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ABSTRACT
Models of evolutionary dynamics are often approached via

the replicator equation, which in its standard form is given by

ẋi = xi ( fi (x)−φ) ,

i = 1, . . . ,n, where xi is the frequency, or relative abundance, of
strategy i, fi is its fitness, and φ = ∑

n
i=1 xi fi is the average fitness.

A game-theoretic aspect is introduced to the model via the payoff
matrix A, where Ai, j is the expected payoff of i vs. j, by taking
fi(x) = (A · x)i. This model is based on the exponential model of
population growth, ẋi = xi fi, with φ introduced in order both to
hold the total population constant and to model competition be-
tween strategies. We analyze the dynamics of analogous models
for the replicator equation of the form

ẋi = g(xi)( fi−φ),

for selected growth functions g.

INTRODUCTION
The field of evolutionary dynamics combines game theory

with ordinary differential equations to model Darwinian evolu-
tion via competition between adaptive strategies. A common ap-
proach [1] uses the replicator equation, which modifies the ex-
ponential model of population growth, ẋi = xi fi, where fi is the

fitness of strategy i, by introducing the average fitness over all
strategies, φ . The change in the relative abundance, xi, is then

ẋi = xi( fi−φ), (1)

where φ is chosen so that {x ∈ Rn : ∑xi = 1,0≤ xi ≤ 1} is an
invariant manifold. This means that ∑ ẋi = 0, so

φ =
∑xi fi

∑xi
= ∑xi fi. (2)

In essence, φ acts as a coupling term that introduces dependence
on the abundance and fitness of other strategies.

In this work, we generalize the replicator model by replac-
ing the base model ẋi = xi fi by ẋi = g(xi) fi, where g is a natural
growth function. The replicator equation for each strategy be-
comes

ẋi = g(xi)( fi−φ), (3)

where φ is now a modified average fitness, again chosen so that
∑xi = 1.

The game-theoretic component of this model lies in the
choice of fitness functions. Take the payoff matrix A, whose
(i, j)-th entry is the expected reward for strategy i when it com-
petes with strategy j. The fitness fi of strategy i is then (A · x)i,

1 Copyright c© 2013 by ASME



where x ∈ Rn is the vector of frequencies xi. In this work, we use
a payoff matrix representing a game analogous to rock-paper-
scissors (RPS): there are three strategies, each of which has an
advantage versus one other and a disadvantage versus the third.
Each strategy is neutral versus itself.

Analysis of the resulting dynamical system is presented. We
find that for the logistic model

g(x) = x−ax2, (4)

with appropriate choices of the parameter a, there are multiple
fixed points of the system that do not exist in the usual model
g(x) = x. We will show that when A is chosen so that the RPS
game is zero-sum, there are 13 equilibria: one neutrally sta-
ble equilibrium with all three strategies surviving; three saddle
points with all three strategies surviving; three saddles with only
one surviving strategy; and three attracting and three repelling
fixed points where two strategies survive. The system exhibits
both periodic motion and convergence to attractors. We analyze
the symmetries of this system, and its bifurcations as the entries
of A vary.

This alternate formulation may be useful in modeling natural
or social systems that are not adequately described by the usual
replicator dynamics.

DERIVATION
Let us review the usual replicator dynamics. We have fi =

fi (x), where fi (x) = (A · x)i, where A is the payoff matrix. The
average payoff is thus φ =∑i xi fi, and the change in frequency of
strategy i is given by the product of the frequency xi and its payoff
relative to the average. In this model, all population-dependence
of the effectiveness (hence growth rate) of strategy i is accounted
for by fi. However, we wish our fitness functions fi to represent
the game-theoretic payoff of individual-level competition. We
therefore include some of the population dependence in a growth
function g(xi); this represents the growth rate of the raw popu-
lation using strategy i, in the absence of competition. Thus the
expected population-level payoff of strategy i is g(xi) fi, and the
average population-level payoff is

φ =
∑i g(xi) fi

∑i g(xi)
. (5)

We require that in this model, φ (and hence ẋ) is only defined
for growth functions g such that the denominator does not vanish
for any x in the region of interest. With that caveat, using this
definition of φ , the replicator equation becomes

ẋi = g(xi)( fi−φ) , i = 1, . . . ,n. (6)

We can verify that

∑
i

ẋi = ∑
i

g(xi)( fi−φ)

= ∑
i

g(xi) fi−∑
i

g(xi)
∑i g(xi) fi

∑i g(xi)

= 0 (7)

so the total population over all strategies is constant, and it is
valid to say that each xi represents the frequency of strategy i.
We will use the term relative abundance for xi whenever there
is ambiguity between xi and the time-frequency of any periodic
motion in the dynamics.

