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Abstract Nonlinear oscillators with hardening and softening cubic Duffing
nonlinearity are considered. Such classical conservative oscillators are known
to have an amplitude-dependent period. In this work, we design oscillators with
the Duffing-type restoring force but an amplitude-independent period. We present
their Lagrangians, equations of motion, conservation laws, as well as solutions for
motion.

1 Introduction

Classical Duffing oscillators are governed by

Rx C x ˙ x3 D 0: (1)

Their restoring force F D x ˙ x3 includes a linear geometric term as well as a
cubic geometric term: a positive sign in front of the cubic term corresponds to a
hardening Duffing oscillator (HDO) and the negative one to a softening Duffing
oscillator (SDO) [4, 6]. Unlike the majority of nonlinear oscillators, both of them
have a closed-form exact solution, which is expressed in terms of Jacobi cn or sn
elliptic functions. These solutions corresponding to the following initial conditions

x.0/ D A; Px .0/ D 0; (2)
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Table 1 Solutions for motion of the HDO and SDO (�in case of the SDO one requires jAj < 1

for the closed orbits around the stable origin)

Solution for motion Frequency Elliptic modulus

HDO: xHDO D Acn .!HDOt; kHDO/ !2
HDO D 1 C A2 k2

HDO D A2

2!2
HDO

D A2

2.1CA2/

SDO�: xSDO D Asn .!SDOt; kSDO/ !2
SDO D 1 � A2
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Fig. 1 Period of the HDO (blue solid line) and SDO (red dashed line) as a function of amplitude A

are given in Table 1 together with their frequencies ! and elliptic moduli k (see, for
example, [4, 6] for more detail).

Given the fact that the period of cn and sn is T D 4K .k/ =!, where K .k/

stands for the complete elliptic integral of the first kind, the following expressions
are obtained for the period of the HDO and SDO:

THDO D
4K

�r
A2

2.1CA2/

�

p
1 C A2

; TSDO D
4K

 r
A2

2
�
1� A2

2

�
!

q
1 � A2

2

: (3)

As seen from these expressions and Fig. 1, the period of the HDO and SDO
depends on the amplitude A. This leads us to the question of designing an oscillator
having the Duffing-type restoring force F D x ˙ x3, but a constant, amplitude-
independent period, corresponding to the so-called isochronous oscillators [1, 2].
In what follows we present such Duffing-type oscillators, both hardening and
softening, modelled by

Rx C G .x; Px/ C x ˙ x3 D 0; (4)

finding also the corresponding Lagrangians, conservation laws, as well as solutions
for motion.
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2 Derivation

The derivation of the mathematical model (4) is based on the transformation
approach [5], in which the kinetic energy Ek and potential energy Ep of nonlinear
oscillators are made equal to the one of the simple harmonic oscillator (SHO)

EkSHO D 1

2
PX2; EpSHO D 1

2
X2; (5)

which is known to have a constant, amplitude-independent period (note that its
generalized coordinate is labelled here by X ).

2.1 Case I

To find the first mathematical model of the form (4), we assume that Ep D Ep .x/

and let Ep � EpSHO D X2=2, obtaining

X D p
2Ep: (6)

Then, we also make the kinetic energy Ek of nonlinear oscillators equal to the one
of the SHO and use Eq. (6) to derive

Ek D
PX2

2
D
�
E 0

p

�2

4Ep

Px2; (7)

where E 0
p D dEp=dx. The differential equation of motion stemming from the

Lagrangian L D Ek � Ep has a general form

Rx C
 

E 00
p

E 0
p

� E 0
p

2Ep

!
Px2 C 2Ep

E 0
p

D 0: (8)

The last term on the left-hand side 2Ep=E 0
p is required to correspond to the Duffing

restoring force F =x ˙ x3, which gives the potential energy

Ep D x2

2 .1 ˙ x2/
: (9)

Equation (7) now yields the kinetic energy

Ek D 1

2 .1 ˙ x2/
3

Px2; (10)
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so that Eq. (8) becomes

Rx � 3x

1 ˙ x2
Px2 C x ˙ x3 D 0: (11)

Based on X2=2 C PX2=2 D const:, the system exhibits the first integral

1

.1 ˙ x2/
3

Px2 C x2

1 ˙ x2
D A2

1 ˙ A2
: (12)

Taking the solution for motion of the SHO in the form X D a cos .t C ˛/, where
a and ˛ are constants, and using Eqs. (6), (9) and (2), the solution for motion of
Eq. (11) is obtained

