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Abstract

Synchronization is studied in a population of phase
oscillators with mean-field coupling—a special case
of the more general Winfree model. Each oscillator
is coupled to the mean-field with a strength dependent
on its phase. The uncoupled frequencies of the oscil-
lators are assumed to be randomly distributed accord-
ing to a specified population density. The response of
this system is considered as a function of two parame-
ters. The first describes the strength of the coupling
between each oscillator while the second character-
izes the distribution of uncoupled frequencies in the
population. As these parameters are varied, the syn-
chronous solution can disappear as oscillators near the
edge of the population (large deviation of their natu-
ral frequency from the population mean) no longer re-
main locked to the mean frequency. Using a Poincare-
Lindstedt analysis, the bifurcation describing the loss
of synchrony is characterized for a general oscillator
population. The bifurcation is then calculated for sev-
eral different frequency distributions, including even
polynomial distributions and populations that corre-
spond to a discrete system of N oscillators. By formu-
lating the discrete system in a continuum framework,
the analysis can be carried through and the bifurcation
curve can be calculated for arbitrarily large discrete
populations. Results of the discrete system will be pre-
sented from NV = 2 to N = 10° oscillators. As the
number of discrete oscillators increases, approaching
the continuum uniform distribution, the coefficients of
the bifurcation curve increase and become singular as
N grows without bound.
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1 Introduction

Synchronization describes the collective locking in a
population of oscillators to a single frequency. The
present work considers this phenomenon in a popula-
tion of phase oscillators with mean-field coupling—
a special case of the more general Winfree model
(Winfree, 1967). In this system, each oscillator is cou-
pled to the mean-field with a strength dependent on
its phase. This coupling, described through a phase-
response curve, can either advance or delay the phase
of the oscillator, so that the coupling cannot be de-
scribed as strictly excitatory or inhibitory. Moreover,
the uncoupled frequencies of the oscillators are as-
sumed to be randomly distributed across the popula-
tion according to a specified population density, lead-
ing to an integro-differential equation. The response
of this system is described as two parameters are var-
ied. The first describes the strength of the coupling
between each oscillator while the second characterizes
the distribution of uncoupled frequencies in the popu-
lation.

This work is based on analysis by Ariaratnam and
Strogatz (2001), in which a uniform distribution of
natural frequencies was considered. The authors clas-
sified several qualitatively different states for the pop-
ulation, including incoherence, synchronization, and
oscillator death. As the above parameters are var-
ied, the synchronous solution can disappear as oscil-
lators near the edge of the population (large deviation
of their natural frequency from the population mean)
no longer remain locked to the mean frequency. How-
ever, in Ariaratnam and Strogatz the bifurcation curve
describing the loss of synchrony was only determined
numerically. For the uniform frequency distribution
the bifurcation curve contains a singularity in the co-
efficients of the perturbation expansion. This analysis
is generalized to consider any even distribution for the



uncoupled frequencies of the population.

Using a Poincare-Lindstedt analysis, the bifurcation
describing the loss of synchrony is characterized in
terms of the phase distribution of the oscillators and
the coupling to the mean-field. The bifurcation is then
calculated for several different frequency distributions,
including even polynomial distributions and popula-
tions that correspond to a discrete system of N oscil-
lators. One novel feature of this analysis is that by
formulating the discrete system in a continuum frame-
work, arbitrarily large discrete populations can be con-
sidered. Results of the discrete system will be pre-
sented from NV = 2 to N = 10° oscillators. As the
number of discrete oscillators increases, approaching
the continuum uniform distribution, the coefficients of
the bifurcation curve increase without bound.

2 Synchronization in the Winfree M odel
Consider a population of oscillators whose evolution
is governed by the integro-differential equation
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The term h(u) represents the distribution of natural
frequencies over the population. Moreover h(u) is as-
sumed to be an even function and

1
[ d=1. @

-1

This system was considered by Ariaratham and Stro-
gatz (2001) for a population of oscillators with a uni-
form distribution of natural frequencies. The parame-
ters I" and P are assumed to be small, corresponding
to a system of nearly identical oscillators with weak
coupling, sothatT" — <I', and P — ¢P. For e = 0 the
evolution equation is simply
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which possesses the general solution

Ot,v) =t + ¢o(v). (4)

Therefore, Eq. (1) is subject to the following transfor-
mation

Ot v) =0t + (cp(y) + o, y)) . (5)

