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ABSTRACT
We investigate a phenomenon observed in systems of the

form
dx/dt = a1(t)x+a2(t)y
dy/dt = a3(t)x+a4(t)y

where
ai(t) = Pi + εQi cos2t

where Pi,Qi and ε are given constants, and where it is assumed

that when ε=0 this system exhibits a pair of linearly indepen-

dent solutions of period 2π . Since the driver cos2t has period π ,

we have the ingredients for a 2:1 subharmonic resonance which

typically results in a tongue of instability involving unbounded

solutions when ε >0. We present conditions on the coefficients

Pi,Qi such that the expected instability does not occur, i.e., the

tongue of instability has disappeared.

INTRODUCTION

This paper concerns parametric resonance,which may be

described as a 2:1 subharmonic resonance commonly occurring

in systems of O.D.E.’s which involve periodic coefficients. The

paradigm example is given by Mathieu’s equation,

d2x

dt2
+(δ + ε cos2t)x = 0 (1)

When δ =1 and ε =0 eq.(1) exhibits a periodic solution of period

2π . When δ is close to 1 and ε >0, eq.(1) exhibits a tongue of

instability in the δ -ε parameter plane, see Fig.1. A perturbation

analysis valid for ε <<1 gives the equation of the tongue in the

form [1], [2], [3]:

δ = 1± ε

2
+O(ε2) (2)

FIGURE 1. 2:1 subharmonic resonance tongue for eq.(1). S=stable

(bounded in time). U=unstable (unbounded in time).

Parameters inside the tongue correspond to equations which

include solutions which are unbounded in time, while points

outside the tongue correspond to equations for which solutions
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are bounded and quasiperiodic. Equations with solutions that

include periodic motions of period 2π (i.e. with period twice

the period of the forcing function cos2t , which has period π)

correspond to points on the tongue boundaries.

If eq.(1) were to be generalized to include a third parameter

µ, then the shape of the tongue would in general be expected to

depend on µ. For example, writing eq.(1) as a system of two first

order O.D.E.’s,

dx

dt
= y (3)

dy

dt
= −(δ + ε cos2t)x (4)

we could include an additional forcing term as follows:

dx

dt
= y+ εµxcos 2t (5)

dy

dt
= −(δ + ε cos2t)x (6)

Now when µ =0, eqs.(5),(6) reduce to eqs.(3),(4) and the tongue

is as in Fig.1. However for nonzero µ, a perturbation analysis

valid for ε <<1 gives the equation of the tongue in the form:

δ = 1± ε

2

√

1 + µ2 +O(ε2) (7)

Note that for this example, although the shape of the tongue

depends on µ, there is no (real) value of µ for which the tongue

closes up and disappears to O(ε2).

In this paper we investigate the phenomenon in which a res-

onant tongue closes up and disappears as a parameter is varied.

Our motivation comes from an example, presented in the next

section, which occurred incidentally in an application [4]. Previ-

ous work in this area includes treatment of problems in which an

expected resonant tongue is absent. An example system exhibit-

ing such behavior is Ince’s equation:

(1 +a cos2t)
d2x

dt2
+b sin2t

dx

dt
+(c+d cos2t)x = 0 (8)

This equation was treated by Magnus and Winkler [5] using a

method which is unrelated to that used in the present paper. Their

work was extended by Recktenwald and Rand [6], [1].

EXAMPLE

Now let us consider the following example, which actually

arose in the study of an evolutionary dynamics problem [4]:

dx

dt
=

(−1 +2(µ −1)ε cos2t)x+(−2 +(2 + µ)ε cos2t)y√
3 δ

(9)

dy

dt
=

(2 +(1−4µ)ε cos2t)x+(1− (1 +2µ)ε cos2t)y√
3 δ

(10)

For δ =1 and ε=0, eqs.(9) and (10) take the form

√
3

d

dt

(

x

y

)

=

(

−1 −2

2 1

)(

x

y

)

(11)

Eqs.(11) have the general solution:

(

x

y

)

= A

(√
3 cos t − sint

2 sint

)

+B

(

−2 sint√
3 cos t + sint

)

(12)

where A and B are arbitrary constants. Since the solution (12)

has period 2π and the forcing function in eqs.(11) has period

π , we again have an instance of 2:1 subharmonic forcing in a

parametrically driven system, and we are not surprised to find

a resonance tongue in the δ -ε plane emanating from δ =1, ε=0.

As shown in [4], perturbation analysis valid for ε <<1 gives the

equation of the tongue in the form:

δ = 1± 1

2
(µ −1)ε +O(ε2) (13)

In particular we see that when µ=1, the tongue closes up to

O(ε2). The question is, is this an approximate result, valid only

to some order of ε, or is it exact, valid to all orders of ε?