Ap
1 ˙ A2

cos t D xp
1 ˙ x2

: (13)

Numerical verifications of the analytical results for the motion (13) and phase
trajectories (12) are shown in Figs. 2 and 3 for the HDO and SDO, respectively.
These figures confirm that the analytical results coincide with the solutions obtained
by solving the equation of motion (11) numerically. In addition, they illustrate the
fact that the period stays constant despite the fact that the amplitude A changes, i.e.,
that the systems perform isochronous oscillations.
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Fig. 2 Isochronous oscillations of the HDO, Eq. (11) for A D 0:25; 0.5; 0.75: (a) time histories
obtained numerically from Eq. (11) (black dots) and from Eq. (13) (blue solid line); (b) phase
trajectories obtained numerically from Eq. (11) (black dots) and from Eq. (12) (blue solid line)
(upper signs are used in all these equations)
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Fig. 3 Isochronous oscillations of the SDO, Eq. (11) for A D 0:25; 0.5; 0.75: (a) time histories
obtained numerically from Eq. (11) (black dots) and from Eq. (13) (red dashed line); (b) phase
trajectories obtained numerically from Eq. (11) (black dots) and from Eq. (12) (red dashed line)
(lower signs are used in all these equations)

2.2 Case II

In this case we consider the system whose potential and kinetic energies are

Ep D 1

2
X2 D 1

2
.x f /2 ; Ek D 1

2
PX2 D 1

2

� Px f C x2 f 0�2 ; (14)

where f � f .I /, I D R t

0
x .t/ dt , and f 0 D df =dI .

The corresponding Lagrange’s equation is

Rx C 3x Px f 0

f
C x C f 00

f
x3 D 0: (15)

This system has two independent first integrals. The first one is the energy
conservation law stemming from PX2=2 C X2=2 D const:

� Px f C x2 f 0�2 C .x f /2 D h1; h1 D const: (16)

The other first integral is related to the principle of conservation of momentum for
the SHO PX C R t

0
Xdt D PX .0/ D const. By using X and PX from (14) and knowing

that dI=dt D x, we obtain

Px f C x2 f 0 C
Z

f .I / dI D h2; h2 D const: (17)
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In addition, as the solution for motion for the SHO can be written down as X D
a sin .t C ˛/, the following should be satisfied:

a sin .t C ˛/ D x f; a cos .t C ˛/ D Px f C x2 f 0: (18)

For the hardening-type nonlinearity in Eq. (15), one requires f 00=f D 1, which
leads to

fHDO D exp

�Z t

0

x .t/ dt

�
; (19)

and the equation of motion takes the form

Rx C 3x Px C x C x3 D 0: (20)

Two first integrals (16) and (17) are

exp .2x1/
h�

x3 C x2
2

�2 C x2
2

i
D h1; (21)

and

exp .x1/
�
x3 C x2

2 C 1
� D h2; (22)

where

x1 D
Z t

0

x .t/ dt; x2 D Px1 D x; x3 D Px2 D Px; (23)

with initial conditions being [see Eq. (2)]

x1 .0/ D 0; x2 .0/ D Px1 .0/ D A; x3 .0/ D Rx1 .0/ D 0: (24)

Equation (21) is plotted in Fig. 4a for h1 D 1. To analyze phase trajectories in more
detail, Eq. (22) is squared and divided by Eq. (21) to obtain

�
x3 C x2

2 C 1
�2

�
x3 C x2

2

�2 C x2
2

D B; B D const: (25)

This expression agrees with the first integral obtained and studied in [3] and is
plotted in Fig. 4b, where periodic solutions correspond to the case B > 1. Note
that for the initial conditions (24), one has B D 1 C 1=A2, which implies that B is
always higher than unity.
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Fig. 4 (a) 3D plot of Eq. (21); (b) phase trajectories obtained from Eq. (25) for different
values of B

By using (18) and (19) one can derive

Px sin .t C ˛/ C x2 sin .t C ˛/ � x cos .t C ˛/ D 0: (26)

Its solution satisfying Eq. (2) is

x D sin
�
t C arc tan 1

A

�
q

1 C 1
A2 � cos

�
t C arc tan 1

A

� : (27)
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Fig. 5 Time response of the HDO, Eq. (20) for A D 0:25; 0.5; 0.75: numerically obtained solution
from Eq. (28) (black dots) and from Eq. (27) (blue solid line)

To compare the analytical solution for motion (27) with a numerically obtained
solution of the equation of motion (20), the latter is written down in the form

«x1 C 3 Px1 Rx1 C Px1 C Px3
1 D 0; (28)

and numerically integrated by using the initial conditions (24). This comparison,
plotted in Fig. 5, shows that these two types of solution are in full agreement as well
as that the period is amplitude-independent.

