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ABSTRACT
We propose a class of problems in nonlinear vibrations re-

lated to avoiding undesirable hysteresis and jump phenomena by

designing an oscillator for which the backbone curve is a straight

vertical line. In particular we consider the class of conservative

oscillators of the form:

ẍ+ xẋ2 + f (x) = 0

and we choose f (x) so that the frequency of oscillation is inde-

pendent of amplitude. We do this in two ways:

1) by expanding f (x) in a power series and using a perturbation

method to compute the coefficients, and

2) by starting with a simple harmonic oscillator (which has a

straight line backbone curve), and choosing a transformation

which puts the resulting equation in the above form.

We show that both methods result in a closed form expression

for f (x) which involves the imaginary error function erfi(z).

INTRODUCTION

The simple harmonic oscillator (SHO)

Ẍ +X = 0 (1)

is characterized by the property of isochronicity/isochrony [1],

which means that it has a fixed, amplitude-independent fre-

quency. Its backbone curve, which is a graphical presentation

of the relationship between the amplitude of vibration R and the

frequency ω is, thus, a straight vertical curve, as shown in Fig.

1.

FIGURE 1. Numerically obtained backbone curves of the Duffing os-

cillator (2) (dotted and dashed-dotted lines) and a straight-line backbone

curve (solid line).

However, if one keeps the system conservative and just

adds/subtracts a cubic geometric term to/from Eq. (1), the dy-

namics of the corresponding so-called Duffing oscillator [2]- [4]

ẍ+ x± x3 = 0 (2)
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completely changes and involves a certain relationship between

the amplitude of vibration R of a typical periodic motion and its

frequency ω. This relation is such that the backbone curve for

Eq. (2) is bent to the right for the hardening Duffing oscillator

(Eq. (2) with a plus sign in front of the cubic term) and to the

left for the softening Duffing oscillator (Eq. (2) with a minus

sign in front of the cubic term). When the Duffing oscillator is

forced, this characteristic is known to cause hysteresis and jump

phenomena (see, for example, [2], [3] or [4]).

There may be some situations where these phenomena are

undesirable. This leads us to the question of designing a differ-

ential equation which is similar to the Duffing equation (2) in that

it is conservative, but for which the backbone curve is a straight

vertical line in the ω −R plane, as is in the case of the SHO (Fig.

1). To that end, we consider the class of conservative oscillators

of the form:

ẍ+ xẋ2 + f (x) = 0 (3)

and we choose f (x) so that the frequency of oscillation is

independent of amplitude. We do this in two ways:

1) by expanding f (x) in a power series and using a perturbation

method to compute the coefficients, and

2) by starting with the SHO (1) and choosing a transformation

which puts the resulting equation in the above form.

This work is an extension of our previous papers [5], [6].

As discussed in [6], the system (3) is a special case of a class of

systems studied by Sabatini [7] of the form:

ẍ + p (x) ẋ2 +q (x) = 0, (4)

Another equation which has been shown to exhibit

isochronicity is of the Lienard form:

ẍ+u (x) ẋ+ v(x) = 0 (5)

The following authors have investigated isochronicity in Eq. (5):

Sabatini [8], Iacono and Russo [9], Christopher and Devlin [10],

Chandrasekar et al. [11], [12]. See Calogero [1] for an overview

of isochronicity.

It should be mentioned that first results in this field are

believed to date back to Galileo Galilei and Christian Huy-

gens [13]. Although Galileo did not live to complete his design,

he had believed that a pendulum is isochronous in the sense

that the time it takes to complete one full swing is the same

regardless of the size of the swing. Huygens, however, pushed

this matter further, noting that this is true for pendulums that

swing only a few degrees. He pursued the question of achieving

perfect isochronicity and showed that it can be realized in a

simple pendulum that wraps around the cycloid [14], [15].

In another paper [6], the present authors have shown that Eq.

(3) has applications to systems which involve a mass dependent

on position, or a kinematic mechanism with two masses and one

degree of freedom.

POWER SERIES APPROACH
We begin by expanding f (x) in Eq.(3) in the form:

f (x) = x+a3x3 +a5x5 +a7x7 + · · · (6)

and look for the coefficients ai in f (x) such that Eq. (3), although

nonlinear, has an amplitude-independent frequency.

