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ABSTRACT
This paper presents an analytical study of the stability of the

steady state solutions of a gene regulatory network with time de-
lay. The system is modeled as a continuous network and takes the
form of a nonlinear delay differential-integral equation coupled
to an ordinary differential equation. Two examples are given in
which the critical delay causing instability is computed.

INTRODUCTION
Understanding the interactions between genes and their pro-

tein products is an important part of experimental and theoret-
ical biology. Recent experiments [10, 29] and theoretical tech-
niques [20, 33, 34] have been developed to understand the dy-
namics of gene regulatory networks. From a theoretical point of
view, the gene network structure is an abstraction of the system’s
chemical dynamics, and it includes how protein products affect
the expression of other genes and their associated proteins. If the
network involves only a few genes then its dynamical behavior
could be studied directly [7, 10]. On the other hand, if the net-
work is formed of hundreds or thousands of genes then its exper-
imental or theoretical study may be highly difficult [4,24].Nev-
ertheless, research trends show that the study of these complex
dynamical networks is a natural step in genomic research [32].

Several mathematical models of gene regulatory networks
have been developed over the last couple of decades (for an ex-
tensive review see [13,15,28]). Some of the most common mod-
eling techniques involve the use of graphs [17,21], Booleannet-
works [3, 25, 26], Bayesian networks [8], Petri nets [9, 19],re-
verse engineering methods [30], and coupled differential equa-
tions (linear [16], nonlinear [5, 12, 22], partial [31], stochas-
tic [11, 27, 36], and delayed [1, 6, 33]). Here we are interested
in models where the natural lags or delays play an important role
in the system’s dynamics [18,23,33,34]. These delays arisenat-
urally from transcription, translation, degradation, andother cel-

lular processes. If the time delays are of the order of the system’s
time scale, then taking them into account can potentially change
the system’s dynamics.

In this work, we study the steady state solutions and the sta-
bility of two different models of a gene network with time de-
lay. Both of these models are characterized by a system of two
coupled equations: an ordinary differential equation and ade-
lay differential-integral equation. The first model considers uni-
form weighting, where each ribosome produces a given quantity
of protein which is then shared equally amongst all gene sites.
The second model is characterized by an exponential weighting,
where each protein product is shared unequally, with nearbygene
units being repressed to a greater extent than more distant genes.
Both of these cases exhibit a steady state, which is stable when
there is no delay. Linear analysis then reveals that a critical de-
lay exists, where the steady state becomes unstable. Closedform
expressions for the critical delayTcr and associated frequencyω
are thus found. We then confirm our results for the exponential
weighting case by discretizing the continuous system into an N-
dimensional system and showing that the discrete critical delays
approach the continuousTcr asN becomes large.

BIOLOGICAL BACKGROUND
Transcription and translation are the main processes by

which a cell expresses the instructions encoded in its genes.
Transcription is the first step in gene expression and it includes
the identical replication of a gene into messenger RNA (mRNA).
The second step is the translation process, where the information
in the mRNA is translated into a protein with a specific amino
acid sequence. The latter process is accomplished by a well-
known protein-manufacturing machine called a ribosome. Once
the protein is created, it unbinds from the ribosome and carries
out its cellular function. From these processes mRNA and pro-
tein concentrations arise naturally as the main intracellular regu-
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latory agents for gene expression.
There are several mechanisms that the cell uses to regulate

the levels of mRNA and protein concentrations. An example
is the cell’s ability to increase or decrease the concentration of
enzymes that degrade proteins. Another important regulatory
mechanism is the cell’s capacity to turn on and off the transcrip-
tion process of a specific gene. The latter can be accomplished
by means of feedback inhibition, where the expression of a gene
is regulated by its own protein product. This feedback mecha-
nism arises when the protein product returns to the nucleus and
stops the transcription of its own mRNA by binding to the gene’s
promoter site. Previous findings [18,23] show that there aretime
delays associated with this feedback mechanism. These delays
arise naturally as transcriptional delays (time it takes the gene to
get copied into mRNA) and translational delays (time it takes the
ribosome to translate mRNA into protein). Furthermore, recent
studies have shown that it suffices to consider only the transcrip-
tional time delay to have an accurate dynamic model [18,23,33].
These transcriptional delay models can be represented by the fol-
lowing pair of equations:

dm
dt

= −µmm(t)+ H (p(t −T)) (1)

dp
dt

= αp m(t)−µp p(t) (2)

where the time dependent variables are the mRNA concentration,
m(t), and its associated protein concentration,p(t), and where
the constantsµm and µp are the decay rates of the mRNA and
protein molecules,αp is the rate of production of new protein
molecules per mRNA molecule, andH(p(t −T)) is a Hill func-
tion representing the rate ofdelayedproduction of new mRNA
molecules. We assume thatH(p(t −T)) is a decreasing func-
tion of the concentration of protein present at a previous time
p(t −T), whereT represents the transcriptional time delay.

