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ABSTRACT
Analytical and numerical methods are applied to a pair

of coupled nonidentical phase-only oscillators, where each
is driven by the same independent third oscillator. The pres-
ence of numerous bifurcation curves defines parameter re-
gions with 2, 4, or 6 solutions corresponding to phase lock-
ing. In all cases, only one solution is stable. Elsewhere,
phase locking to the driver does not occur, but the average
frequencies of the drifting oscillators are in the ratio of m:n.
These behaviors are shown analytically to exist in the case of
no coupling, and are identified using numerical integration
when coupling is included.

INTRODUCTION
Recent experiments in optical laser MEMs have in-

volved models of two coupled oscillators, each of which is
being driven by a common harmonic forcer in the form of
light [1]. Various steady states have been observed, includ-
ing complete synchronization, in which both oscillators op-
erate at the same frequency as the forcer, and partial synchro-
nization, in which only one of the oscillators operates at the
forcing frequency. Other possible steady states may exist, for
example where the two oscillators are mutually synchronized

∗Address all correspondence to this author.

but operate at a different frequency (or related frequencies)
than that of the forcer (“relative locking”). Additionally, the
oscillators may operate at frequencies unrelated to each other
or to the forcing frequency (“drift”). The question of which
of these various steady states is achieved will depend upon
both the frequencies of the individual uncoupled oscillators
relative to the forcing frequency, as well as upon the nature
and strength of the forcing and of the coupling between the
two oscillators.

Related studies have been done for other variants
of the three coupled oscillator problem. Mendelowitz et
al. [2] discussed a case with one-way coupling between the
oscillators in a loop; this system resulted in two steady states
due to choice of direction around the loop. Baesens et al. [3]
studied the general three–oscillator system (all coupling
patterns considered), provided the coupling was not too
strong, by means of maps of the two–torus.

Cohen et al. [4] modeled segments of neural networks
as coupled limit cycle oscillators and discussed the special
case of two coupled phase–only oscillators as described by
the following:

θ̇1 = ω1 +α sin(θ2−θ1) (1)
θ̇2 = ω2 +α sin(θ1−θ2) (2)
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Defining a new variable ψ = θ2− θ1, being the phase dif-
ference between the two oscillators, allows the state of the
system to be consolidated into a single equation:

ψ̇ = ω2−ω1−2α sinψ (3)

This is solved for an equilibrium point (constant ψ) which
represents phase locking, i.e. the two oscillators traveling at
the same frequency with some constant separation. This also
gives us a constraint on the parameters which allow for phase
locking to occur. If no equilibrium point exists, the oscilla-
tors will drift relative to each other; while they are affected
by each other’s phase, the coupling is not strong enough to
compensate for the frequency difference.

sinψ
∗ =

ω2−ω1

2α
(4)∣∣∣∣ω2−ω1

2α

∣∣∣∣≤ 1 (5)

Under the constraint, there are two possible equilibria ψ∗ and
(π−ψ∗) within the domain, though one of them is unstable
given that

dψ̇

dψ
=−2α cos(ψ) =−2α(−cos(π−ψ

∗))

So if one of them is stable (dψ̇/dψ < 0), the other must be
unstable (and vice versa).

Plugging the equilibrium back into the original equa-
tions we find the frequency at which the oscillators end up
traveling; this is a “compromise” between their respective
frequencies.

θ̇1 = ω1 +α

(
ω2−ω1

2α

)
=

ω1 +ω2

2
(6)

Since the coupling strength is the same in each direction, the
resultant frequency is an average of the two frequencies with
equal weight; with different coupling strengths this would
become a weighted average.

Keith and Rand [5] added coupling terms of the form
α2 sin(θ1−2θ2) to this model and correspondingly found 2:1
locking as well as 1:1 locking.

MODEL
We design our model, as an extension of the two–

oscillator model, to include a pair of coupled phase-only os-
cillators with a third forcing oscillator, as follows:

θ̇1 = ω1 +α sin(θ2−θ1)−β sin(θ1−θ3) (7)
θ̇2 = ω2 +α sin(θ1−θ2)−β sin(θ2−θ3) (8)

θ̇3 = ω3 (9)

This system can be related back to previous work by
careful selection of parameters. Note that the β = 0 case re-
duces the system to two coupled oscillators without forcing,
while α = 0 gives a pair of uncoupled forced oscillators.

