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ABSTRACT
We investigate the dynamics of two-strategy replicator equa-

tions in which competition between strategies is delayed by a
given time interval T . Taking T as a bifurcation parameter, we
demonstrate the existence of (non-degenerate) Hopf bifurcations
in these systems, and present an analysis of the resulting limit
cycles using Lindstedt’s method.

INTRODUCTION
The field of evolutionary dynamics uses both game theory

and differential equations to model population shifts among com-
peting adaptive strategies. One standard approach [1, 2] uses
the replicator equation, which modifies the exponential model
of population growth,

ξ̇i = ξigi (i = 1, . . . ,n) (1)

where ξi is the population of strategy i and gi(ξ1, . . . ,ξn) is the
fitness of that strategy. The replicator equation [3] results from
equation (1) by changing variables from the populations ξi to the
relative abundances, defined as xi ≡ ξi/p where p is the total
population:

p(t) = ∑
i

ξi(t). (2)

∗Address all correspondence to this author.

We see that

ṗ = ∑
i

ξ̇i = ∑
i

ξigi (3)

= p∑
i

ξi

p
gi = p∑

i
xigi (4)

= pφ (5)

where φ ≡ ∑i xigi is the average fitness of the whole population.
By the product rule,

ẋi =
ξ̇i

p
− ξi ṗ

p2 (6)

=
ξi

p
gi−

ξi

p
ṗ
p

(7)

= xi (gi−φ) . (8)

Therefore

∑
i

ẋi = ∑
i

xigi−φ ∑
i

xi (9)

= ∑
i

xigi−∑
j

x jg j ∑
i

xi. (10)

So, using the fact that

∑
i

xi =
∑i ξi

p
=

p
p
≡ 1 (11)
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equation (10) reduces to the identity

∑
i

ẋi = 0. (12)

The fitness of a strategy is assumed to depend only on the
relative abundance of each strategy in the overall population,
since the model only seeks to capture the effect of competi-
tion between strategies, not any environmental or other factors.
Therefore, we assume that gi has the form

gi(ξ1, . . . ,ξn) = fi

(
ξ1

p
, . . . ,

ξn

p

)
= fi(x1, . . . ,xn). (13)

Under this assumption, equation (8) is the replicator equation,

ẋi = xi( fi−φ), (14)

where φ is now expressed entirely in terms of the xi, as

φ = ∑
i

xi fi. (15)

Mathematically, φ is a coupling term that introduces dependence
on the abundance and fitness of other strategies.

The game-theoretic component of the replicator model lies
in the choice of fitness functions. Take the payoff matrix A =
(ai j), where ai j is the expected reward for strategy i when it com-
petes with strategy j. Then the fitness fi is the total expected pay-
off of strategy i vs. all strategies, weighted by their frequency:

fi = (A ·x)i. (16)

where

x = (x1, . . . ,xn). (17)

In this work, we generalize the replicator model to systems
in which competition with other strategies is delayed by a given
time interval T , but competition between same-strategy players is
not delayed. Then at time t, the available opponents for a strategy
i player are xi(t) of her compatriots, and x j(t−T ) time-delayed
players of each strategy j 6= i. If we write x̄i ≡ xi(t − T ) and
define

x̄i ≡ (x̄1, . . . , x̄i−1,xi, x̄i+1, . . . , x̄n) (18)

then the total expected payoff – i.e. the fitness – for strategy i is
given by

fi = (A · x̄i)i. (19)

The use of delayed fitness functions makes the replicator equa-
tion into the delay differential equation (DDE)

ẋi = xi( fi−φ) (20)

where

φ = ∑
i

xi fi = ∑
i

xi(A · x̄i)i. (21)

As a system of ODEs, the standard replicator equation is an
(n−1) - dimensional problem, since n−1 of the xi are required to
specify a point in phase space. The delayed replicator equation,
by contrast, is an infinite-dimensional problem [4] whose solu-
tion is a flow on the space of functions on the interval [−T,0).

For a concrete interpretation of this system, imagine a sit-
uation in which the different strategies are geographically sepa-
rated, so each group has a delayed estimate of the other groups’
populations. Each group sets its rate of reproduction based on
the most current population data available: up-to-date for its own
population and delayed by a fixed time T for all the others.

This system may also be considered as a model for play-
ing games by mail, with asynchronous score-updating for each
group; or of competition between species with a fixed gestation
time.

