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ABSTRACT

After reviewing the concept of fractional derivative, we de-

rive expressions for the transition curves separating regions of

stability from regions of instability in the ODE:

x′′ +(δ + εcost)x+ cDαx = 0

where Dαx is the order α derivative of x(t), where 0 < α < 1.

We use the method of harmonic balance and obtain both a lowest

order approximation as well as a higher order approximation for

the n = 1 transition curves. We also obtain an expression for the

n = 0 transition curves.

1 INTRODUCTION

The fractional calculus and fractional differential equations

have recently become increasingly important topics in the litera-

ture of engineering, science and applied mathematics. Applica-

tion areas include viscoelasticity, electromagnetics, heat conduc-

tion, control theory and diffusion [17], [10], [9], [6], [8], [11].

One reason for the interest in this subject comes from applica-

tions which involve new ways of modeling physical systems us-

ing tools from fractional calculus. For example, consider the dy-

namics of a system which involves the motion of a rheological

specimen which exhibits both elasticity and dissipation. Tradi-

tional models of such a system might be based on the following

familiar linear differential equation:

x′′ + cx′ + kx = 0 (1)

However, an alternative approach would be to combine the ef-

fects of stiffness and damping in a single term:

x′′ +µDαx = 0 (2)

where Dαx is the order α derivative of x(t), where 0 < α < 1 is

a parameter, and where µ is a coefficient of “fractance”. As α

varies from 0 to 1, the relative importance of the stiffness and

damping terms may be adjusted. See e.g. [26]. Note that eq.(2)

is linear.

Recent literature has dealt with the treatment of diverse frac-

tional differential equations. These include:

1. fractional linear oscillator [27], [21], [29], [14].

x′′ + x+µDαx = 0 (3)

2. another fractional linear oscillator [10], [22], [29].

Dαx+ x = 0 (4)
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3. fractional Duffing equation [27], [4]

x′′ + εDαx+ x3 = 0 (5)

4. fractional van der Pol equation [28]

x′′− ε(1− x2)Dαx+ x = 0 (6)

5. another fractional van der Pol equation [2], [25]

Dαx− ε(1− x2)x′ + x = 0 (7)

6. fractional jerk model [1]

Dα+2x+µ Dα+1x+Dαx = f (x) (8)

7. fractional wave equation [10]

∂αu

∂tα
=

∂2u

∂x2
(9)

8. equations exhibiting chaos [16], [7], [5].

It is the purpose of the present work to extend the treatment

of Mathieu’s equation,

x′′ +(δ + εcost)x = 0, (10)

being an equation which is important in questions of stability of

motion as well as in systems which are parametrically excited, to

include the effect of a fractional derivative term:

x′′ +(δ + εcost)x+ cDαx = 0 (11)

In the case that α = 1, eq.(11) represents the familiar damped

Mathieu equation [19].

We begin the paper with a brief introduction to the fractional

calculus. See e.g. [15], [20], [17], [12], [23].

2 FRACTIONAL DERIVATIVES

We offer a formal derivation of the key formula which de-

fines the fractional derivative of a function x(t), beginning with

an intuitive definition of the fractional derivative of tk, Dαtk. By

“formal” we mean that issues of convergence will be ignored.

This formal derivation may thus be thought of as a plausibility

argument rather than a rigorous derivation. After Ross [20], we

note that

dm

dtm
tn =

n!

(n−m)!
tn−m (12)

where m ≤ n are positive integers. Note that eq.(12) can be writ-

ten in terms of the gamma function Γ(n +1) = n!:

dm

dtm
tn =

Γ(n +1)

Γ(n−m+1)
tn−m (13)

Generalizing this by replacing n by k and m by α, where k and α

are positive real numbers, we obtain

Dαtk =
Γ(k+1)

Γ(k−α+1)
tk−α (14)

As an example, we compute the order 1/2 derivative of t:

D1/2t =
Γ(2)

Γ(3/2)
t1/2 =

2√
π

t1/2 (15)

We note that by the law of exponents of derivatives,

D1/2D1/2t = D1/2+1/2t =
d

dt
t = 1 (16)

and we check this by taking the order 1/2 derivative of eq.(15):

D1/2
2√
π

t1/2 =
2√
π

D1/2t1/2 =
2√
π

Γ(3/2)

Γ(1)
t0 = 1 (17)

Now suppose we have a function x(t) which is expandable

in a Taylor series about t = 0:

x(t) = ∑
x(k)(0)

k!
tk (18)

where x(k)(0) is the kth derivative of x evaluated at t = 0. Taking

the fractional derivative of both sides,

Dαx(t) = ∑
x(k)(0)

k!
Dαtk = ∑

x(k)(0)

k!

