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ABSTRACT

This paper presents an analytical study of the stabilithef t
steady state solutions of a gene regulatory network witke tiex
lay. The system is modeled as a continuous network and thkes t
form of a nonlinear delay differential-integral equatiarupled
to an ordinary differential equation. Two examples are igiwe
which the critical delay causing instability is computed.

INTRODUCTION

Understanding the interactions between genes and their pro
tein products is an important part of experimental and tbeor
ical biology. Recent experiments [10, 29] and theoretieaht
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lular processes. If the time delays are of the order of theesys
time scale, then taking them into account can potentialnge
the system’s dynamics.

In this work, we study the steady state solutions and the sta-
bility of two different models of a gene network with time de-
lay. Both of these models are characterized by a system of two
coupled equations: an ordinary differential equation ardka
lay differential-integral equation. The first model coresigl uni-
form weighting, where each ribosome produces a given gtyanti
of protein which is then shared equally amongst all genes.site
The second model is characterized by an exponential weighti
where each protein product is shared unequally, with negehg
units being repressed to a greater extent than more distansg

niques [20, 33, 34] have been developed to understand the dy-Both of these cases exhibit a steady state, which is stabéawh

namics of gene regulatory networks. From a theoreticaltpafin
view, the gene network structure is an abstraction of theeays
chemical dynamics, and it includes how protein productscaff
the expression of other genes and their associated proteihs
network involves only a few genes then its dynamical behavio
could be studied directly [7,10]. On the other hand, if the ne
work is formed of hundreds or thousands of genes then itgexpe
imental or theoretical study may be highly difficult [4, 28ev-
ertheless, research trends show that the study of thesel@omp
dynamical networks is a natural step in genomic research [32

Several mathematical models of gene regulatory networks

there is no delay. Linear analysis then reveals that a atitie-

lay exists, where the steady state becomes unstable. Gtosed
expressions for the critical deldy, and associated frequenay
are thus found. We then confirm our results for the exponkentia
weighting case by discretizing the continuous system intNa
dimensional system and showing that the discrete critieklys
approach the continuods, asN becomes large.

BIOLOGICAL BACKGROUND
Transcription and translation are the main processes by

have been developed over the last couple of decades (for-an ex which a cell expresses the instructions encoded in its genes

tensive review see [13,15,28]). Some of the most common mod-

eling techniques involve the use of graphs [17, 21], Bootezth
works [3, 25, 26], Bayesian networks [8], Petri nets [9, 18},
verse engineering methods [30], and coupled differentiabe
tions (linear [16], nonlinear [5, 12, 22], partial [31], stas-
tic [11, 27, 36], and delayed [1, 6, 33]). Here we are intest
in models where the natural lags or delays play an importdat r
in the system’s dynamics [18, 23,33, 34]. These delays atse
urally from transcription, translation, degradation, aler cel-

Transcription is the first step in gene expression and iuies

the identical replication of a gene into messenger RNA (miRNA
The second step is the translation process, where the iafmm

in the mRNA is translated into a protein with a specific amino
acid sequence. The latter process is accomplished by a well-
known protein-manufacturing machine called a ribosomeceOn
the protein is created, it unbinds from the ribosome andesrr
out its cellular function. From these processes mRNA and pro
tein concentrations arise naturally as the main intratalhegu-
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latory agents for gene expression.

CASE 1: UNIFORM WEIGHTING

There are several mechanisms that the cell uses to regulateThis case is characterized by the chdide —x) = 1. Here each

the levels of mRNA and protein concentrations. An example
is the cell’s ability to increase or decrease the concentraif
enzymes that degrade proteins. Another important regylato
mechanism is the cell’s capacity to turn on and off the trepsc
tion process of a specific gene. The latter can be accomglishe
by means of feedback inhibition, where the expression ofh& ge
is regulated by its own protein product. This feedback mecha
nism arises when the protein product returns to the nucleds a
stops the transcription of its own mRNA by binding to the dene
promoter site. Previous findings [18, 23] show that therdiare
delays associated with this feedback mechanism. Thesgsdela
arise naturally as transcriptional delays (time it takesgane to
get copied into mMRNA) and translational delays (time it taltee
ribosome to translate mRNA into protein). Furthermoreengc
studies have shown that it suffices to consider only the trims
tional time delay to have an accurate dynamic model [18,3]3,3
These transcriptional delay models can be representedetiglth
lowing pair of equations:

O —pinimlt) + H (p(t~T)) )
CP — apmit) -~y (1) @

where the time dependent variables are the mRNA concemtrati
m(t), and its associated protein concentratip(t,), and where
the constantgim and i, are the decay rates of the mRNA and
protein moleculesq, is the rate of production of new protein
molecules per mRNA molecule, aht{ p(t — T)) is a Hill func-
tion representing the rate dfelayedproduction of new mRNA
molecules. We assume thidt p(t — T)) is a decreasing func-
tion of the concentration of protein present at a previoneeti
p(t—T), whereT represents the transcriptional time delay.

