The

findings may be summarized briefly in words (for fixed α) by

stating that parametric excitation is most important when ω is

close to the unforced frequency of the oscillator (here taken as

unity), or, in other words, when the detuning k1 is close to zero,

and when F is small. Nonparametric forcing takes over when

|k1| is a little larger or when F is larger. Quasiperiodic behavior
Copyright c© 2007 by ASME



occurs when |k1| becomes sufficiently large for given F .

Finally we note that the hysteresis observed using slowly

varying forcing frequency, in both experiments (Figure 1) and

in numerical simulations (Figure 2 and Figure 3), is explained by

changes in the nature of the steady state due to bifurcations in the

slow flow equilibria. For example, the jump upwards in Figure

3 is due to passage from region A to region B in Figure 5, in the

process of which a saddle-node bifurcation occurs and a stable

periodic motion disappears.
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Figure 1. Experimental results for entrainment in a CW laser driven, limit-cycle, disc resonator. a) Amplitude response and b) frequency response

obtained when sweeping the frequency of inertial drive. c) Entrainment region obtained when sweeping the modulation frequency of the incident laser

about 2ω with no inertial drive. From [2].
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Figure 3. Results of numerical integration of equation 1 for parameters ε = 0.1, α = 1,β=0, F = 0.3 and φ = 0. Response amplitude R is plotted against

forcing frequency ω. Quasiperiodic behavior (QP) is observed in the regions located approximately at ω < 0.97 and ω > 1.03. Periodic behavior at the

forcing frequency is observed in the rest of the plot, with hysteresis as shown.
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Figure 5. Behavior of the slow flow 11,12. Bifurcation curves (obtained using AUTO) and sketches of corresponding slow flow phase portraits are

displayed for α = 1 and φ = 0.
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Figure 7. Bifurcation curves (obtained using AUTO) for slow flow 11,12 for φ = −π
2

,
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and
π
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. α = 1 in all the cases.
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