1 DERIVATION
We analyze delayed evolutionary games with two strategies.

For ease of notation, write (x1,x2) = (x,y), and let

A =

(
a b
c d

)
. (22)

Then

ẋ = x( f1−φ) and ẏ = y( f2−φ) (23)

where

f1 = ax+bȳ and f2 = cx̄+dy, (24)
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which means

φ = x f1 + y f2 = x(ax+bx̄)+ y(cx̄+dy). (25)

Substituting in these values, and writing y = 1− x, the system is
reduced to the single delay differential equation

ẋ = x(1− x)((a+d)x− (b+ c)x̄+b−d) . (26)

At this point, we note that the four payoff parameters appear in
only three independent groupings. So, we replace the four pa-
rameters a,b,c,d with q,r,s, defined by

q≡ a+d (27)
r ≡−b− c (28)
s≡ b−d (29)

Then equation (26) becomes

ẋ = x(1− x)(qx+ rx̄+ s) . (30)

2 ANALYSIS
The equilibrium points of equation (30) satisfy ẋ = 0 and

x̄ = x. There are three equilibria:

x = 0, x = 1, x =
−s

q+ r
. (31)

The first two are the endpoints of the interval of physical rele-
vance, since we require that x ∈ [0,1]. The third lies in the inter-
val (0,1) if and only if

|s|< |q+ r| and s(q+ r)< 0. (32)

We examine the stability of the three points.
Taylor expanding about x = 0 and x = 1, respectively, we

obtain the linearized systems

ẋ = sx about x = 0 (33)
(x−1)̇ =−(q+ r+ s)(x−1) about x = 1 (34)

These two linearizations do not depend on x̄, so the stability of
the endpoints depends only on the payoff coefficients and not on
the delay. If the inequalities (32) hold, then the coefficients s
and −(q+ r+ s) have the same sign, so the two endpoints have

the same stability. If s > 0 and the inequalities (32) hold, we
find that both endpoints are unstable; if s < 0 and the inequalities
hold, then both endpoints are stable.

Now consider the third equilibrium. Assume that it lies in
the interval (0,1); that is, inequalities (32) hold. To determine its
stability, we set

z = x+
s

q+ r
. (35)

In terms of z, equation (30) is

ż =− (s− z(q+ r))(q+ r+ s− z(q+ r))(qz+ rz̄)
(q+ r)2 . (36)

We linearize about z = 0 to get

ż =− s(q+ r+ s)(qz+ rz̄)
(q+ r)2 . (37)

First, note that if delay T = 0, the linearization reduces to

ż =− s(q+ r+ s)z
(q+ r)

. (38)

Recall that the inequalities (32), which we are assuming are true,
imply that the sign of s is opposite the sign of (q+ r) and (q+
r+ s). Therefore, if s > 0, we find that the point z = 0 is stable;
if s < 0, then it is unstable.

In general, however, the linearization (37) has a non-zero z̄
term, so it is reasonable to expect that the stability will depend
on the delay T . Given that, we analyze the system for a Hopf
bifurcation, taking T as the bifurcation parameter.

Set z(t) = eλ t (and z̄ = eλ (t−T )) in equation (37) to obtain
the characteristic equation

λ =− s(q+ r+ s)(q+ re−λT )

(q+ r)2 . (39)

At the critical value of delay for a Hopf bifurcation, the eigenval-
ues are pure imaginary, so we take T = Tcr and λ = iω . Substi-
tuting this into the characteristic equation and taking the real and
imaginary parts, we obtain

cosωTcr =−
q
r

(40)

sinωTcr =−
(q+ r)2

rs(q+ r+ s)
ω. (41)
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Squaring these equations and adding them, we can solve for the
critical frequency ω:

ω =

√
(r−q)s2(q+ r+ s)2

(q+ r)3 . (42)

It can be shown that the frequency is real and non-zero if and
only if (in addition to (32))

|q|< |r|. (43)

Thus (43) is a necessary condition for a Hopf bifurcation to exist.
We will assume that this is the case. Then, substituting the value
of ω back into (40), we obtain the critical delay Tcr:

Tcr = cos−1(−q/r)

√
(q+ r)3

s2(r−q)(q+ r+ s)2 . (44)

This result agrees with the values of Tcr and ω given by Rand
and Verdugo [5]. We also apply the results of [5] to obtain an
approximation for the amplitude of the limit cycle generated by
the Hopf bifurcation. (See Appendix A.) If T = Tcr + µ , the
amplitude R is given by

R =
√

µP/Q (45)

where

P =
4r3s7(r−q)(5r−4q)(q+ r+ s)7

(q+ r)12 (46)

Q =
r3s4(r−q)(q+ r+ s)4

(q+ r)11

[
(2q− r)(q+ r)2(q+ r+2s)2

+Tcrs(q+ r+ s)
(
3r2(q+ r)2

+s(q+ r+ s)(4q2−qr+7r2)
)]
. (47)

Since R is real, µ must have the same sign as P/Q. This de-
termines whether the Hopf bifurcation is sub- or supercritical. In
particular, if the point z = 0 is stable for delay T < Tcr and µ > 0,
then the limit cycle is stable and the bifurcation is supercritical.
We will treat an example of this type in the next section.