It is now useful to shift to a coordinate system based
off of the angle of the forcing oscillator, since its frequency
is constant. Let φ1 = θ1− θ3 and φ2 = θ2− θ3, with simi-
lar relations Ω1 = ω1−ω3 and Ω2 = ω2−ω3 between the
frequencies. The forcing oscillator’s equation of motion can
thus be dropped.

φ̇1 = Ω1 +α sin(φ2−φ1)−β sinφ1 (10)
φ̇2 = Ω2 +α sin(φ1−φ2)−β sinφ2 (11)

A nondimensionalization procedure, scaling time with re-
spect to Ω1, allows for Ω1 = 1 to be assumed without loss
of generality.

We note that the φi now represent phase differences be-
tween the paired oscillators and the driver. Thus, if a φ̇i = 0,
the corresponding θi is defined to be locked to the driver.
Equilibrium points of equations (10) and (11) then represent
full locking of the system. Partial and total drift are more
difficult to recognize and handle analytically, and will be dis-
cussed later.

FULL LOCKING
We begin by solving the differential equations for equi-

libria directly, so as to find the regions of parameter space for
which the system locks to the driver. The equilibria satisfy
the equations:

0 = 1+α sin(φ2−φ1)−β sinφ1 (12)
0 = Ω2 +α sin(φ1−φ2)−β sinφ2 (13)

Trigonometrically expanding equation (12) and solving for
cos φ1:

cos φ1 =
α sin φ1 cos φ2 +β sin φ1−1

α sin φ2
(14)

We square this equation, rearrange it, and use sin2 θ +
cos2 θ = 1 to replace most cosine terms:

α
2 (1− sin2

φ1) sin2
φ2

−α
2 sin2

φ1(1− sin2
φ2)

+(2α sin φ1−2αβ sin2
φ1) cos φ2

−β
2 sin2

φ1 +2β sin φ1−1 = 0 (15)

Repeating the process by solving for cos φ2, we obtain an
equation in terms of only sines:

−[4α
2
β

2 sin4
φ1−8α

2
β sin3

φ1
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+(4α
2−2α

2
β

2−2α
4) sin2

φ1

+4α
2
β sin φ1−2α

2] sin2
φ2

−α
4 sin4

φ2− (β4−2α
2
β

2 +α
4) sin4

φ1

−(4α
2
β−4β

3) sin3
φ1− (6β

2−2α
2) sin2

φ1

+4β sin φ1−1 = 0 (16)

Returning to equations (12) and (13), we add them and solve
for sinφ2 in terms of sinφ1:

sin φ2 =
1+Ω2

β
− sin φ1 (17)

This is now plugged into equation (16) to eliminate φ2 and
obtain an polynomial of degree six in s = sin φ1, dependent
on the various parameters.
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The roots of this polynomial give values of s = sin φ1
for a given set of parameter values; degree six implies that
there will be up to six roots in s, although a single root in s
may correspond to more than one root in φ1 due to the multi-
valued nature of sine. Each φ1 has a corresponding φ2 value
as defined by equation (17). To avoid extraneous roots, each
φi pair should be confirmed in equations (12) and (13).

In order to distinguish changes in the number of real
equilibria, we look for double roots of this polynomial such
that two (or more) of the equilibria are coalescing in a sin-
gle location. Setting the polynomial and its first derivative
in s equal to zero and using Maxima to eliminate s results
in a single equation with 142 terms in α, β, and Ω2 which
describes the location of bifurcations.
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This equation by itself is cumbersome to work with. We
begin to interpret its results by choosing different values of
Ω2 and plotting the resulting curves in the βα-plane (see Fig.
1). Each curve is the location of a double root of the origi-
nal system, and represents a pair of equilibrium points being
created or destroyed in a fold bifurcation. The combination
of bifurcation curves leads to regions of 0–6 equilibria.