Recent findings reveal how the dynamics of the system de-
pends on the model parameters [33]. For simplicity, in this paper
we assume thatµm=µp=µ andαp=1.

MATHEMATICAL MODEL
In this work we investigate a model of gene expression in

which the protein product of a given gene not only represses its
own mRNA production, but also represses the mRNA production
of other nearby genes. We tag a given gene with a variablex ∈
[0,1], and we generalize the system (1),(2) to be of the form:

ṁ = −µm+

Z 1

0
K(x− x̄)H(pd(x̄))dx̄ (3)

ṗ = m−µ p (4)

wherem = m(x, t), p = p(x, t), and pd(x̄) = p(x̄, t − T). Here
K(x− x̄) is a weighting function.

In this paper we consider two special cases of Eqs.(3),(4):

CASE 1: UNIFORM WEIGHTING
This case is characterized by the choiceK(x− x̄) = 1. Here each
ribosome produces a given quantity of protein which is shared
equally amongst all gene sites. For the rate of production of
mRNA H(pd(x̄)) we choose the following Hill function [23,33]:

H(pd(x̄)) =
1

1+
(

pd(x̄)
p0(x̄)

)n (5)

where pd(x̄) = p(x̄, t − T) is the delayed protein concentration
at location ¯x, and wherep0(x̄) is a reference concentration of
protein at ¯x, andn is a parameter [23]. The resulting system is of
the form:

ṁ = −µm+

Z 1

0

1

1+
(

pd(x̄)
p0(x̄)

)n dx̄ (6)

ṗ = m−µ p (7)

CASE 2: EXPONENTIAL WEIGHTING
This case is characterized by the choiceK(x− x̄) = e−|x−x̄|. Here
each protein product is shared unequally, with nearby gene sites
being repressed to a greater extent than more distant ones. For
mathematical simplicity we choose the rate of production of
mRNA H(pd(x̄)) to be given by a linear function ofpd:

H(pd(x̄)) = 1− pd(x̄) (8)

The resulting system is of the form:

ṁ = −µm+
Z 1

0
e−|x−x̄|(1− pd(x̄))dx̄ (9)

ṗ = m−µ p (10)

STEADY STATE SOLUTIONS
In this section we consider the steady state behavior of

the system (3),(4). Setting ˙p=ṁ=0 we see that at steady state
m∗=µp∗ and p∗d=p∗, where a * represents the steady state
solution.

CASE 1: UNIFORM WEIGHTING
At steady state, Eqs.(6),(7) give

µ2p∗(x) =

Z 1

0

1

1+
(

p∗(x̄)
p0(x̄)

)n dx̄ (11)

Since the RHS of Eq.(11) is independent ofx, we see that
p∗(x)=p∗ is a constant. Because of the difficulty in evaluating
the integral in Eq.(11) for a general functionp0(x̄), numerical
integration is required in order to obtain an approximate value
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for p∗. In order to illustrate the process we choose a tractable
function p0(x̄) = 1+ x̄, together withn = 3 and µ = 0.2, in
which case Eq.(11) givesp∗ = 2.9876.

CASE 2: EXPONENTIAL WEIGHTING
At steady state, Eqs.(9),(10) give

µ2p∗(x) =

Z 1

0
e−|x−x̄|H(p∗(x̄))dx̄ (12)

which may be written in the form:

µ2p∗(x) = e−x
Z x

0
ex̄H(p∗(x̄))dx̄ + ex

Z 1

x
e−x̄H(p∗(x̄))dx̄

(13)
Differentiating Eq.(13) twice [14] we obtain the equivalent sec-
ond order ODE for the steady state solutionp∗=p∗(x):

d2p∗

dx2 − p∗ = − 2
µ2H(p∗) (14)

where the boundary conditions are given by

p∗(0) =
1
µ2

Z 1

0
e−x̄H(p∗(x̄))dx̄ (15)

p∗(1) =
1

eµ2

Z 1

0
ex̄H(p∗(x̄))dx̄. (16)