Recent findings reveal how the dynamics of the system de-
pends on the model parameters [33]. For simplicity, in thisgy
we assume thaim=pp=p anday=1.

MATHEMATICAL MODEL

In this work we investigate a model of gene expression in
which the protein product of a given gene not only repredses i
own mRNA production, but also represses the mRNA production
of other nearby genes. We tag a given gene with a variahle
[0,1], and we generalize the system (1),(2) to be of the form:

1
= —ume [ K(x—H (pa(R) o 3)
p=m-up (4)

wherem= m(x;t), p= p(xt), andpg(x) = p(x,t — T). Here

K(x—Xx) is a weighting function.
In this paper we consider two special cases of Egs.(3),(4):

ribosome produces a given quantity of protein which is ghare
equally amongst all gene sites. For the rate of production of
MRNAH (p4(X)) we choose the following Hill function [23, 33]:

_r
BCO)

wherepg(x) = p(x,;t — T) is the delayed protein concentration
at locationx, and wherepp(X) is a reference concentration of
protein atx, andn is a parameter [23]. The resulting system is of
the form:

H(pa(x)) = (5)

1 1 _
7 dX

e

m= —um+

(6)

p=m—pp (7)
CASE 2: EXPONENTIAL WEIGHTING

This case is characterized by the chdiga— x) = e . Here

each protein product is shared unequally, with nearby giteg s

being repressed to a greater extent than more distant owoes. F

mathematical simplicity we choose the rate of production of

MRNAH (pq(X)) to be given by a linear function qdy:

H(pa(X)) = 1— pa(X) (8)
The resulting system is of the form:
l —_—
= —pum+ [ e (1 py(¥)) % ©)
0
p=m—up (10)

STEADY STATE SOLUTIONS

In this section we consider the steady state behavior of
the system (3),(4). Setting=fi=0 we see that at steady state
m*=pup* and pi=p*, where a * represents the steady state
solution.

CASE 1: UNIFORM WEIGHTING
At steady state, Eqs.(6),(7) give

P () (11)

/l 1 4%
= [ ————dx
0 )"
1+ (53)
Since the RHS of Eq.(11) is independent xf we see that
p*(X)=p* is a constant. Because of the difficulty in evaluating
the integral in Eq.(11) for a general functigi(x), numerical
integration is required in order to obtain an approximateea
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for p*. In order to illustrate the process we choose a tractable

function pp(X) = 1+ X, together withn = 3 andp = 0.2, in
which case Eq.(11) gives® = 2.9876.

CASE 2: EXPONENTIAL WEIGHTING
At steady state, Eqs.(9),(10) give

1
wp = [ e THE e @)
0

which may be written in the form:

X _ 1 _
() = e ["eH(p' () + & | e H(p'(R)ax
X
(13)
Differentiating Eq.(13) twice [14] we obtain the equivalesec-
ond order ODE for the steady state solutfgrp*(x):

d?pr . 2
o2 P = —FH(M (14)
where the boundary conditions are given by
* 1 ! —X| * va
p'0) = 5 [ e H(p () ax (15)
P dx. 16
(1) = — (X)) dx.
1) = gz [, EHR) (16)

For the choice oH (p(x)) given by Eq.(8), Eq.(14) becomes

d;)g —yp' =1-y (17)

where
Yy = 1+§ >0 (18)

Thus
p*(x) = c1sinh\/yx + ¢z coshy/yx + % (19)

wherec; andc; are determined by substituting Eq.(19) into (15)
and (16):

1= (1— er) K (20)
= (1+er) K 1)
where
YW+ 12 +1) @V 42y — P -]
3

For example, in the case that= 0.2, we obtain

50
p*(x) = 0.12040sinh/51x — 0.12059 cosh/51x + =1
(23)

STABILITY OF STEADY STATE

To study the stability of the steady state solu-
tion (M*(x),p*(x)), we set p(xt)=p*(x)+n(x,t) and
m(x,t)=m*(x)+§(x,t) and linearize the resulting equations
inn(xt) andg(x,t).