Numerical analysis of the original differential equations
with AUTO continuation software [6] both confirms the
quantities of equilibria and calculates the eigenvalues of each
point. Through these results, we find that only one equi-
librium point (and therefore locking behavior) is stable; it
occurs for any region where equilibria exist, i.e. for large
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EQUATION (19). REGIONS SHOW “L” FOR LOCKING OR “D” FOR
DRIFT, FOLLOWED BY NUMBER OF EQUILIBRIA.
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Fig. 2. SURFACE OF DOUBLE ROOTS FORMING THE BOUND-
ARY BETWEEN COMPLETE SYNCHRONIZATION AND THE
OTHER BEHAVIORS.

enough forcing strength β.
The leftmost curve, where the first two equilibria are cre-

ated, is of most interest since it is the boundary between drift
and total locking. Figure 2 shows only this surface in three
dimensions.

Asymptotics
Asymptotic expansions of equation (19) may be useful

for very large or very small α, in applications where the
entire equation would be cumbersome. For these purposes,
we assume that Ω2 ≥ Ω1 = 1; if this is not true, the two
oscillators’ labels can switch such that this analysis is
applicable.

Large α Approximation For large α the curve appears
to approach a constant value β. We divide by the highest
power, α10, in equation (19), then take the limit as α goes to
infinity to find that the equation approaches:

256 (Ω2 +1)4 (Ω2 +2β+1) (Ω2−2β+1) = 0 (20)

Since we are considering β≥ 0 and Ω2 ≥ 1, only the last por-
tion (Ω2−2β+1) can equal 0 to solve the equation, leading
to the asymptotic value of β:

β =
1+Ω2

2
(21)

We perturb off of this value by writing β as:

β =
1+Ω2

2
+

k1

α
+

k2

α2 + . . . (22)

By plugging this into equation (19) and requiring the coeffi-
cient of each power of α to vanish, we find the ki to give the
following expression for β. For odd i, the ki are found to be
zero, leaving an expression for β with only even terms in α.

β =
1
2
(Ω2 +1)+

1
64α2 (Ω2−1)2(Ω2 +1)

+
7

4096α4 (Ω2−1)4(Ω2 +1)

+
(25Ω2

2−82Ω2 +25)
131072α6 (Ω2−1)4(Ω2 +1)+ . . .(23)

We note that there is a common factor of (Ω2 +1)/2 present
in all terms, which acts as an overall scaling factor for the
expression. Figure 3 compares this approximation out to 3
and 5 terms in 1/α2 with the original numerical result.

Small α Approximation In the α = 0 case, the algebraic
equations to be solved, eqs. (12) and (13), become uncou-
pled:

0 = 1−β sinφ1 (24)
0 = Ω2−β sinφ2 (25)

In order for both to have real solutions, β ≥ 1 and β ≥ Ω2
must both be satisfied. Thus, under our assumption that Ω2≥
1, equilibria (and therefore locking behavior) will exist for
β≥Ω2.

We perturb off of β = Ω2 for small α by plugging the
following into equation (19):

β = Ω2 +µ1α+µ2α
2 + . . . (26)
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Fig. 3. APPROXIMATIONS FOR LARGE α: DASHED LINE ACCU-
RATE TO O(α−4), BOLD DASHED LINE TO O(α−8). Ω2 = 5.

and solving for the µi such that equation (19) is satisfied to
O(αi+1). This leads to two different branches, differenti-
ated by the sign of the µ1 term, due to the intersection of the
drift/lock boundary with another bifurcation curve at α = 0.
Choosing the drift/lock boundary by taking the negative µ1
such that β decreases for positive α:

β = Ω2−

√
Ω2

2−1

Ω2
α+

(2Ω2 +1)
2Ω3

2
α

2

+
(Ω4

2 +2Ω3
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2Ω5
2

√
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2−1
α

3
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(4Ω6

2−12Ω4
2−12Ω3
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8(Ω2−1)Ω7
2(Ω2 +1)

α
4 . . .(27)

Figure 4 shows this approximation out to 5 and 8 terms in α.
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Fig. 4. APPROXIMATIONS FOR SMALL α: DASHED LINE ACCU-
RATE TO O(α4), BOLD DASHED LINE TO O(α7). Ω2 = 5.
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Fig. 5. LINEAR PIECEWISE APPROXIMATION FOR THE
DRIFT/LOCK BOUNDARY. Ω2 = 5.