A natural way to check this result is to use numerical inte-

gration together with Floquet theory [1] to generate the tongue

boundaries for various values of µ. This is done in Fig.2, where

we see that the tongue region does indeed appear to be getting

smaller as µ approaches unity. Nevertheless, numerical integra-

tion is an approximate process, and this result still leaves doubt

as to whether the tongue has truly closed up. In the next section

we address this question by examining the behavior of solutions

on the line δ =1 for µ=1. If the tongue really did close up, then

this line would represent the two tongue boundaries as they press

together and coalesce. If all solutions are bounded on this line,

then we could conclude that no instability is present, and that the

tongue has vanished.
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FIGURE 2. 2:1 subharmonic resonance tongues for eqs.(9) and (10)

for µ=0.5,0.7,0.9.

THEOREM

In this section we generalize the preceding example by con-

sidering a system in the following form:

dx

dt
= a1(t) x+a2(t) y (14)

dy

dt
= a3(t) x+a4(t) y (15)

where

ai(t) = Pi + ε Qi cos2t (16)

We assume that when ε=0, the system (14),(15) has a pair of

linearly independent solutions of period 2π (cf. eqs.(12)), which

we write in the form:

x = A F1(t)+B F2(t) (17)

y = A G1(t)+B G2(t) (18)

where A and B are arbitrary constants.

The goal is then to find conditions on the coefficients Pi

and Qi such that eqs.(14),(15) have two linearly independent

solutions of period 2π for all ε >0. The coexistence of these two

solutions for all ε >0 means that the associated 2:1 resonance

tongue has closed up, both boundaries being coincident. (In

general each boundary of the tongue possesses a bounded period

2π solution. If the system (14),(15) possesses two linearly

independent period 2π solutions, then these solutions are a basis

for the solution space and all solutions are bounded: both tongue

boundaries are then coincident, and the tongue has closed up.)

When ε=0, eqs.(14),(15) become

d

dt

(

x

y

)

=

(

P1 P2

P3 P4

)(

x

y

)

(19)

For eqs.(19) to exhibit two linearly independent solutions of pe-

riod 2π , its eigenvalues must be ±i. This requires that the trace

of the matrix in (19) be zero, and its determinant be unity, giving:

P4 = −P1 (20)

P3 =
−1−P2

1

P2
(21)

Then without loss of generality we may take the two linearly

independent period 2π solutions in (17),(18) to be:

F1(t) = sint, G1(t) = ν1 sint +ν2 cos t (22)

and

G2(t) = sint, F2(t) = ν3 sint +ν4 cos t (23)

where the νi coefficients may be found by substituting (22),(23)

into the ε=0 equations (19), giving:

ν1 = −P1

P2
(24)

ν2 =
1

P2

(25)

ν3 = − P1P2

1 +P2
1

(26)

ν4 = − P2

1 +P2
1

(27)

Having characterized the solution of eqs.(14),(15) for ε=0, we

now go after the solution for ε >0.

We posit a solution for ε >0 using variation of parameters

(cf. eqs.(17),(18)):

x = u(t) F1(t)+ v(t) F2(t) (28)

y = u(t) G1(t)+ v(t) G2(t) (29)

where u(t) and v(t) are unknown functions to be found. Substi-

tuting (28),(29) into (14),(15), and solving for du/dt and dv/dt ,
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we get

du

dt
= ε cos2t

[

H1 sin2 t +H2 sint cos t +H3

]

(30)

dv

dt
= ε cos2t

[

H4 sin2 t +H5 sint cos t +H6

]

(31)

where Hi = Hi(P1,P2,Qi,u,v) are known functions, too long to

list here.

Motivated by a desire to find conditions which guarantee

a pair of linearly independent solutions to eqs.(14),(15), we set

H1 = H2 = H4 = H5 = 0, which requires

Q2 = − P2

2P1
(Q4 −Q1) (32)

Q3 =
(1 +P2

1 )

2P1P2
(Q4 −Q1) (33)

Assuming that conditions (32),(33) are fulfilled,

eqs.(30),(31) become:

du

dt
= ε cos2t

[

Q4 u− P2

2P1

(Q4 −Q1) v

]

(34)

dv

dt
= ε cos2t

[

1 +P2
1

2P1P2

(Q4 −Q1) u +Q1 v

]

(35)

Next we reparameterize t by using a new time scale τ de-

fined as:

τ =
1

2
sin2t (36)

which transforms (34),(35) into a system with constant coeffi-

cients:

du

dτ
= ε

[

Q4 u− P2

2P1
(Q4 −Q1) v

]

(37)

dv

dτ
= ε

[

1 +P2
1

2P1P2
(Q4 −Q1) u +Q1 v

]

(38)

Although the solution of eqs.(37),(38) depends on the

numerical values of the coefficients P1, P2, Q1, Q4, it will in

general consist of sinusoidal and or exponential functions of

τ, and since τ is π-periodic in t by eq.(36), u(t) and v(t), the

solution functions of (37),(38), will be π-periodic in t . Further-

more, we note by eqs.(28),(29), that x(t) and y(t), the solution

functions of eqs.(14),(15), are composed of terms which are

the product of π-periodic functions (i.e. u(t) and v(t)) and 2π-

periodic functions (i.e. Fi(t) and Gi(t)). Now since the product

of a π-periodic function and a 2π-periodic function has pe-

riod 2π , we see that all solutions of eqs.(14),(15) are 2π periodic.