3 EXAMPLE: HAWK-DOVE GAMES
As an example, consider the hawk-dove system described

by Nowak [6]. There are two strategies competing for a resource

with benefit b: “hawks,” who will escalate fights against other
players, and “doves,” who will retreat from fights. So, if a hawk
meets a dove, the hawk always wins, receiving payoff b, while
the dove receives nothing. If two doves meet, each is equally
likely to win the resource, so the expected payoff is b/2. If two
hawks meet, they fight over the resource; each expects to gain
benefit b/2 and incur a cost of injury c/2, for an expected payoff
of b−c

2 . Therefore the game is represented by the payoff matrix

A =

( b−c
2 b
0 b

2

)
(48)

where b and c are positive numbers.
In this case, equation (30) becomes

ẋ =
1
2

x(1− x)((2b− c)x−2bx̄+b) (49)

so we have

q =
2b− c

2
, r =−b, s =

b
2
. (50)

The equilibria of the system are

x = 0, x = 1, x =
b
c
. (51)

The condition (32) for the third equilibrium to lie in the interval
of relevance 0 < x < 1 reduces to

0 < b < c. (52)

If we let

z = x− b
c

(53)

then the linearization about z = 0 in the case of no delay (T = 0
and z̄ = z) is

ż =
b(b− c)z

2c
. (54)

Therefore, if (52) holds – that is, if the third equilibrium lies in
the interval of relevance – the point z = 0 is stable for T = 0.
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If there is a Hopf bifurcation, its critical frequency (42) is

ω =

√
b2(b− c)2(4b− c)

c3 (55)

and the necessary condition (43) for ω to be real and nonzero is

c < 4b. (56)

So, the condition for the point z = 0 to both lie in the interval of
relevance and have a Hopf bifurcation is

0 < b < c < 4b. (57)

It is useful to enforce condition (57) by defining a new pa-
rameter k, such that

c = kb, 1 < k < 4. (58)

Then in terms of b and k, the frequency ω is

ω = bk2/3(k−1)
√

4− k (59)

The critical delay (44) is

Tcr = 2cos−1
(

1− c
2b

)√ c3

b2(b− c)2(4b− c)
(60)

=
2cos−1

(
1− k

2

)
bk2/3(k−1)

√
4− k

. (61)

and the amplitude of the limit cycle that is born in this bifurcation
is given by equations (45)-(47):

R =
√

µP/Q (62)

where µ = T −Tcr. The ratio P/Q can be written in terms of b
and k as

P
Q

=−2b

√
4
k
−1(k−1)3(2k−9)

/[√4
k
−1(k−3)(k−2)2k3

+(24− (k−3)k(2k−11))k2 cos−1
(

1− k
2

)]
. (63)
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FIGURE 1. NORMALIZED FREQUENCY, ω/b, AS A FUNCTION
OF k = c/b
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FIGURE 2. NORMALIZED CRITICAL DELAY, bTcr, AS A FUNC-
TION OF k = c/b

Note that in terms of b and k,

ω ∝ b, Tcr ∝
1
b
,

P
Q

∝ b. (64)

Therefore, we can divide each of these quantities by the appro-
priate power of b to obtain normalized versions that depend only
on the parameter k.

We see by plotting these results (Fig. 3) that P/Q > 0, so
for the amplitude R to be real, µ must also be positive. Thus the
Hopf bifurcation is supercritical, and the limit cycle is stable.

Finally, we compare the results of this perturbation method
to those obtained by continuation in DDE-Biftool [7] for the par-
ticular case b = 1 and c = k = 3. (The latter method is outlined
by Heckman, [8].) See Fig. 4. Note that the amplitude given
by DDE-Biftool is the full width of the limit cycle, twice the
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FIGURE 3. NORMALIZED GROWTH COEFFICIENT, P/(bQ),
AS A FUNCTION OF k = c/b
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FIGURE 4. AMPLITUDE OF LIMIT CYCLE IN HAWK-DOVE
SYSTEM WITH b = 1, c = k = 3 GIVEN BY LINDSTEDT (RED,
SOLID) AND CONTINUATION (BLUE, DOTTED) VS. T

amplitude predicted by Lindstedt’s method, which is the average
displacement from the equilibrium point. We observe from Fig.
4 that the results of the two methods are in good agreement for
values of T reasonably close to Tcr.

CONCLUSION
We have investigated the dynamics of two-strategy systems

of the form

ẋi = xi( fi−φ), (65)

where fi = (A · x̄i)i is the (delayed) fitness of strategy i.

It is well known that periodic motions cannot occur in non-
delayed two-strategy replicator systems, since the phase space is
one-dimensional.