The equation of motion (15) corresponds to the SDO if f 00=f D �1, which is
satisfied for

fSDO D cos

�Z t

0

x .t/ dt

�
: (29)

This equation of motion is now given by

Rx � 3x Px tan

�Z t

0

x .t/ dt

�
C x � x3 D 0: (30)

By using the notation given in Eq. (23), the equation of motion (30) transforms to

«x1 � 3 Px1 Rx1 tan x1 C Px1 � Px3
1 D 0; (31)

with the initial conditions given in Eq. (24). Two first integrals (16) and (17) become

�
x3 cos x1 � x2

2 sin x1

�2 C x2
2 cos2 x1 D h1; (32)
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and

x3 cos x1 � x2
2 sin x1 C sin x1 D h2: (33)

These two integrals can be manipulated to exclude x1 and to derive

.x2
2 � 1/2.h1 C .�1 � h1 C h2

2/x2
2 C x4

2 /2 C 2.1 � h1 � h2
2

C.�1 C h1 � h2
2/x2

2 /.h1.x2
2 � 1/ � x2

2 .h2
2 C x2

2 � 1//x2
3

C..�1 C h1/2 � 2.1 C h1/h2
2 C h4

2/x4
3 D 0: (34)

For the initial conditions (24) one has h1 D A2 and h2 D 0. Introducing these
values into Eq. (34) and solving it with respect to x3, the following explicit solution
for phase trajectories is obtained:

x3 D ˙.x2
2 � 1/

s
A2 � x2

2

1 � A2
: (35)

Combining equations in (18) and using a D A and ˛ D �=2, we derive

Px A cos t � x2
p

x2 � A2 cos2 t C xA sin t D 0: (36)

Its solution satisfying Eq. (2) is

x D A cos tp
1 � A2 sin2 t

: (37)

This solution is plotted in Fig. 6 together with the numerical solution of Eq. (31)
with Eq. (24) for different values of A. These solutions coincide and confirm
isochronicity.
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Fig. 6 Time response of the SDO, Eq. (30) with A D 0:25; 0.5; 0.75: numerically obtained
solution from Eq. (31) (black dots) and from Eq. (37) (red dashed line)
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3 Conclusions

In this work we have considered nonlinear oscillators with a hardening and softening
Duffing restoring force. Unlike classical conservative Duffing oscillators, which
have an amplitude-dependent period, the designed Duffing-type oscillators have the
period that does not change with their amplitude and are, thus, isochronous. Two
separate cases are considered with respect to the form of their potential and kinetic
energy, which are made equal to the corresponding energies of the SHO, which is
known to be isochronous. Corresponding equations of motions are derived, as well
as their solutions for motion. Numerical verifications of these isochronous solutions
are provided. In addition, two independent first integrals are presented: the energy-
conservation law and the principle of conservation of momentum.

Acknowledgements Ivana Kovacic acknowledges support received from the Provincial Secre-
tariat for Science and Technological Development, Autonomous Province of Vojvodina (Project
No. 114-451-2094).

References

1. Calogero, F.: Isochronous Systems. Oxford University Press, Oxford (2008)
2. Calogero, F.: Isochronous dynamical systems. Phil. Trans. R. Soc. A 369, 1118–1136 (2011)
3. Iacono,R., Russo, F.: Class of solvable nonlinear oscillators with isochronous orbits. Phys. Rev.

E 83, 027601 (4 pages) (2011)
4. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and their Behaviour.

Wiley, Chichester (2011)
5. Kovacic, I., Rand, R.: About a class of nonlinear oscillators with amplitude-independent

frequency. Nonlinear Dyn. 74, 455–465 (2013)
6. Rand, R.H.: Lecture notes on nonlinear vibrations (version 53). http://dspace.library.cornell.edu/

handle/1813/28989

http://dspace.library.cornell.edu/handle/1813/28989
http://dspace.library.cornell.edu/handle/1813/28989

	Duffing-Type Oscillators with Amplitude-Independent Period
	1 Introduction
	2 Derivation
	2.1 Case I
	2.2 Case II

	3 Conclusions
	References