CASE 1: UNIFORM WEIGHTING
Here the steady state solutiphis constant irx. Eqs.(6),(7) give

. 1
" /0 K1 (%) na(X) dX (24)
n=2&—mu (25)
where
___nB PV B "

To study the stability of the origin we assume solutions & th
form

Ex,t) = A, nxt) = Bx) e (27)

and substitute them into Egs.(24) and (25). SolvingB¢x)
yields the following integral equation

l J—
B = | Ka(R B ox (28)

where

r=—eTA+p? (29)

To solve Eq.(28), we note that the RHS is independent, of
which tells us thaB(x)=B is constant. Eliminatind@ from
Eq.(28), we obtain

r— /0 “Ka(®) dX (30)

Here K1(x) is given by Eq.(26), so that is known. We are
left with the problem of determining from Eq.(29) whenr

is known. This problem is common to both the present case
of uniform weighting as well as to the case of exponential
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weighting. To avoid repeating the treatment, we handle this
problem in the Appendix. There are two important situations
(i) whenT = 0, in which case\ determines the stability of the
system with no delay, and (ii) whéh= T, where the delay,
corresponds to pure imaginakyand corresponds to a change in
stability.

() WhenT = 0, Eq.(56) in the Appendix gives

A:_pi,/_/OlKl(@di

which shows that the system with no delay is stable since
K1(x)>0 from (26).
(i) WhenT = T, Egs.(61),(60) in the Appendix give

(31)

1 20
Ter = o arctan( 7 “2) (32)
1
0= \/ S /0 Ka(3) dX (33)

We continue the example given in the previous section,
namely, po(X) = 14+ %, n= 3 andp = 0.2, which yielded the
steady state* = 2.9876. By substituting Eq.(26) into (33) we
obtainw = 0.24977 which we substitute into (32) to obtain the
critical delay Ter = 5.40638, where the steady state becomes
unstable.

CASE 2: EXPONENTIAL WEIGHTING
In this case the steady stapé(x) satisfies the ODE (14). To
study its stability, we linearize Egs.(9) and (10), whicheyi

(34)
(35)

1
& —uz—/o & Ry (X) dX
Ne=&—n

If &(x,t)=@(x)e andn(x,t)=g(x)eM then Egs.(34) and (35) be-
come

ITOen = [ el Ty (@e)
A+HY(X) = @x) 37)

Substituting Eq.(37) into (36) gives
0o = [ et Ty ax (38)

wherer is given by Eq.(53). Next we transform the integral equa-
tion (38) to the following equivalent second order ODE [14]

(3o

d2
&y

e (39)

which will have solutions of the form

W(x) = ¢z sin(px) + ¢z cogpx) (40)
wherec; andc, are constants ang = ,/%— 1. The endpoint

boundary conditions of the second order ODE (39) are obdaine
from Eq.(38) as follows

2 1 _

wo) = £= [Teymax @)
2 1 _

v = 252 [ ep@az (42)

Substituting Eq.(40) into (41) and (42) gives a system ofaequ
tions on the constantg andc; which yields the following con-
dition onp for nontrivial solutions

—sinp—pcosp+ep
—esinp—epcosp+p

psinp—cosp—e —0 (43)
epsinp—ecosp—1

or equivalently

(p?—1) sinp—2pcosp = 0 (44)
Eq.(44) has an infinite number of roots, the first three of
which are p = 1.306543.673196.58462--- which give
the following corresponding values far = 2/(1 + p?) =
0.738810.1380Q0.04509---. Now that we knowr, we may
use the results in the Appendix to determine stability of the
steady state.

(i) When T = 0, Eq.(56) in the Appendix gives
A = —p = /=1 which, in view of the fact that all the val-
ues ofr are positive, shows that the system with no delay is
stable.

(i) When T = T, Egs.(60) and (61) in the Appendix give
expressions fow andTe,. Since we are interested in the smallest
value forT,, we taker = 0.73881, which gives, fop= 0.2, the
valuesw = 0.83595 andl, = 0.56184.

In order to check this result, we replace the continuous vari
ablesg(x,t) andn(x,t) in Egs.(34),(35) by a discrete setdf-1
variablesg;(t) andn;(t). This corresponds to a model bif+1
coupled gene units, and replaces the integral in Eq.(34)dmyra
of N+1 terms. As we now demonstrate, analysis of this system
shows thatT;, — 0.56184 asN goes to infinity, forp = 0.2,
in agreement with the foregoing analysis. We start by dis-
cretizing the continuous system, Eqs.(34),(35), into at2)-
dimensional system given by

13 i
—p&———— S e "N nt-T)
NT12

N =& —un;i

& = (45)
(46)
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wherei =0,1,...,N. Next we assume solutions of the form

& =aqe" (47)
ni = e (48)

and substitute them into (45),(46) to obtain
e el Ny (a9)

We =57 ,; b
A+WYi=a (50)
eliminatingq we obtain
S li=jl/N
cy = § e IRy, (51)
i J;) j

wherec = (N4 1)r andr is given by (53). For nontrivial
solutions, the system (51) dfi+1 algebraic equations, must
satisfy detK — cl) = 0 whereK is the N+1)x(N+1) matrix
K=[Kij]=[exp(—]i — j|/N)] and c is its associated eigenvalue.
SinceK is a symmetric matrix, all of its eigenvalues are real
and thusc is a real number. Numerical evaluation of these
eigenvaluesxc shows that they are all positive. The stability
results for the steady state are summarized as follows:

(i) WhenT = 0, we see from Eq.(56) in the Appendix with
r = c/(N+1) that the steady state in the system with no delay is
stable.