For the choice ofH(p(x̄)) given by Eq.(8), Eq.(14) becomes

d2p∗

dx2 − γ p∗ = 1− γ (17)

where

γ = 1+
2
µ2 > 0 (18)

Thus

p∗(x) = c1 sinh
√

γx + c2 cosh
√

γx +
2

µ2γ
(19)

wherec1 andc2 are determined by substituting Eq.(19) into (15)
and (16):

c1 =
(

1−e
√γ
)

K (20)

c2 =
(

1+e
√γ
)

K (21)

where

K =
1−√γ−

(

1+
√γ
)

e
√γ

γ
[(

µ2√γ+µ2 +1
)

e2
√γ +µ2√γ−µ2−1

] (22)

For example, in the case thatµ= 0.2, we obtain

p∗(x) = 0.12040 sinh
√

51x − 0.12059 cosh
√

51x +
50
51
(23)

STABILITY OF STEADY STATE
To study the stability of the steady state solu-

tion (m∗(x), p∗(x)), we set p(x, t)=p∗(x)+η(x, t) and
m(x, t)=m∗(x)+ξ(x, t) and linearize the resulting equations
in η(x, t) andξ(x, t).

CASE 1: UNIFORM WEIGHTING
Here the steady state solutionp∗ is constant inx. Eqs.(6),(7) give

ξ̇ = − µξ−
Z 1

0
K1(x̄)ηd(x̄)dx̄ (24)

η̇ = ξ−µη (25)

where

K1(x̄) =
nβ

(1+β)2 p∗
, where β = β(x̄) =

(

p∗

p0(x̄)

)n

. (26)

To study the stability of the origin we assume solutions of the
form

ξ(x, t) = A(x)eλt , η(x, t) = B(x)eλt (27)

and substitute them into Eqs.(24) and (25). Solving forB(x)
yields the following integral equation

r B(x) =

Z 1

0
K1(x̄)B(x̄)dx̄ (28)

where

r = −eλT (λ +µ)2 (29)

To solve Eq.(28), we note that the RHS is independent ofx,
which tells us thatB(x)=B is constant. EliminatingB from
Eq.(28), we obtain

r =
Z 1

0
K1(x̄)dx̄ (30)

Here K1(x̄) is given by Eq.(26), so thatr is known. We are
left with the problem of determiningλ from Eq.(29) whenr
is known. This problem is common to both the present case
of uniform weighting as well as to the case of exponential
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weighting. To avoid repeating the treatment, we handle this
problem in the Appendix. There are two important situations:
(i) when T = 0, in which caseλ determines the stability of the
system with no delay, and (ii) whenT = Tcr, where the delayTcr

corresponds to pure imaginaryλ and corresponds to a change in
stability.

(i) WhenT = 0, Eq.(56) in the Appendix gives

λ = −µ±

√

−
Z 1

0
K1(x̄)dx̄ (31)

which shows that the system with no delay is stable since
K1(x̄)>0 from (26).

(ii) WhenT = Tcr, Eqs.(61),(60) in the Appendix give

Tcr =
1
ω

arctan
( 2ωµ

ω2−µ2

)

(32)

ω =

√

−µ2 +

Z 1

0
K1(x̄)dx̄ (33)

We continue the example given in the previous section,
namely, p0(x̄) = 1+ x̄, n = 3 andµ = 0.2, which yielded the
steady statep∗ = 2.9876. By substituting Eq.(26) into (33) we
obtainω = 0.24977 which we substitute into (32) to obtain the
critical delay Tcr = 5.40638, where the steady state becomes
unstable.