In this work, we have shown that, by introducing a delay in
competition between strategies, it is possible to find two-strategy
replicator systems which support periodic motions. In particular,
we have demonstrated a range of parameters for which Hawk-
Dove systems with delayed competition exhibit stable limit cy-
cles which are born in Hopf bifurcations.

This generalization of the replicator equation may be useful
in modeling natural or social systems in which each group has a
delayed estimate of the other groups’ populations. This system
may also be considered as a model for playing games by mail,
with asynchronous score-updating for each group; or of compe-
tition between species with a fixed gestation time.
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Appendix A: Hopf bifurcation formula for first-order
DDEs

We present the formula for the radius of a limit cycle that
is born in a Hopf bifurcation in a first-order constant-coefficient
differential delay equation, derived by Rand and Verdugo [5].

Consider a differential delay equation (DDE)

dx
dt

= αx+β x̄+a1x2 +a2xx̄+a3x̄2 +b1x3

+b2x2x̄+b3xx̄2 +b4x̄3 (66)

where x = x(t) and x̄ = x(t−T ). The associated linear DDE is

dx
dt

= αx+β x̄. (67)

Assume that equation (66) has a critical delay Tcr for which it has
a pair of pure imaginary eigenvalues ±ωi corresponding to the
solution

x = c1 cosωt + c2 sinωt. (68)

Then for values of delay T close to Tcr,

T = Tcr +µ (69)

the nonlinear equation (66) will in general exhibit a periodic so-
lution that can be approximated by

x = Rcosωt (70)

where the amplitude R satisfies

R2 = µP/Q (71)

where

P =4β
3(4α−5β )(β −α)(α +β )2 (72)

Q =5b2Tcrβ
6 +15b4Tcrβ

6 +15b1β
5 +5b3β

5−4a2
1Tcrβ

5

−3a2
2Tcrβ

5−22a2
3Tcrβ

5−7a1a2Tcrβ
5−14a1a3Tcrβ

5

−7a2a3Tcrβ
5−15αb1Tcrβ

5 +αb2Tcrβ
5−15αb3Tcrβ

5

+3αb4Tcrβ
5−18a2

1β
4−a2

2β
4−4a2

3β
4−9a1a2β

4

−18a1a3β
4−9a2a3β

4 +3αb1β
4−15αb2β

4 +αb3β
4

−15αb4β
4 +18αa2

1Tcrβ
4 +7αa2

2Tcrβ
4 +12αa2

3Tcrβ
4

+19αa1a2Tcrβ
4 +30αa1a3Tcrβ

4 +37αa2a3Tcrβ
4

−3α
2b1Tcrβ

4 +6α
2b2Tcrβ

4−3α
2b3Tcrβ

4−12α
2b4Tcrβ

4

+12αa2
1β

3 +11αa2
2β

3 +26αa2
3β

3 +33αa1a2β
3

+30αa1a3β
3 +19αa2a3β

3−12α
2b1β

3−3α
2b2β

3

+6α
2b3β

3−3α
2b4β

3−8α
2a2

1Tcrβ
3−12α

2a2
2Tcrβ

3

+4α
2a2

3Tcrβ
3−26α

2a1a2Tcrβ
3−16α

2a1a3Tcrβ
3

−20α
2a2a3Tcrβ

3 +12α
3b1Tcrβ

3 +2α
3b2Tcrβ

3

+12α
3b3Tcrβ

3−14α
2a2

2β
2−8α

2a2
3β

2−18α
2a1a2β

2

−12α
2a1a3β

2−32α
2a2a3β

2 +12α
3b2β

2 +2α
3b3β

2

+12α
3b4β

2 +8α
3a2

2Tcrβ
2 +8α

3a1a2Tcrβ
2

−4α
3a2a3Tcrβ

2−8α
4b2Tcrβ

2 +4α
3a2

2β

−8α
3a2

3β +8α
3a2a3β −8α

4b3β +8α
4a2a3 (73)

In the two-strategy replicator equation with delayed fitness
functions (30), the coefficients in (66) are given by

α =−qs(q+ r+ s)
(q+ r)2 , β =− rs(q+ r+ s)

(q+ r)2 (74)

a1 = q+
2qs

q+ r
, a2 = r+

2rs
q+ r

(75)

b1 =−q, b2 =−r (76)
a3 = b3 = b4 = 0. (77)

The critical delay Tcr and frequency ω may be expressed in
terms of α and β by considering the linear equation (67). Sub-
stituting equation (70) into (67) and setting the coefficients of
sinωt and cosωt equal to zero gives

β sinωTcr =−ω, β cosωTcr =−α. (78)

Squaring and adding these, and substituting the result back in,
yields

ω =
√

β 2−α2 (79)
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and

Tcr =
cos−1(−α/β )√

β 2−α2
. (80)
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