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ABSTRACT

We investigate the stability of the in-phase mode in a system

of two delay-coupled bubble oscillators. The bubble oscillator

model is based on a 1956 paper by Keller and Kolodner. Delay

coupling is due to the time it takes for a signal to travel from

one bubble to another through the liquid medium that surrounds

them. Using techniques from the theory of delay-differential

equations as well as the method of averaging, we show that the

equilibrium of the in-phase mode can be made unstable if the de-

lay is long enough and if the coupling strength is large enough,

resulting in a Hopf bifurcation. This work is motivated by med-

ical applications involving noninvasive localized drug delivery

via microbubbles.

INTRODUCTION

Delay in dynamical systems is exhibited whenever the sys-

tem’s behavior is dependent at least in part on its history. Many

technological and biological systems are known to exhibit such

behavior; coupled laser systems, high-speed milling, population

dynamics and gene expression are some examples of delayed

systems. This paper treats a new application of delay-differential

equations, that of a microbubble cloud under acoustic forcing.

This system is of particular interest in biomedicine, where

microbubbles are key to several contexts. For example, mi-

crobubbles are used in the noninvasive, localized delivery of

drugs. In this process, microbubble surfaces are coated with

drugs that work best locally. The microbubbles are propagated

to the target site and collapsed by a much stronger ultrasound

wave [1]. Full understanding of the behavior of these systems

of coupled microbubbles involves taking into account the speed

of sound in the liquid, which will lead to a delay in induced

pressure waves between the bubbles in the cloud.

Differential equation models of bubble dynamics in a com-

pressible fluid were first studied by Joseph Keller and his asso-

ciates [2], [3]. In this paper we extend their work by including

delay in a system of coupled bubble oscillators.

THE BUBBLE EQUATION

We begin with the equation of Keller and Kolodner [2] that

relates the time-dependent radius of a gas and vapor bubble a(t)
with the hydrostatic pressure it experiences in a compressible liq-

uid:

(ȧ− c)

(

aä+
3

2
ȧ2 −∆

)

− ȧ3 −a−1
(

a2∆
)

˙ = 0 (1)

Here, ∆ = ρ−1 (p(a)− p0), where ρ is the density of the liquid,

and p0 is the far-field liquid pressure. The pressure p(a) in-

side the bubble is calculated using the adiabatic relation p(a) =

k
(

4π
3

a3
)−γ

, where k is determined by the quantity and type of gas

in the bubble and γ is the adiabatic exponent of the gas. Next, we

substitute dimensionless speed c′ = c(ρp−1
0 )

1
2 into eq.(1), and
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obtain the dimensionless equation [2]:

(ȧ−c)(aä+
3

2
ȧ2−a−3γ +1)− ȧ3−(3γ−2)a−3γȧ−2ȧ = 0 (2)

where we have dropped the prime on c for convenience. Eq.(2)

has an equilibrium solution at

a = ae = 1 (3)

To determine its stability, we set a = ae +x = 1+x and linearize

about x = 0, giving:

cẍ +3γẋ+3cγx = 0 (4)

Since c and γ are positive-valued parameters, eq.(4) corresponds

to a damped linear oscillator, which tells us that the equilibrium

(3) is stable.

TWO COUPLED BUBBLE OSCILLATORS
In this work we consider the dynamics of a system of two

coupled bubble oscillators, each of the form of eq.(2), with de-

lay coupling. Manasseh et al. [4] have studied coupled bubble

oscillators without delay. The source of the delay comes from

the time it takes for the signal to travel from one bubble to the

other through the liquid medium which surrounds them. Adding

the coupling terms used in [4], the governing eqs. of the bubble

system are:

(ȧ− c)(aä +
3

2
ȧ2 −a−3γ +1)− ȧ3 − (3γ−2)a−3γȧ−2ȧ

= Pḃ(t −T ) (5)

(ḃ− c)(bb̈ +
3

2
ḃ2 −b−3γ +1)− ḃ3 − (3γ−2)b−3γḃ−2ḃ

= Pȧ(t −T ) (6)

where T is the delay and P is a coupling coefficient. Here

we have omitted coupling terms of the form P1b(t − T ) and

P1a(t − T ) from eqs.(5) and (6), respectively, where P1 is a

coupling coefficient [4].