ROCK-PAPER-SCISSORS
We consider the game-theoretic case in which n = 3 and fi

is given by fi (x) = (A · x)i, where A is the payoff matrix

A =

 0 −1 +1
+1 0 −1
−1 +1 0

 , (8)

representing a zero-sum rock-paper-scissors game. That is, writ-
ing (x1,x2,x3) as (x,y,z),

f1 = z− y, f2 = x− z, f3 = y− x. (9)

We note that this model has been shown to be relevant to biolog-
ical applications [2], [3], and to social interactions [4]. Note that
the dynamics of the 3-strategy game takes place on the triangle
in R3 (in fact, the three-dimensional simplex)

Σ =
{
(x,y,z) ∈ R3 : x+ y+ z = 1 and x,y,z≥ 0

}
. (10)

Therefore we can eliminate z using z = 1− x− y. This re-
duces the problem to two dimensions, so that (6) becomes

ẋ =
g(x)((1−3y)g(1− x− y)+(2−3x−3y)g(y))

g(x)+g(y)+g(1− x− y)
(11)

ẏ = −g(y)((1−3x)g(x)+(2−3x−3y)g(1− x− y))
g(x)+g(y)+g(1− x− y)

(12)

where we have used φ as defined in Eqn (5). This vector field is
defined on the projection of Σ onto the x−y plane. We will refer
to this region as

T = {(x,y) : (x,y,1− x− y) ∈ Σ} . (13)
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FIGURE 1. A curve in Σ and its projection in T .

Note that since Σ, the region of interest for the three-dimensional
flow, is confined to a plane in R3, the projection down to T loses
no information. See Fig. 1.

CHOICES OF GROWTH FUNCTION
Taking g(xi) = xi/(1+axi)

First, consider the case where the growth function is given
by g(xi) =

xi
1+axi

. This growth function increases monotonically
in xi, leading to dynamics that are qualitatively similar to the
standard g(xi) = xi case. We find that Eqns. (11) and (12) be-
come

ẋ =
−x(−1+ x+2y)(−1+3ay(−1+ x+ y)

−1+3a2xy(−1+ x+ y)+2a(x2 + x(−1+ y)+(−1+ y)y))
(14)

ẏ =
y(−1+2x+ y)(−1+3ax(−1+ x+ y))

−1+3a2xy(−1+ x+ y)+2a(x2 + x(−1+ y)+(−1+ y)y)
(15)

Solving ẋ = ẏ = 0, we find that the equilibria are located at the
corners of T ,

(x,y) = (0,0),(0,1),(1,0)

and at its center,

(x,y) =
(

1
3
,

1
3

)
.

Evaluating the Jacobian at each of these points and examining its
eigenvalues, we find that the three corner points are saddles, with
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FIGURE 2. Vector field in T for the standard replicator equation
g(x) = x. The horizontal axis is x and the vertical axis is y.
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FIGURE 3. Vector field in T for g(x) = x/(1+ ax) with a = 100.
The axes are as above.

λ1,2 =±1. The point
( 1

3 ,
1
3

)
is a linear center, with λ1,2 =± i

√
3

a+3 .
See Figs. 2 and 3.

As in the case of the standard replicator equation [3], when
g(x) = x/(1+ax), the linear center is surrounded by closed peri-
odic orbits. (Although this claim is presented without proof, we
will prove it in the next case, g(x) = x− ax2. The proof in this
case is largely identical.)