CASE 2: EXPONENTIAL WEIGHTING
In this case the steady statep∗(x) satisfies the ODE (14). To
study its stability, we linearize Eqs.(9) and (10), which give

ξt = −µξ−
Z 1

0
e−|x−x̄| ηd(x̄)dx̄ (34)

ηt = ξ−µη (35)

If ξ(x, t)=φ(x)eλt andη(x, t)=ψ(x)eλt then Eqs.(34) and (35) be-
come

−eλT (λ +µ)φ(x) =

Z 1

0
e−|x−x̄| ψ(x̄)dx̄ (36)

(λ +µ)ψ(x) = φ(x) (37)

Substituting Eq.(37) into (36) gives

r ψ(x) =

Z 1

0
e−|x−x̄| ψ(x̄)dx̄ (38)

wherer is given by Eq.(53). Next we transform the integral equa-
tion (38) to the following equivalent second order ODE [14]

d2ψ
dx2 +

(

2
r
−1

)

ψ = 0 (39)

which will have solutions of the form

ψ(x) = c1 sin(ρx)+c2 cos(ρx) (40)

wherec1 andc2 are constants andρ =
√

2
r −1. The endpoint

boundary conditions of the second order ODE (39) are obtained
from Eq.(38) as follows

ψ(0) =
ρ2 +1

2

Z 1

0
e−x̄ψ(x̄)dx̄ (41)

ψ(1) =
ρ2 +1

2e

Z 1

0
ex̄ψ(x̄)dx̄. (42)

Substituting Eq.(40) into (41) and (42) gives a system of equa-
tions on the constantsc1 andc2 which yields the following con-
dition onρ for nontrivial solutions

∣

∣

∣

∣

ρ sinρ−cosρ−e −sinρ−ρ cosρ +eρ
eρ sinρ−ecosρ−1 −esinρ−eρ cosρ +ρ

∣

∣

∣

∣

= 0 (43)

or equivalently

(

ρ2−1
)

sinρ−2ρ cosρ = 0 (44)

Eq.(44) has an infinite number of roots, the first three of
which are ρ = 1.30654,3.67319,6.58462, · · · which give
the following corresponding values forr = 2/(1 + ρ2) =
0.73881,0.13800,0.04509, · · ·. Now that we knowr, we may
use the results in the Appendix to determine stability of the
steady state.

(i) When T = 0, Eq.(56) in the Appendix gives
λ = −µ±√−r which, in view of the fact that all the val-
ues of r are positive, shows that the system with no delay is
stable.

(ii) When T = Tcr, Eqs.(60) and (61) in the Appendix give
expressions forω andTcr. Since we are interested in the smallest
value forTcr, we taker = 0.73881, which gives, forµ= 0.2, the
valuesω = 0.83595 andTcr = 0.56184.

In order to check this result, we replace the continuous vari-
ablesξ(x, t) andη(x, t) in Eqs.(34),(35) by a discrete set ofN+1
variablesξi(t) andηi(t). This corresponds to a model ofN+1
coupled gene units, and replaces the integral in Eq.(34) by asum
of N+1 terms. As we now demonstrate, analysis of this system
shows thatTcr → 0.56184 asN goes to infinity, forµ = 0.2,
in agreement with the foregoing analysis. We start by dis-
cretizing the continuous system, Eqs.(34),(35), into an (2N+2)-
dimensional system given by

ξ̇i = −µξi −
1

N+1

N

∑
j=0

e−|i− j |/N η j(t −T) (45)

η̇i = ξi −µηi (46)
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wherei = 0,1, . . .,N. Next we assume solutions of the form

ξi = φi e
λt (47)

ηi = ψi e
λt (48)

and substitute them into (45),(46) to obtain

−eλT(λ +µ)φi =
1

N+1

N

∑
j=0

e−|i− j |/N ψ j (49)

(λ +µ)ψi = φi (50)

eliminatingφi we obtain

cψi =
N

∑
j=0

e−|i− j |/N ψ j (51)

where c = (N + 1)r and r is given by (53). For nontrivial
solutions, the system (51) ofN+1 algebraic equations, must
satisfy det(K − cI) = 0 whereK is the (N+1)×(N+1) matrix
K=[Ki j ]=[exp(−|i − j |/N)] and c is its associated eigenvalue.
SinceK is a symmetric matrix, all of its eigenvalues are real
and thusc is a real number. Numerical evaluation of these
eigenvaluesc shows that they are all positive. The stability
results for the steady state are summarized as follows:

(i) WhenT = 0, we see from Eq.(56) in the Appendix with
r = c/(N+1) that the steady state in the system with no delay is
stable.

(ii) When T = Tcr, we choose the smallest value ofc for
a given truncation sizeN, and use Eqs.(60) and (61) in the
Appendix to obtain values forω and Tcr where we taker =
c/(N + 1). Table 1 shows results forµ = 0.2 for various val-
ues of N.