Γ(k+1)

Γ(k−α+1)
tk−α (19)
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After Ross [20] we note that

Z t

0

(t −u)mundu =
m! n!

(m+n +1)!
tm+n+1

=
Γ(m+1)Γ(n +1)

Γ(m+n +2)
tm+n+1 (20)

For example, with n = 7 and m = 3, macsyma integrates the LHS

to be t11/1320, and direct evaluation of the RHS coefficient gives

3! 7!/11! = 1/1320.

Taking n = k and m = −1−α, we get

Z t

0

(t −u)−1−αukdu =
Γ(−α) Γ(k+1)

Γ(k−α+1)
tk−α (21)

from which we obtain

Γ(k+1)

Γ(k−α+1)
tk−α =

1

Γ(−α)

Z t

0

(t −u)−1−αukdu (22)

Substituting (22) into (19) we obtain

Dαx(t) = ∑
x(k)(0)

k!

1

Γ(−α)

Z t

0

(t −u)−1−αukdu (23)

Interchanging the processes of summation and integration, we

obtain

Dαx(t) =
1

Γ(−α)

Z t

0

(t −u)−1−α

{

∑
x(k)(0)uk

k!

}

du (24)

which gives, using (18),

Dαx(t) =
1

Γ(−α)

Z t

0

(t −u)−1−αx(u)du (25)

To avoid divergence in eq.(25), we use a trick from Ross [20].

From the law of exponents of derivatives we write

Dαx(t) = DmD−px(t) (26)

where α = m − p, where 0 < p < 1 and where m is the least

integer larger than α. Using eq.(25), we obtain

Dαx(t) =
dm

dtm

1

Γ(p)

Z t

0

(t −u)p−1x(u)du (27)

In the case that 0 < α < 1, we have that m = 1 and p = 1−α,

giving

Dαx(t) =
1

Γ(1−α)

d

dt

Z t

0

(t −u)−αx(u)du (28)

For example,

D1/2x(t) =
1

Γ(1/2)

d

dt

Z t

0

(t −u)−1/2x(u)du (29)

As a check we use this formula to compute the order 1/2 deriva-

tive of t:

D1/2t =
1

Γ(1/2)

d

dt

Z t

0

(t −u)−1/2udu

=
1

Γ(1/2)

d

dt

(

4

3
t3/2

)

=
2√
π

t1/2 (30)

which agrees with eq.(15). Eq.(28) can be simplified by taking

v = t −u, giving

Dαx(t) =
1

Γ(1−α)

d

dt

Z t

0

v−αx(t − v)dv (31)

Carrying out the differentiation under the integral sign, we obtain

Dαx(t) =
1

Γ(1−α)

(

Z t

0

v−αx′(t − v)dv+
x(0)

tα

)

(32)

After Ross [20], p.17, we adopt the convention that x(0) = 0,

giving the final formula:

Dαx(t) =
1

Γ(1−α)

Z t

0

v−αx′(t − v)dv (33)

3 MATHIEU’S EQUATION

In this section we present a brief summary of the (non-

fractional) Mathieu’s equation (10) in order to be able to assess

the effects of the addition of a fractional derivative term as in

eq.(11). See e.g. Stoker [24]. For given values of the parameters

δ and ε, either all solutions of Mathieu’s equation are bounded

(stable) or an unbounded solution exists (unstable). The δ−ε pa-

rameter plane is thus divided into stable and unstable regions. Al-

though an infinite number of “resonance tongues” emerge from
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the δ-axis at δ = n2/4, where n = 1,2,3, · · ·, most of these are

insignificant for small values of ε, see Fig.1. This is not the case

for the tongue emanating from δ = 1/4, which is important in

applications and is associated with 2:1 subharmonic resonance.

From perturbation theory it is known [19] that this tongue has the

following asymptotic expansion:

δ =
1

4
± 1

2
ε− 1

8
ε

2 +O(ε3) (34)

In addition to the aforementioned tongues, there is also a tran-

Figure 1. Transition curves in Mathieu’s equation (10). Displayed are

eqs.(34),(35) as well as other curves whose equations are not listed here.