Taking g(xi) = xi−ax2
i

The previous choice of g(xi) did not generate qualitatively
different behavior from the usual replicator dynamics. However,
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it turns out that new behavior occurs when we use g(x) = x−ax2

obtained by truncating the Maclaurin series

x
1+ax

= x
∞

∑
n=0

(−ax)n (16)

after the x2 term.
Thus we consider the case where the growth function is

given by g(xi) = xi− ax2
i . This represents the assumption that

in the absence of competition, population xi would experience
logistic growth. In this case, Eqns. (11) and (12) become

ẋ =
x(ax−1)(x+2y−1)(a(1+3y(y−1)+ x(3y−1))−1)

a
(

x2 + y2 +(1− x− y)2
)
−1

(17)

ẏ =−y(ay−1)(y+2x−1)(a(1+3x(x−1)+ y(3x−1))−1)

a
(

x2 + y2 +(1− x− y)2
)
−1

(18)
The denominators vanish when

x2 + y2 +(1− x− y)2 =
1
a
. (19)

We reject values of a for which Eqn. (19) holds for any (x,y)∈ T .
This happens for a∈ [1,3], so we stipulate that 0≤ a< 1 or a> 3.
Geometrically, the vector field in T is undefined for values of a
such that the sphere x2 + y2 + z2 = 1

a intersects Σ, Eqn. (10).
This system has 13 equilibrium points:

(i) The corners of T

(x,y) = (0,0),(0,1),(1,0)

(ii) The center of T

(x,y) =
(

1
3
,

1
3

)

(iii) Two points on each of the edges x = 0, y = 0 and z = 0

(x,y) =
(

0,
1
a

)
,

(
0,

a−1
a

)
(x,y) =

(
1
a
,0
)
,

(
a−1

a
,0
)

(x,y) =
(

1
a
,

a−1
a

)
,

(
a−1

a
,

1
a

)
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FIGURE 4. Location in the (x,y) plane of the 13 equilibria for
g(x) = x− ax2, taking (clockwise from upper left) a = 0.9, a = 1,
a = 3, and a = 5. The cases a = 1 and a = 3 are non-physical. As
discussed in the text, for a > 3 all 13 equilibrium points lie in the
region of interest T .

(iv) Three points on lines that pass through the center of T

(x,y) =
(

1
a
,

1
a

)
,

(
1
a
,

a−2
a

)
,

(
a−2

a
,

1
a

)

Figure 4 shows the location of the equilibria. For 0≤ a < 1,
only the corners and the center point lie in T , Eqn. (13), and
the dynamics are qualitatively similar to the Rock-Paper-Scissors
game with standard replicator dynamics. Evaluating the Jacobian
of [ẋ, ẏ] at each equilibrium and computing the eigenvalues, we
find that

( 1
3 ,

1
3

)
is a linear center and the corner points are sad-

dles.
When (x,y) = ( 1

3 ,
1
3 ),

J =
a−3

9

(
1 2
−2 −1

)
⇒ λ1,2 =

±i(a−3)
3
√

3
(20)

and when (x,y) = (0,0),

J =

(
1 0
0 −1

)
⇒ λ1,2 =±1. (21)

The stability calculations for the other two corner points are
similar. Figure 5 shows the vector field and equilibria for a = 1

5 .
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FIGURE 5. Vector field in T for a = 1
5 .

For a> 3, the dynamics are more interesting. All 13 equilib-
ria lie in T . By symmetry, the three equilibria which lie on lines
through the center must be of the same type; similarly, the two
equilibria on the edge x = 0 must be of the same types as their
counterparts on the other two edges.

(x,y) =
(

1
a
,

1
a

)
⇒ (22)

J =

( 3
a −1 0

0 1− a
3

)
⇒ λ1,2 =±

(
3
a
−1
)

(x,y) =
(

0,
1
a

)
⇒ (23)

J =

(
1− 3

a 0
0 1

)
⇒ λ1 = 1,λ2 = 1− 3

a

(x,y) =
(

0,1− 1
a

)
⇒ (24)

J =

( 3
a −1 0
− 3

a −1

)
⇒ λ1 =−1,λ2 =

3
a
−1.

Thus the interior equilibria are saddles, and there is a source and
a sink on each edge.

Figures 6 and 7 exhibit another feature of this system: in
addition to the boundaries of T , the lines x= 1

a , y= 1
a and x+y=

1− 1
a are also invariant, and for a > 3, portions of these lines fall

within T . Substituting x = 1
a into Eqn. (17), we obtain

ẋ = 0 (25)
ẏ = (26)
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FIGURE 6. Vector field in T for a = 5.
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FIGURE 7. Equilibrium points and invariant lines of the system
for a = 5.

(
y−ay2

)(
y+ 2

a −1
)(

a
(
1+ 3

a

( 1
a −1

)
+ y
( 3

a −1
))
−1
)

a
(
( 1

a )
2 + y2 +

(
1− 1

a − y
)2
)
−1

.