Patched Solution: A Practical Approximation We
approximate the lock/drift boundary curve by two lines for
different ranges of α based on their intersection. Our two
approximations, taken to be linear:

β =
1
2
(Ω2 +1)+O(α−2) (28)

β = Ω2−

√
Ω2

2−1

Ω2
α+O(α2) (29)

Ignoring nonlinear terms and finding the intersection (β∗,α∗)
for a given Ω2,

β
∗ = Ω2−

√
Ω2

2−1

Ω2
α
∗ =

1
2
(Ω2 +1) (30)

α
∗ =

Ω2(Ω2−1)

2
√

Ω2
2−1

=

√
β∗−1(2β∗−1)

2
√

β∗
(31)

Then we can consider the combined linear approxima-
tion to be the piecewise function for β with eq. (29) for
α≤ α∗ and eq. (28) for α≥ α∗. See Fig. 5.

THE DRIFT REGION
Within the region of no equilibrium points, we can

study different forms of drift: full drift, m:n relative locking
between the φi while drifting with respect to the driver, or
partial synchronization with one oscillator locked to the
driver (while the other drifts). To distinguish between these,
we start by separately considering the cases β = 0 and α = 0.
See Fig. 6.
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Fig. 6. LOCATIONS OF INTEREST FOR ANALYTICAL AP-
PROACHES TO THE DRIFT REGION

No Driver β = 0
We begin with the system with no driver, β = 0 (as ad-

dressed by Cohen et al. [4], see introduction):

ψ̇ =
d
dt
(φ2−φ1) = Ω2−Ω1−2αsinψ

and observe that φ1 and φ2 experience 1:1 phase locking for

α≥ |Ω2−1|/2

but there is no locking to θ3. Thus, corroborating intuition,
stronger coupling (larger values of α) results in 1 : 1 locking.
We would anticipate that this behavior would extend (for
nonzero β) into the large−α realm of parameter space,
before the driver is strong enough to cause phase locking.

No Coupling α = 0
Next, we consider the α = 0 case, since the two φi dif-

ferential equations become uncoupled and can thus be indi-
vidually integrated. By separation of variables, we find:

dt =
dφ1

1−βsinφ1
=

dφ2

Ω2−βsinφ2
(32)

which can be integrated to find:

t(φi)+Ci = 2Qi tan−1
[

Qi

(
Ωi sinφi

cosφi +1
−β

)]
(33)

where

Qi = 1/
√

Ω2
i −β2 (34)

If we consider a full cycle of φi, that is, the domain
φ0 ≤ φi ≤ 2π+φ0, the argument of the arctangent covers its

entire domain of (−∞, ∞) exactly once, so the entire range
π of arctangent is covered exactly once. Thus the ∆ti corre-
sponding to this ∆φi is:

∆ti = 2πQi = 2π/
√

Ω2
i −β2 (35)

Given a known Ω2 and choosing particular values of β,
it should be possible to find a ∆t which is an integer multiple
of each of the two oscillators’ periods. That is, ∆t = n2∆t1 =
n1∆t2 such that in that time, each φi travels 2πni. Thus the
oscillators would have motion with the ratio n1 : n2 between
their average frequencies.

∆t1
∆t2

=
n1

n2
=

√
Ω2

2−β2√
Ω2

1−β2
(36)

By solving for β, we can then pick integers ni and find
the location on α = 0 where that type of orbit occurs.

β
2 =

Ω2
1n2

1−Ω2
2n2

2

n2
1−n2

2
(37)

Note that this is not solvable for n1 = n2 = 1 unless the os-
cillators are the same and identically influenced by the driver
(Ω1 = Ω2); this behavior is instead found on β = 0 as seen
above.

Each ratio n1 : n2 will have a corresponding βn2/n1 for
α = 0; some example values are found in Tab. 1. It is rea-
sonable to think that for small values of α near the βn2/n1 , the
n1 : n2 behavior might persist although we are no longer able
to study the oscillators separately.