We have therefore proved the following

THEOREM: All nontrivial solutions of eqs.(14),(15) will

have period 2π if eqs.(20),(21),(32),(33) are satisfied.

APPLICATION

In this section we apply the theorem of the previous section

to the example presented earlier in this paper. Eqs.(9),(10) with

δ =1, when expressed in the form of eqs.(14),(15), yield the fol-

lowing values for the coefficients Pi and Qi:

P1 = − 1√
3

(39)

P2 = − 2√
3

(40)

P3 =
2√
3

(41)

P4 =
1√
3

(42)

Q1 =
−2 +2µ√

3
(43)

Q2 =
2 + µ√

3
(44)

Q3 =
1−4µ√

3
(45)

Q4 = −1 +2µ√
3

(46)

Inspection shows that these values for Pi and Qi satisfy

eqs.(20),(21),(32),(33) in the case that µ=1. Therefore we may

conclude by the foregoing theorem that the closing of the tongue

in eqs.(9),(10) at µ=1 is an exact result and is valid to all orders

of ε.

ANOTHER EXAMPLE

As an additional check on the theorem, in this section we

try to invent a simple example which satisfies the requirements

of the theorem, namely eqs.(20),(21),(32),(33), and then use nu-

merical integration to confirm the disappearance of the associ-

ated tongue. The equations which must be satisfied are:

P4 = −P1 (47)
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P3 =
−1−P2

1

P2

(48)

Q2 = − P2

2P1

(Q4 −Q1) (49)

Q3 =
(1 +P2

1 )

2P1P2
(Q4 −Q1) (50)

Since we are seeking a simple example, we choose to satisfy

eqs.(49),(50) by taking Q4=Q1=1, which gives Q2=Q3=0. Then

to satisfy eq.(47) simply, we choose P1=1, which gives P4=−1.

Then eq.(48) becomes P3=−2/P2, which prompts us to choose

P2=1 and P3=−2. The resulting example takes the form (cf.

eqs.(14)-(16)):

dx

dt
= (1 + ε cos2t)x+ y (51)

dy

dt
= −2x+(−1 + ε cos2t)y (52)

So according to the theorem presented above, all solutions to

eqs.(51) and (52) are bounded periodic functions with period 2π .

Now we need a parameter δ so that we can detune from the 2:1

resonance and get a tongue. We choose to replace the two unit

coefficients in eqs.(51) and (52) by 1 +δ , giving:

dx

dt
= (1 +δ + ε cos2t)x+ y (53)

dy

dt
= −2x+(−(1 +δ )+ ε cos2t)y (54)

Thus we may expect eqs.(53) and (54) to exhibit a degenerate

tongue (one that is closed up) in the δ -ε plane along the line

δ =0. Finally we need another parameter, µ, which allows the

tongue to open up, as in our original system eqs.(9) and (10). We

choose to replace the ε coefficient in eq.(53) by εµ, giving the

final form of our synthesized example:

dx

dt
= (1 +δ + εµ cos2t)x+ y (55)

dy

dt
= −2x+(−(1 +δ )+ ε cos2t)y (56)

Thus this system should have a resonance tongue in the δ -ε
plane which emanates from the point δ = 0, ε=0, and which

closes up and disappears as µ approaches unity.

To check this result, we again use numerical integration to-

gether with Floquet theory [1] to generate the tongue boundaries

for various values of µ. This is done in Figs.3 and 4, where we

see that the tongue region does indeed appear to be closing up as

µ approaches unity.

FIGURE 3. 2:1 subharmonic resonance tongues for eqs.(55) and (56)

for µ=0.5,0.7,0.9,0.99.

FIGURE 4. 2:1 subharmonic resonance tongues for eqs.(55) and (56)

for µ=0.5,0.7,0.9. Figure 3 is an expanded view of the region around

δ = 0.

CONCLUSION

We have investigated the dynamics of a class of linear para-

metrically excited systems of the form

dx/dt = a1(t)x+a2(t)y
dy/dt = a3(t)x+a4(t)y

where

ai(t) = Pi + εQi cos2t

We presented a theorem which guarantees that all solutions of

such a system are bounded 2π periodic functions of time if cer-

tain conditions on the parameters are satisfied. In particular we

require that the ε=0 system possesses two linearly independent

period 2π solutions, which requires that the Pi coefficients satisfy

the conditions:

P4 = −P1

P3 = (−1−P2
1 )/P2

5 Copyright c© 2013 by ASME



For all solutions of the ε non-zero system to be 2π periodic, we

additionally require that

Q2 = −P2(Q4 −Q1)/(2P1)

Q3 = (1 +P2
1 )(Q4 −Q1)/(2P1P2)

Note that this theorem applies for any value of ε, i.e., it does

not require that ε be small as in the case of a perturbation method.

The theorem was applied to systems in which a resonant

tongue of instability disappears as a parameter is varied. Al-

though perturbation methods and numerical integration might

suggest that such a disappearance has occurred, it requires a

rigorous proof to be certain. The theorem presented in this paper

provides this proof by showing that the instability associated

with the resonant tongue is absent, replaced by bounded periodic

motion.
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