Similarly, taking y = 1
a gives ẏ = 0. To see that x+y = 1− 1

a
is an invariant line, we take y = 1− x− 1

a , so that

ẋ =
x(a−3)(1+a(x−1))(2+a(x−1))(ax−1)

a
(

x2 +
(
1− x− 1

a

)2
+
( 1

a

)2
)
−1

(27)
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ẏ = −x(a−3)(1+a(x−1))(2+a(x−1))(ax−1)

a
(

x2 +
(
1− x− 1

a

)2
+
( 1

a

)2
)
−1

(28)

and ẋ+ ẏ = 0.
Notice that there appear to be periodic orbits about the equi-

librium
( 1

3 ,
1
3

)
, moving in the opposite direction from before. We

will examine this phenomenon more thoroughly in the next sec-
tion.

FURTHER EXAMINATION OF THE g(xi) = xi−ax2
i CASE

We have observed that the
( 1

3 ,
1
3

)
equilibrium is a linear cen-

ter, and the orbits about it appear to be periodic. To verify this,
we show that there is a degenerate Hopf bifurcation in the more
general system

ẋi = g(xi)( fi−φ (x)) = g(xi)((A · x)i−φ (x)) (29)

where the payoff matrix is

A =

 0 −a2 b3
b1 0 −a1
−a3 b2 0

 (30)

and φ (x) is defined as before. We substitute this choice of A
into Eqn. (29), take the Jacobian, and find that when (x,y,z) =( 1

3 ,
1
3 ,

1
3

)
and a1 = · · ·= b3 = 1, the eigenvalues are

λ1,2 =±
i(a−3)

3
√

3
, λ3 = 0. (31)

Thus there is a Hopf bifurcation at this point in the parameter
space, as we might expect from the standard replicator equation
[5].

To show that the Hopf bifurcation is in fact degenerate, we
follow [6]. First we project the system into the (x,y) plane as
before, and make the coordinate translation

(x,y) = (u+
1
3
,v+

1
3
) (32)

to move the bifurcation to the origin. We then write the system
as

(
u̇
v̇

)
= J

(
u
v

)
+

(
f (u,v)
g(u,v)

)
(33)

Then we make a coordinate transformation u= 2r, v=−r−s
√

3.
This gives the normal form

(
ṙ
ṡ

)
=

(
0 −ω

ω 0

)(
r
s

)
+

(
h(r,s)
k(r,s)

)
(34)

where ω = (a− 3)/3
√

3, and h and k are not listed for brevity.
Finally, we substitute the resulting nonlinear parts into the equa-
tion for the cubic stability coefficient (see [6] pp. 150-155)

c =
1
16

[hrrr +hrss + krrs + ksss]+ (35)

1
16ω

[hrs(hrr +hss)− krs(krr + kss)−hrrkrr +hsskss]

and find that c = 0. Thus the bifurcation is degenerate.
Generically, as the parameters a1, . . . ,b3 pass through the

critical value a1 = · · ·= b3 = 1, the equilibrium point at (x,y) =( 1
3 ,

1
3

)
changes from a stable focus to an unstable focus. In what

follows we will show that this happens without the appearance of
a traditional limit cycle. The family of periodic orbits associated
with any Hopf bifurcation will be shown in this case to occur at
the critical value, so that the space is filled with closed orbits.

Further symmetries
We have seen that the Hopf bifurcation is degenerate to at

least third order. However, it is possible to show by a symmetry
argument that the degeneracy extends to all orders, and the orbits
inside the region bounded by the invariant lines are periodic.

Note that the flow in Fig. 6 appears conservative in the cen-
tral region (i.e. all integral curves are closed). However, it is
not conservative, as shown by the existence of attracting fixed
points. The occurrence of periodic orbits is due to symmetry, not
conservative dynamics, as we will now demonstrate.