Table 1. EXAMPLE n1 : n2 LOCATIONS ON α= 0 FOR Ω2 = 1.1

n1 n2 βn2/n1

1 1 does not exist

2 1 0.9644

3 1 0.9868

3 2 0.9121

1 0 ≥Ω1 = 1

Numerical
Based on the α = 0 and β = 0 cases, we expect to find

regions of n1 : n2 relative locking continuing into the rest of
the drift region. Through analysis of numerically computed
solutions, we focused on cases of N : 1 behaviors, though

6 Copyright c© 2014 by ASME
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Fig. 7. Ω2 = 1.1; NUMERICAL N : 1 FINDINGS AND
DRIFT/LOCK BIFURCATION CURVE.

our method should be applicable to more general cases with
minor adjustments.

After allowing the system to reach a steady state, we in-
tegrate for a ∆φ1 = 2π and find the corresponding ∆φ2. If this
∆φ2 is an integer multiple of 2π, the point in parameter space
is classified appropriately as N : 1; otherwise, it likely fol-
lows some other n1 : n2 ratio and is not shown. Alternately,
if φ1 is constant such that a corresponding ∆φ2 would be ar-
bitrary, the point is classified as 1 : 0 or as an equilibrium.

The results for 0.91≤ β≤ 1.1, along with the drift/lock
boundary curve from above, are shown in Fig. 7. (Note that
Figs. 1-5 were calculated for Ω2 = 5, whereas Figs. 7 and
8 are for Ω2 = 1.1.) Some additional tongues were found
numerically that also do not appear in the figure, as the higher
N : 1 tongues are increasingly narrow. We also observe that
beyond the edge of Fig. 7, the boundary of the 1 : 1 relative
locking region extends to α = 0.05 for β = 0, as expected
from our prior calculation.

As anticipated, we find that the tongues of N : 1 relative
locking emerge from the analytically calculated values on
the β axis. These tongues stretch across the βα-plane and
terminate when they reach the drift/lock bifurcation curve.
Figure 8 zooms in on the region of termination; note that
the tongues still have nontrivial width when they reach the
bifurcation curve.

Figure 9 shows a schematic description of the termina-
tion of the tongues at the drift/lock bifurcation curve. Each
N : 1 region disappears in the saddle-node bifurcation in
which a pair of equilibria is born (one stable, one unstable),
located on the other side of the bifurcation curve. Each N : 1
region in the sequence is separated from the next by a region
which is filled with other n1 : n2 tongues.

As N increases, a limit is reached which corresponds to
1 : 0 locking (i.e. ∞ : 1). Within this region, φ1 is locked to
the driver, but φ2 is not, representing partial synchronization
to the driver (rather than relative locking between the oscil-
lators). The curve bounding this region intersects the β axis
at β = Ω1 = 1.

1.045 1.05 1.055 1.06 1.065

0.185

0.19

0.195

0.2

β

α

1:1

2:1

1:0

full lock

3:1

Fig. 8. NUMERICAL N : 1 FINDINGS AND DRIFT/LOCK BOUND-
ARY ZOOMED IN. Ω2 = 1.1.

β

α

. . .

full lock

3:1

2:1

1:1

4:1
∞:1

→ 1:0

Fig. 9. BEHAVIORS AT THE DRIFT/LOCK BOUNDARY CURVE;
NOT TO SCALE

CONCLUSION
This work has approached a system of three coupled os-

cillators which represent a coupled pair under the same pe-
riodic external forcing. We investigated the existence of full
locking behaviors between the oscillators, and presented two
approximations for the boundary between drift and locking
based on relative frequencies and coupling strengths. We
also studied the various classifications of drift behavior, and
their locations in parameter space, including various m:n res-
onances of the driven pair. In the latter case, the behavior of
one oscillator relative to the other is periodic, but the ob-
served behavior of the three-oscillator system is quasiperi-
odic due to drift relative to the driver.

This project was motivated by the consideration of a pair
of coupled oscillators exposed to an environmental forcing.
Further work may include the application of this analysis to
more realistic models, such as the van der Pol oscillator, or an
expanded set of parameters which could represent noniden-
tical coupling and driving strengths. Other appropriate con-
siderations would involve the effect of the delay in this prob-
lem, or separate environmental drivers, which would both
characterize nontrivial distance between the coupled pair of
oscillators.
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