(i) When T = T, we choose the smallest value offor
a given truncation sizéN, and use E@s.(60) and (61) in the
Appendix to obtain values fow and T, where we take =
¢/(N+1). Table 1 shows results fqor= 0.2 for various val-
ues of N.

CONCLUSIONS

Table 1. NUMERICAL RESULTS FOR P = 0.2
N (o w Ter
1 1.3678| 0.8024| 0.6089
2 2.0612| 0.8044| 0.6059
3 2.7844| 0.8100| 0.5977
5 4.2494| 0.8175| 0.5870
7 5.7215| 0.8216| 0.5813
10 7.9338| 0.8253| 0.5761
15 11.6246| 0.8285| 0.5718
30 22.7034| 0.8320| 0.5671
50 37.4783| 0.8336| 0.5649
100 | 74.4173| 0.8348| 0.5634
200 | 148.2960| 0.8353| 0.5627
300 | 222.1740| 0.8355| 0.5623

a second order differential equation. By solving the dédferal
equation we found a closed form expression fonttependent
steady state. Stability analysis then revealed that thdelaged
system is stable and expressions for the critical delay asoici
ated frequency were found. We confirmed our results by means
of a numerical approximation where the continuous systes wa
discretized, which resulted in &t-dimensional system with de-
lay. Numerical evaluations for differett were performed and
good agreement was found with the continuous counterpit as
became large.

The model assumes that the rate at which mRNA is pro-
duced at a given sitedepends on the concentration of protein at
all sites 0< x < 1. Analysis of the model shows that the pres-
ence of delay produces an instability in the steady statiiiga
to periodic behavior. The present model differs from prasio
models [33], [34] in that the steady state here can havesad kst
pendence, cf.eqs.(19),(23). In the real cell, the numb&NA
sites and ribosomes are large but finite, whereas our systetm m
els them as being continuous, i.e., infinite in number. Hawev

In this paper we investigated the steady state solutions of e checked our continuum model against a fitllteimensional
a continuous gene regulatory network model. The model takes approximation and saw that the two convergedlas oo.

the form of an ordinary differential equation coupled to a de
lay differential-integral equation having timg,and gene loca-

The present work is a first step in studying the periodic re-
sponse of this model of a gene regulatory network. Curremkwo

tion, x, as independent variables. The study was divided into tWo jolves extending this analysis to include nonlinear esmthat

cases: uniform weighting and exponential weighting. Far th

the amplitude of oscillation can be predicted as a functiahes

uniform weighting case we showed that the steady state is not |5,

only constant in time but in space as well. This allowed us to
solve the associated eigenvalue problem and prove thay$he s

tem is stable when there is no delay. Subsequently, we showed

that the system becomes unstable for a critical delay anddfou
closed form expressions for the critical delay and assedife-
guency. For the exponential weighting case, we found theat th
steady state solution depends on gene location. This wasnacc
plished by transforming the steady state integral equdtitm
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APPENDIX
In Egs.(28) and (38) we have the following eigenvalue prob-
lem

l J—
FF(x) — /0 K (x, %) f (X)dX (52)

whereK(x, x) is a symmetridntegral kernel,f (x) is the eigen-
function, and is the associated eigenvalue given by

r=—eT\+p? (53)

Note thatr is real since the RHS of (52) contains a symmetric
kernel and thus is a self-adjoint operator of the form

L) = [ KR ax 59

which has real eigenvalues.

Now givenr we wish to determine in two special situ-
ations: (i) whenT = 0, and (ii) whenT = T, and A is pure
imaginary, corresponding to a change in stability.

() WhenT = 0, Eq.(53) becomes

r= —(\+p? (55)

and gives
A=—utv—r (56)
If r > 0 then the R&\) = —u < 0O (for positivey), and we have

stability of the system with no delay.
(i) WhenT = T, andA = iw, Eq.(53) becomes

r= —d% (it p)? (57)

which gives the two real equations
r = 2po sinwTe + (0 — p2) coswTe (58)
0= (w* — k) sinwTer — 2Hw COSWTer (59)

Solving Egs.(58),(59) for siwT;, and cosole, and using the
identity sirf + co$=1 we obtain

W= /I — 2

Dividing the expressions for sinl; and cosole; and solving
for Ter we also obtain

1 2uw
Ter = o arctan( 7 HZ)

(60)

(61)
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