THE IN-PHASE MODE

The system (5),(6) possesses an invariant manifold called

the in-phase mode given by a = b, ȧ = ḃ. The dynamics of the

in-phase mode is governed by the equation:

(ȧ− c)(aä+
3

2
ȧ2 −a−3γ +1)− ȧ3− (3γ−2)a−3γȧ−2ȧ

= Pȧ(t −T ) (7)

This equation has the same equilibrium (3) as eq.(2), namely

a = ae = 1. In the case that P = 0, we have seen in eqs.(2)-(4)

that this equilibrium is stable. To determine stability for P > 0,

we again set a = ae +x = 1+x and linearize about x = 0, giving:

cẍ +3γẋ+3cγx = −Pẋ(t −T ) (8)

Before proceeding with an analytical treatment of eq.(8),

we use the MATLAB function DDE23 to numerically integrate

eqs.(7) and (8). We choose the following dimensionless parame-

ters based on the papers by Keller et al.:

c = 94, γ = 1.25, P = 10 (9)

Results of the numerical integration for the nonlinear eq.(7)

are shown in Figs.1,2, whereas comparable results for the

linearized eq.(8) are shown in Figs.3,4.

Inspection of Figs.1-4 reveals that the equilibrium a = 1

loses its stability as the delay T is increased through a critical

value Tcr. This corresponds to the birth of a limit cycle via a

Hopf bifurcation in the nonlinear eq.(7). Associated with this

periodic motion is its frequency ωcr. From Figs.1-4 we obtain

the following approximate values for Tcr and ωcr:

Tcr ≈ 1, ωcr ≈ 2 (10)

Eq.(8) is a linear differential-delay equation. To solve it, we

set x = expλt (see [5]), giving

cλ2 +3γλ +3cγ = −Pλ exp−λT (11)

We seek the smallest value of delay T = Tcr which causes

instability. This will correspond to imaginary values of λ. Thus
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we substitute λ = iω in eq.(11) giving two real equations for the

real-valued parameters ω and T :

PωsinωT = c(ω2 −3γ) (12)

PωcosωT = −3γω (13)

Eq.(13) gives

ωT = arccos

(−3γ

P

)

(14)

whereupon eq.(12) becomes

ω2 −
√

P2 −9 γ2 ω

c
−3 γ = 0 (15)

from which we obtain

ωcr =

√

P2 −9 γ2 +12 c2 γ+
√

P2 −9 γ2

2 c
(16)

which, when combined with (14), gives

Tcr =
2 c arccos

(

− 3γ
P

)

√

P2 −9 γ2 +12 c2 γ+
√

P2 −9 γ2
(17)

For the parameters of eq.(9), eqs.(16),(17) give

Tcr = 0.9842, ωcr = 1.9864 (18)

which agree with the simulations in Figs.1-4, cf. eq.(18).

Eq.(17) shows that a necessary condition for instability is

that the coupling parameter P must satisfy the inequality:

P > 3γ (19)

Eq.(17) gives that as P → 3γ, Tcr → π√
3γ

= 1.622 for

γ = 1.25. Fig.5 shows a plot of Tcr as a function of P for

parameters c = 94 and γ = 1.25, from eq.(17). So for instability

we need both P > 3γ and T > Tcr.

SECOND-ORDER AVERAGING

In this section we treat the in-phase mode eq.(7) using the

method of averaging [5]. The perturbation scheme is based on

assuming the fluid is close to incompressible, in which case

sound speed c is very large. We begin by scaling parameters

and stretching time:

c =
1

ε2
(20)

a = ae + εx = 1 + εx (21)

t̄ = ωt, ω =
√

3γ (22)

Here c is scaled as 1/ε2 instead of 1/ε in order to put the

equation into an appropriate form for averaging. Specifically, we

must eliminate the appearance of a linear damping term ẋ at O(ε),
see [5] pp.23-24. Substituting (20)-(22) into (7) and expanding

for small ε, we get:

ẍ+ x = f (x, ẋ)ε+g(x, ẋ, ẋ(t −ωT ))ε2 +O(ε3) (23)

where we have dropped the bars on t for convenience, and where:

f (x, ẋ) = k1x2 + k2ẋ2 (24)

g(x, ẋ, ẋ(t−ωT ))= k3x+k4ẋ+k5x3 +k6ẋ2x+k7 ẋ(t−ωT ) (25)

where

k1 =
3

2
(γ+1) (26)

k2 = −3

2
(27)

k3 = 0 (28)

k4 = −ω (29)

k5 = −3γ
(

1 +
γ

2

)

− 11

6
(30)

k6 =
3

2
(31)

k7 = −P

ω
(32)

Figs.6 and 7 show a simulation of eq.(23) for the parameters

of eq.(9). This shows that (23) behaves similarly to (7) and (8)

as regards stability of the origin.
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Note from eq.(23) that the O(ε) terms are quadratic. This

situation is well-known to require that whichever perturbation

method is used, be it Lindstedt’s method, averaging, two vari-

able expansion method or multiple scales, it is necessary to in-

clude terms of O(ε2), i.e., it is necessary to apply the perturbation

method to second order [5]. We used second order averaging.