CONCLUSIONS
In this paper we investigated the steady state solutions of

a continuous gene regulatory network model. The model takes
the form of an ordinary differential equation coupled to a de-
lay differential-integral equation having time,t , and gene loca-
tion,x, as independent variables. The study was divided into two
cases: uniform weighting and exponential weighting. For the
uniform weighting case we showed that the steady state is not
only constant in time but in space as well. This allowed us to
solve the associated eigenvalue problem and prove that the sys-
tem is stable when there is no delay. Subsequently, we showed
that the system becomes unstable for a critical delay and found
closed form expressions for the critical delay and associated fre-
quency. For the exponential weighting case, we found that the
steady state solution depends on gene location. This was accom-
plished by transforming the steady state integral equationinto

Table 1. NUMERICAL RESULTS FOR µ= 0.2

N c ω Tcr

1 1.3678 0.8024 0.6089

2 2.0612 0.8044 0.6059

3 2.7844 0.8100 0.5977

5 4.2494 0.8175 0.5870

7 5.7215 0.8216 0.5813

10 7.9338 0.8253 0.5761

15 11.6246 0.8285 0.5718

30 22.7034 0.8320 0.5671

50 37.4783 0.8336 0.5649

100 74.4173 0.8348 0.5634

200 148.2960 0.8353 0.5627

300 222.1740 0.8355 0.5623

a second order differential equation. By solving the differential
equation we found a closed form expression for thex-dependent
steady state. Stability analysis then revealed that the nondelayed
system is stable and expressions for the critical delay and associ-
ated frequency were found. We confirmed our results by means
of a numerical approximation where the continuous system was
discretized, which resulted in anN-dimensional system with de-
lay. Numerical evaluations for differentN were performed and
good agreement was found with the continuous counterpart asN
became large.

The model assumes that the rate at which mRNA is pro-
duced at a given sitex depends on the concentration of protein at
all sites 0≤ x ≤ 1. Analysis of the model shows that the pres-
ence of delay produces an instability in the steady state leading
to periodic behavior. The present model differs from previous
models [33], [34] in that the steady state here can have spatial de-
pendence, cf.eqs.(19),(23). In the real cell, the number ofDNA
sites and ribosomes are large but finite, whereas our system mod-
els them as being continuous, i.e., infinite in number. However
we checked our continuum model against a finiteN-dimensional
approximation and saw that the two converged asN → ∞.

The present work is a first step in studying the periodic re-
sponse of this model of a gene regulatory network. Current work
involves extending this analysis to include nonlinear terms so that
the amplitude of oscillation can be predicted as a function of de-
lay.
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APPENDIX
In Eqs.(28) and (38) we have the following eigenvalue prob-

lem

r f (x) =

Z 1

0
K(x, x̄) f (x̄)dx̄ (52)

whereK(x, x̄) is a symmetricintegral kernel,f (x) is the eigen-
function, andr is the associated eigenvalue given by

r = −eλT (λ +µ)2 (53)

Note thatr is real since the RHS of (52) contains a symmetric
kernel and thus is a self-adjoint operator of the form

L(·) =

Z 1

0
K(x, x̄)(·)dx̄ (54)

which has real eigenvalues.

Now given r we wish to determineλ in two special situ-
ations: (i) whenT = 0, and (ii) whenT = Tcr and λ is pure
imaginary, corresponding to a change in stability.

(i) WhenT = 0, Eq.(53) becomes

r = − (λ +µ)2 (55)

and gives

λ = −µ±
√
−r (56)

If r > 0 then the Re(λ) = −µ < 0 (for positiveµ), and we have
stability of the system with no delay.

(ii) WhenT = Tcr andλ = iω, Eq.(53) becomes

r = −eiωTcr(iω+µ)2 (57)

which gives the two real equations

r = 2µω sinωTcr +
(

ω2−µ2) cosωTcr (58)

0 =
(

ω2−µ2) sinωTcr −2µω cosωTcr (59)

Solving Eqs.(58),(59) for sinωTcr and cosωTcr, and using the
identity sin2+cos2=1 we obtain

ω =
√

r −µ2 (60)

Dividing the expressions for sinωTcr and cosωTcr and solving
for Tcr we also obtain

Tcr =
1
ω

arctan

(

2µω
ω2−µ2

)

(61)
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