To begin with, we note that Eqs. (3) and (6) correspond to a

conservative system whose Lagrangian has the form

L = ex2

(

1

2
ẋ2 −g(x)

)

(7)

where g(x) is to be determined. The corresponding Lagrange’s

equation is:

ẍ+ xẋ2 +
dg(x)

dx
+2xg(x) = 0 (8)

Comparing Eqs. (3), (6) with (8) we see that g(x) must satisfy

the following equation:

dg(x)

dx
+2xg(x) = x+a3x3 +a5x5 +a7x7 + · · · (9)

This may be solved for g(x) by taking g(x) in the form of a power

series with even-powered terms:

g(x) = b2x2 +b4x4 +b6x6 + · · · (10)

Substitution of Eq. (10) into Eq. (9) leads to expressions for the

bi coefficients, the first few of which are:

b2 =
1

2
, b4 =

a3 −1

4
, b6 =

2a5 −a3 +1

12
, · · · (11)
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In order to use a perturbation method, we introduce a small

parameter ε by setting x =
√

ε x̃ in Eqs. (3), (6) and drop the

tilde for convenience, deriving:

ẍ+ x+ εxẋ2 + εa3x3 + ε2a5x5 + ε3a7x7 + · · ·= 0 (12)

To obtain an approximate solution to Eq. (12), we expand x in a

power series in ε:

x = x0 + εx1 + ε2x2 + · · · (13)

Note that there is no need to expand frequency in a power se-

ries in ε as is usual in Lindstedt’s method [4] as we are after a

straight-line backbone curve.

Substituting Eq. (13) into Eq. (12) and collecting terms we

get a sequence of equations, the first few of which are:

ẍ0 + x0 = 0 (14)

ẍ1 + x1 = −x0ẋ2
0 −a3x3

0 (15)

ẍ2 + x2 = −2 x0 ẋ0ẋ1 − ẋ2
0 x1 −3 a3 x2

0 x1 − a5 x5
0 (16)

The solution to Eq. (14) is assumed to be

x0 = Rcos t (17)

whereupon Eq. (15) becomes:

ẍ1 + x1 =
a3 −1

4
R3 cos3t +

3a3 +1

4
R3 cos t (18)

We take a3 = −1/3 to remove resonance terms, and obtain

ẍ1 + x1 = −1

3
R3 cos3t (19)

which has the particular solution:

x1 = − 1

24
R3 cos3t (20)

Substituting Eqs. (17), (20) into Eq. (16) yields

ẍ2 + x2 =
15a5−1

24
R5 cos t +NRT (21)

where NRT stands for non-resonant terms. For no resonance,

we choose a5 = 1/15. Proceeding in this way, we obtain the

following values for the coefficients ai in Eq. (6):

a3 = −1/3 (22)

a5 = 1/15 = 1/(3 ∗ 5) (23)

a7 = −1/105 = −1/(3 ∗ 5 ∗ 7) (24)

a9 = 1/945 = 1/(33 ∗ 5 ∗ 7) (25)

a11 = −1/10395 = −1/(33 ∗ 5 ∗ 7 ∗ 11) (26)

a13 = 1/135135 = 1/(33 ∗ 5 ∗ 7 ∗ 11∗ 13) (27)

a15 = −1/2027025 = −1/(34 ∗ 52 ∗ 7 ∗ 11 ∗ 13) (28)

a17 = 1/34459425 = 1/(34 ∗ 52 ∗ 7 ∗ 11 ∗ 13∗ 17) (29)

Now it is important to note that the typical term in the fore-

going list of coefficients may be written in the following compact

form:

a2n+1 =
(−1)n

(2n +1)!!
, n = 1,2,3, . . . (30)

Thus, the straight-line backbone differential equation (3), (6),

with the linear term included into the sum, can be written down

as:

ẍ+ xẋ2 +
∞

∑
n=0

(−1)nx2n+1

(2n +1)!!
= 0 (31)

It is remarkable that the sum in Eq. (31) can be represented

in the following closed form:

∞

∑
n=0

(−1)nx2n+1

(2n +1)!!
=

√

π

2
e−

x2

2 erfi

(

x√
2

)

(32)

where erfi denotes the “imaginary error function” defined as [16]

erfi(z) = −i erf (iz) (33)
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where erf represents the error function [16], [17],

erf(z) =
2√
π

∫ z

0
e−u2

du (34)

We note that erfi(z) satisfies the equation [16]:

d

dz
erfi(z) =

2√
π

expz2 (35)

Therefore, starting from a local perturbation analysis we

have been able to obtain an expression for the straight-line back-

bone differential equation which is valid for all x, namely

ẍ+ xẋ2 +

√

π

2
e−

x2

2 erfi

(

x√
2

)

= 0 (36)

When compared with Eq. (8), this equation implies that the

function g(x) must satisfy

dg(x)

dx
+2xg(x) =

√

π

2
e−

x2

2 erfi

(

x√
2

)

(37)

which can be solved to find

g(x) =
π

4
e−x2

erfi2

(

x√
2

)

(38)

TRANSFORMATION APPROACH

In order to obtain a deeper understanding of the results de-

rived by the power series method, we present another approach.