Our computations were done in MACSYMA using programs that

have been previously published [6], [7]. The method assumes a

solution to the ε = 0 equation in the form

x = Rcos(t +ψ), ẋ = −Rsin(t +ψ) (33)

where R and ψ are slowly-varying functions of time. Second

order averaging gives the following slow flow eqs. on R and ψ:

dR

dt
=

ε2 (k7 cosωT +k4)R

2
(34)

dψ

dt
= (35)

−ε2
(

R2(3k6 +9k5 +4k2
2 +10k1k2 +10k1

2)+12k7 sinωT +12k3

)

24

It is to be noted that in the process of deriving these equa-

tions, R(t −ωT ) and ψ(t −ωT ) have been respectively replaced

by R(t) and ψ(t), a step that assumes that ωT is small [8].

Eq.(34) shows that the origin R = 0, i.e. x = ẋ = 0, is stable

if k7 cosωT + k4 ≤ 0, and unstable otherwise. Eqs.(29),(32) give

the following condition for instability:

k7 cosωT + k4 > 0 ⇒−ω− P

ω
cosωT > 0 ⇒ ω2 +PcosωT < 0

(36)

The last inequality in (36) shows that for P > 0 no in-

stability can result for small values of delay, in which case

cosωT ≈ 1 > 0. Although instability can result for larger values

of T (as we have seen), the averaging method is restricted to

small delays.

Note that all the terms in eq.(23) are conservative except for

the damping terms

k4ẋ+ k7ẋ(t −ωT ) = −ωẋ− P

ω
ẋ(t −ωT ) (37)

where we have used (29),(32). In the absence of delay, the

damping coefficient would be ω + P/ω. The method of av-

eraging shows that the effect of small delay is to modify this

coefficient to be ω + (P/ω)cos ωT . Since |cosωT | ≤ 1, this

shows that small delays decrease the effective damping, i.e.,

make the equilibrium less stable.

CONCLUSION

In this paper we have begun to explore the dynamics of two

delay-coupled bubble oscillators, eqs.(5),(6), and in particular

we have studied the dynamics of the in-phase mode, eq.(7). We

investigated the stability of equilibrium in the in-phase mode

through the use of the linear variational eqs.(8). Analysis of the

characteristic eq.(11) yielded closed form expressions for Tcr

and ωcr, eqs.(16),(17).

We also used the method of averaging to study the in-phase

mode. This entailed a rescaling based on perturbing off of the

incompressible fluid limit in which sound speed c is infinite.

The truncated eq.(23) was subjected to second order averaging,

and resulted in the slow flow (34),(35). This method limited

conclusions to the case of small delay, where it was shown that

the origin is stable.

In a classic paper, Keller and Kolodner [2] showed that the

uncoupled bubble oscillator (eq.(7) with P = 0) is conservative

in the incompressible limit, and is damped if c is allowed to take

on a finite value. Our study of the in-phase mode adds a delay

feedback term to the system studied in [2]. We showed that the

equilibrium can be made unstable if the delay is long enough

and if the coupling coefficient P is large enough. Although

our use of the method of averaging was unable to pick up this

instability, it showed that small delays decrease the stability of

the equilibrium by decreasing the effective damping.

Future work will include a study of more general dynamics

of the coupled system (5),(6).
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Figure 1: Numerical integration of eq.(7) for the parameters of eq.(9) with delay T=0.95. Note
that the equilibrium is stable.

Figure 2: Numerical integration of eq.(7) for the parameters of eq.(9) with delay T=1.05. Note
that the equilibrium has become unstable indicating a Hopf bifurcation.



Figure 3: Numerical integration of the linearized eq.(8) for the parameters of eq.(9) with delay
T=0.99. Note that the equilibrium is stable.

Figure 4: Numerical integration of the linearized eq.(8) for the parameters of eq.(9) with delay
T=1.01. Note that the equilibrium is unstable.



Figure 5: Tcr versus P for parameters c = 94 and γ = 1.25, from eq.(17).



Figure 6: Numerical integration of the truncated eq.(23) for the parameters of eq.(9) with delay
ωT=1.9, corresponding to Tcr ≈ 1. Note that the equilibrium is stable.

Figure 7: Numerical integration of the linearized eq.(8) for the parameters of eq.(9) with delay
ωT=2.0, corresponding to Tcr ≈ 1. Note that the equilibrium is unstable.