To show this, we define (ẋ, ẏ, ż) using Eqn. (6) with the usual
zero-sum RPS payoff matrix and g(x) = x−ax2. We do not elim-
inate z, but instead define coordinates

 u
v
w

=

−
√

2
3

1√
6

1√
6

0 − 1√
2

1√
2

1√
3

1√
3

1√
3


 x

y
z

 . (36)

This is an orthogonal linear transformation such that the plane
containing Σ is orthogonal to the w direction, as shown in Figs.
8 and 9. In these coordinates, the point (x,y,z) =

( 1
3 ,

1
3 ,

1
3

)
is

(u,v,w) =
(

0,0, 1√
3

)
, and ẇ = 0, so the dynamics can be ana-

lyzed in terms of u and v only with no loss of information or
symmetry.
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FIGURE 8. The unit vectors x, y, z, u, v and w shown with a curve
in Σ.

u
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Θ

FIGURE 9. Polar coordinates (r,θ) on Σ. The w direction is out of
the page.

Next, we transform (u,v) into polar coordinates (r,θ) via

u = r cosθ , v = r sinθ . (37)

Applying the two successive coordinate changes Eqns. (36) and
(37) to Eqn. (29) and solving for ṙ and θ̇ , we obtain

ṙ = − r2 sin(3θ)

6(3ar2 +a−3)
×(√

2(a−3)(2a−3)+3
√

3a2r3 cos(3θ)
)

(38)

θ̇ = − 1
18(3ar2 +a−3)

(
9
√

3a2r4 cos2(3θ)

+
√

3(a−3)(9ar2 +2a−6)

æ æ
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ææ

æ ææ

ææ ææ

æ
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FIGURE 10. Boundary of Σ, invariant lines, and equilibrium
points for a = 5, in the (θ ,r) plane.
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FIGURE 11. Vector field in (θ ,r) plane for 0 < θ < 2π

3 and a = 5.
Boundaries of Σ and invariant lines shown.

+3r
√

2(2a−3)(3ar2 +a−3)cos(3θ)
)

(39)

Since θ appears only in terms of cos(3θ) and sin(3θ), we see
that the vector field is periodic in θ with period 2π

3 . Figures 10
and 11 show the boundaries of Σ and the vector field in the (θ ,r)
plane.

Finally we show that the central region of Σ is filled with
periodic orbits. Notice that ṙ is odd, and θ̇ is even, considered as
functions of θ . So, if we let

ψ =−θ , τ =−t (40)
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then

dr
dτ

∣∣∣∣
(r,ψ)

=
dr

d(−t)

∣∣∣∣
(r,−θ)

=
dr
dt

∣∣∣∣
(r,θ)

(41)

dψ

dτ

∣∣∣∣
(r,ψ)

=
d(−θ)

d(−t)

∣∣∣∣
(r,−θ)

=
dθ

dt

∣∣∣∣
(r,θ)

. (42)

Thus if there is a trajectory (Trajectory A) that starts at (r,θ) =
(r0,0) at t = 0 and goes through (r,θ) =

(
r1,

2π

3

)
at t = t1, then

there is a matching trajectory (Trajectory B) that starts at (r,ψ) =
(r0,0) at τ = 0 and goes through (r,ψ) =

(
r1,

2π

3

)
at τ = t1.

By the definitions of ψ and τ , Trajectory B in terms of θ

starts at (r,θ) =
(
r1,− 2π

3

)
at t = −t1 and goes through (r,θ) =

(r0,0) at t = 0. (A schematic of these trajectories is shown in
Fig. 12.)

Since ṙ and θ̇ are autonomous (hence invariant under trans-
lations in time) and 2π

3 -periodic in θ , there is a trajectory (Tra-
jectory C) that starts at (r,θ) = (r1,0) at t = 0 and goes through
(r,θ) = (r0,

2π

3 ) at t = t1.
In order for this to occur, if r0 6= r1, Trajectory A and Tra-

jectory C must cross. This cannot happen since ṙ and θ̇ are well-
defined functions. Therefore r0 = r1, and we see that all trajec-
tories that pass through both θ = 0 and θ = 2π

3 are in fact closed
orbits.

CONCLUSION
We have investigated the dynamics of certain systems of the

form

ẋi = g(xi)( fi−φ)

where fi(x) = (A ·x)i. For g(x) = x−ax2, and the zero-sum RPS
choice of A, we find that the system has several fixed points that
do not exist in the usual replicator model. It exhibits both peri-
odic motion and convergence to attractors.

This alternate formulation may be instructive in modeling
natural or social systems that are not adequately described by the
usual replicator dynamics. In particular, this model may apply
to systems that exhibit both monotonic and periodic responses
depending on initial conditions.
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