See [19].

sition curve separating stable from unstable regions emanating

from the origin in the δ− ε plane. It has the following expan-

sion:

δ = −1

2
ε

2 +
7

32
ε

4 +O(ε6) (35)

If a damping term is added, we obtain the damped Mathieu equa-

tion:

x′′ +(δ + εcost)x+ cx′ = 0 (36)

The effect of the damping term on the shape of the transition

curves is to detach each of the tongues from the δ-axis, thereby

requiring a minimum value of ε for instability to occur [19]. In

the case of the n = 1 tongue, eq.(36) has the following expansion,

see Fig.2:

δ =
1

4
± 1

2

√

ε2 − c2 +O(ε3) (37)

Figure 2. Transition curves (37) in the damped Mathieu equation (36).

The upper curve corresponds to c = 0.5. The middle curve corresponds

to c = 0.1. The lower curve corresponds to c = 0.

4 FRACTIONAL MATHIEU EQUATION

In this section we use the method of harmonic balance to

obtain approximate expressions for the transition curves in the

fractional Mathieu equation:

x′′ +(δ + εcos t)x+ cDαx = 0 (38)

From Floquet theory [19] it is known that on the transition curves

there exist periodic solutions to (38) with period π or 2π. Thus in
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order to obtain an approximation for the n = 1 transition curves,

we posit a truncated Fourier series:

x = Acos
t

2
+Bsin

t

2
+ · · · (39)

In substituting (39) into (38) we need to compute the fractional

derivative Dαx, where 0 < α < 1, which we do by using the def-

inition (33):

Dαx =
1

Γ(1−α)

Z t

0

v−αx′(t − v)dv (40)

Z t

0

v−αx′(t − v)dv =

1

2

Z t

0

v−α

(

−Asin
t − v

2
+Bcos

t − v

2

)

dv (41)

Here we use the trig identities:

cos
t − v

2
= cos

t

2
cos

v

2
+ sin

t

2
sin

v

2
(42)

sin
t − v

2
= sin

t

2
cos

v

2
− cos

t

2
sin

v

2
(43)

and eq.(41) becomes

Z t

0

v−αx′(t − v)dv =
1

2
cos

t

2

Z t

0

v−α

(

Bcos
v

2
+Asin

v

2

)

dv

+
1

2
sin

t

2

Z t

0

v−α

(

Bsin
v

2
−Acos

v

2

)

dv (44)

=
1

2α
cos

t

2
(BIc +AIs)

+
1

2α
sin

t

2
(−AIc +BIs) (45)

where

Ic =
Z t/2

0

w−α cosw dw and (46)

Is =

Z t/2

0

w−α sinw dw (47)

Although these integrals cannot be evaluated in closed form for

general values of t , maxima is able to evaluate them in the limit

as t → ∞:

Z

∞

0

w−α cosw dw = Γ(1−α) sin
απ

2
and (48)

Z

∞

0

w−α sinw dw = Γ(1−α)cos
απ

2
(49)

After [28], [27] we approximate Ic and Is in eqs.(45),(46),(47),

by their values in eqs.(48),(49) in what follows, thereby restrict-

ing attention to the large t limit. Thus we find from eq.(40) the

following expression for the fractional derivative:

Dαx =
1

2α
cos

t

2
(Bsin

απ

2
+Acos

απ

2
)+

1

2α
sin

t

2
(−Asin

απ

2
+Bcos

απ

2
) (50)

Next we substitute (39) and (50) into (38) and collect terms,

equating to zero coefficients of sin t
2

and cos t
2

. Eliminating A

and B from the resulting two equations gives the following ap-

proximate expression for the n = 1 transition curves:

δ =
1

4
− c

2α
cos

απ

2
±

√

22αε2 −4c2 sin2 απ

2

2α+1
(51)

As a check, we substitute α = 1 in eq.(51), in which case the

fractional derivative in eq.(38) becomes an ordinary first deriva-

tive and we obtain eq.(37) corresponding to the damped Mathieu

equation (36). Fig.3 displays the transition curves (51) for vari-

ous values of α.

We may obtain a higher order approximation by replacing

the original ansatz (39) by the following:

x = Acos
t

2
+Bsin

t

2
+Gcos

3t

2
+H sin

3t

2
+ · · · (52)

Proceeding as before we obtain an algebraic equation relating δ,

ε and α which is too complicated to list here. See Fig.4 where it

is displayed along with eq.(51) for α = 1/2.