We start by expressing the SHO (1) in terms of its Lagrangian

LSHO =
Ẋ2

2
− X2

2
(39)

Now, putting the requirement of the equivalence between

the Lagrangian of the SHO (39) and the one corresponding to the

oscillator under consideration (7), we conclude that the following

should be satisfied

Ẋ = e
x2

2 ẋ, (40)

X2

2
= ex2

g (x) (41)

Equation (40) gives

dX = e
x2

2 dx (42)

and its integration yields (see Eq. (34))

X =

√

π

2
erfi

(

x√
2

)

(43)

Based on Eq. (41), we find

g(x) =
π

4
e−x2

erfi2

(

x√
2

)

(44)

which agrees with the result (38) obtained by using the power

series method.

As the final confirmation, let us use Eq. (40) and find its

time derivative

Ẍ = ẍe
x2

2 + ẋ2xe
x2

2 (45)

Substituting Eqs. (45) and (43) into the equation of motion of the

SHO (1), we obtain

ẍ+ xẋ2 +

√

π

2
e−

x2

2 erfi

(

x√
2

)

= 0 (46)

which is in agreement with the expression for the straight-line

backbone differential equation (36) obtained by using the power

series method.

NUMERICAL CONFIRMATION

To provide numerical confirmations of the results obtained

analytically, the equation of motion (36), i.e. (46), was solved

numerically for different initial conditions and plotted in Fig. 2

(a solid line is obtained for x(0)=1, a dashed line for x(0)=0.5 and

a dotted line for x(0)=0.1, while in all cases ẋ(0)=0). The time

histories presented in Fig. 2 confirm that the period of vibration

is independent of the amplitude and it is equal to 2π . Thus, the

oscillator modelled by the Lagrangian (7) with g(x) being de-

fined by Eq. (38), with the equation of motion given by Eq. (36),
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FIGURE 2. Numerically obtained time responses of the equation of

motion (36), i.e. (46), for different initial conditions, ẋ(0)=0 and: x(0)=1

(solid line), x(0)=0.5 (dashed line) and x(0)=0.1 (dotted line).

possesses the property of isochronicity and has a straight-line

backbone curve shown in Fig. 1.

An alternative way to achieving isochronicity by utilizing

the imaginary error function in the equation of motion, is to use

its power series representation (32). An important question is

how many powered-form terms are needed for such an oscilla-

tor to exhibit a straight-line backbone curve. To answer it, the

equation of motion (31) with the coefficients defined by Eq. (30)

was solved numerically and the frequency ω was extracted from

the time response for various values of the initial amplitude R.

This was done for a different number of odd-powered polynomial

terms in the sum. The backbone curves of the corresponding os-

cillators (O j) are plotted in Fig. 3, where the subscript j denotes

the highest power included into the sum. Fig. 3 shows that the

oscillator O5 has a softening backbone curve. With additional

terms in the sum, the backbone curve gradually unbends, alter-

nating its shape between the one corresponding to hardening and

softening behaviour. The oscillator O15 and those with higher

powers of nonlinearity exhibit a straight-line vertical backbone

curve on the region of R considered.

CONCLUSIONS

This work has been motivated by the fact that the oscillators

with a straght-line vertical backbone curve, when forced, do not

exhibit hysteresis and jump phenomena. We have investigated

the possibility of designing a differential equation correspond-

ing to a conservative isochronous nonlinear oscillator, whose fre-

quency would be amplitude-independent and its backbone curve

would consequently be vertical and straight. To accomplish this

aim, we have used two approaches: the power series approach

based on Lindstedt’s method and the transformation approach

that establishes the equivalence between the Lagrangian of the

simple harmonic oscillator, which is known to be isochronous,

and a new oscillator. Both approaches have given the same re-

sults in terms of an exact expression for the straight-line back-

FIGURE 3. Numerically obtained backbone curves of the oscillator

(31) with the coefficients defined by Eq. (30) for a different number of

odd-powered terms (the highest power is indicated in the subscript).

bone differential equation that contains the imaginary error func-

tion and the corresponding Lagrangian.
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