In a similar fashion we may obtain approximations for the

other transition curves. For example, in order to obtain an ex-

pression for the n = 0 transition curve which passes through the

origin in the δ− ε plane, we start with the ansatz:

x = Acos t +Bsint +G+ · · · (53)
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Figure 3. n = 1 transition curve, eq.(51), in the fractional Mathieu equa-

tion (38) for c = 0.1 and α = 0,0.5,1.

Proceeding as before we obtain the following expression for the

n = 0 transition curve:

(Kc−1)ε2 +(ε2 −2c2 +4Kc−2)δ +4(1−Kc)δ2−2δ
3 = 0

(54)

where K = cos απ

2
. Fig.5 shows the n = 0 transition curve for

various values of α. We note that the shape of the transition

curve does not change very much for α in the range [0,1].

5 DISCUSSION

In the case of the n = 1 transition curves (see eq.(51) and

Fig.3), we see that a change in the order α of the fractional

derivative affects the shape and location of the transition curves.

This effect can be characterized by the location of the lowest

point on the transition curve, which represents the minimum

quantity of forcing amplitude ε necessary to produce instabil-

ity. Let us refer to this minimum value of ε, for a given value of

α, as εmin. See Fig.6, where eq.(51) is displayed as a surface in

δ− ε−α space.

In order to obtain an expression for εmin, we may differen-

tiate eq.(51) with respect to ε, giving the slope of the transition

Figure 4. Transition curves in the fractional Mathieu equation (38) for

α = 0.5 and c = 0.1. First and second order approximations, as ob-

tained by the method of harmonic balance. The first order approximation

is given by eq.(51). The second order approximation has 51 terms and is

too long to list here.

curve, and require this slope to be infinite. We find:

εmin = 2c

(

sin απ

2

2α

)

(55)

See Fig.7, where εmin is plotted as a function of α. The greatest

effect is observed where this curve achieves its maximum, shown

by a dot in Fig.7. Let us refer to the corresponding value of α as

α∗. Then we may obtain an expression for α∗ by differentiating

eq.(55) with respect to α and setting dεmin/dα equal to zero. We

find:

α
∗ =

2

π
arctan

π

2 log2
≈ 0.735 (56)

Let us refer to the corresponding value of εmin as ε∗min. We find:

ε
∗
min ≈ 1.099c (57)

This effect is reminiscent of the (non-fractional) damped Math-

ieu eq.(36), cf.Fig.2, which corresponds here to α = 1. Note
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Figure 5. n = 0 transition curve, eq.(54), in the fractional Mathieu equa-

tion (38) for c = 0.1 and α = 0,0.5,1. The leftmost curve corresponds

to α = 0. The middle curve corresponds to α = 0.5. The rightmost

curve corresponds to α = 1.

Figure 6. Eq.(51) displayed in δ− ε−α space for c = 0.1

from Fig.7, that when α lies in the range (0.5,1), the values for

εmin are all greater than εmin for eq.(36). Thus we may say that

the damping effect of the fractional derivative term in eq.(38),

for 0.5 < α < 1, is greater than that of the (non-fractional)

damped Mathieu eq.(36).

Note also that in contrast to non-fractional damping,

fractional damping also moves this lowest point on the transition

curve in a horizontal direction, see Fig.3, thereby effectively

changing the resonant value of δ.

On the other hand, in the case of the n = 0 transition curves

(see eq.(54) and Fig.5), we see that there is very little change as

α is varied.

Figure 7. Plot of εmin, the minimum quantity of forcing amplitude ε nec-

essary to produce instability, as a function of fractional derivative order

α, eq.(55). The greatest effect is observed where this curve achieves its

maximum, shown as a dot here, and referred to as α∗ in the text.

6 CONCLUSION

In this paper we have used the method of harmonic balance

to obtain explicit approximate expressions for the n = 1 and

n = 0 transition curves separating regions of stability from

regions of instability in the fractional Mathieu equation (38). We

showed that by changing the value of the order of the fractional
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derivative, α, the shape and location of the n = 1 transition curve

can be changed. In particular we showed that the minimum

quantity of forcing amplitude ε necessary to produce instability

was greatest for α∗ ≈ 0.735.

This work represents a first step in developing a complete

theory of fractional parametric excitation. Related work that lies

ahead could include the effects of phenomena that have been

applied to non-fractional Mathieu equations, such as nonlinear-

ity [19], quasiperiodic forcing [30], delay [13], partial differen-

tial equations [18] and slow passage through resonance [3].
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