In this, © represents the mean frequency of the pop-
ulation and ®(v) + ©(t, v) describes the evolution of
each oscillator with respect to the mean, so that
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With this, the evolution equation becomes
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21 Lindstedt’sMethod

In what follows Lindstedt’s method is used to char-
acterize periodic solutions for ¢ # 0 and to identify
the bifurcation curve on which these periodic solutions
arise. To begin, the time scale 7 = 2 ¢ is introduced
together with the following expansions
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and these expansions are returned to Eq. (7). At O(e)
the resulting equation becomes
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The equations at O(¢?) and O(£?), although straight-
forward, are lengthy and omitted for brevity. Finally,
the following quantities are identified

1 [ dFcos(®
Brcos&y = o /_1 w » h(p) dp,
(10a)
1 [ dFsin(®
B sin &, = H/_1 78122,9 (k) » h(p) dp
(10b)



Note that B = > &’ 3; can be identified with the
Kuramoto order parameter (Kuramoto, 1984; Stro-
gatz, 2000). These may be combined to yield
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O(e). At O(g), the equation of motion is
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In this equation terms that are not periodic in 7 lead to
secular terms in the solution for ;. To remove these
undesirable terms, the secular condition is identified as
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Also, from Egs. (11)

Bo = / cos(do(j1) — &) h(p) dp,  (142)
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0= [ sin(Go(u) - &) o0 ds. (14
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Solving Eq. (13) for sin(¢o(v) — &) and substituting
into the second of these relations, one obtains

w1 = 07 (15)
and the secular condition reduces to
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where 1o (v) = ¢o(v) — & . Returning to the equation
of motion at O(e)
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Figure 1. Geometrica solution to Eq. (20). The solid curve rep-
resents the right hand side of Eg. (20) while the dashed line is
2y / p1 (shown at two different values). Intersections determine
the value of ¢35 (1). Note that a saddle-node bifurcation occurs for
suffi ciently large valuesof 2y /p1.

so that
01(1,v) = p1 cos((T + &) + ¢o(v)) (18)
F20 cos(2 (r + €0) + o(v)).

To evaluate this solution the value of 5, must still be
found in a self-consistent manner from Eqg. (11) so that

fo = / cos(o()) h(w) dp.  (19)
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Changing variables from p to g

2 _ (&)
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which can be solved for (1), as illustrated in Fig-
ure 1. Then from Eq. (16), 5y is determined as

_ 2m
b= snlo1) (21)

As illustrated in Figure 1, the equilibrium distribu-
tion can disappear in a saddle-node bifurcation for suf-
ficiently large values of 2+, /p;. In addition, from
Eg. (16), sin(¢o(r)) must increase monotonically
with increasing v so that 1) (1) must lie in the interval
[0,7/2], or equivalently 0 < By < (2+1)/p1. There-
fore, the equilibrium distribution can also be lost as its
extent 1o (1) reaches the boundary at 7 /2.



Saddle-node Bifurcations. One can show that a
saddle-node bifurcation occurs if, in addition to
Eqg. (20), the following is satisfied

_ [ sin® (o ()
Bo = /_1 cos(Uo()) h(p) dp. (22)

These may be combined so that the location of the
saddle-node bifurcation is determined from the solu-
tion of the equation

O cos(240(n))
0= | gy e e

= o sin(to)
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where 15 (1) corresponds to the extent of the equilib-
rium distribution at the bifurcation.

O(e?). At O(e?), the secularity condition can be
expressed as

0=—wr+vv (24)
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Integrating this condition over the population and solv-

ing for wo
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Using Eq. (16), the secularity condition reduces to

0=2 [ (50— costvnt))| (26)
Plﬁo [¢1( ) cos(tho(v)) + %Sin(wo(V) —61)
#(2-2) sun)].

where §; = & — &. The self-consistency condition
can be expressed as

(1 cos(1) = / o1 () sin(vo(p)) h(v) dv, (27)

and at the bifurcation

Bo (Zj %) — 0. (28)

Subsequently solving the O(s2) secularity condition

¢1(v) cos(¢o(v))

=2 (10— costialv)) @)

—% sin(o(v) — 81).

O(e3). Aswasdone at O(¢?), integrating the O(&3)
secularity condition (not shown) over the population
and solving for w3 yields
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(30)
At the bifurcation, the self-consistency condition can
be reduced to
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This equation has either zero, one, or two solutions
depending on the value of (1 cos(d1). In particular,
for 6, = /2, the cubic coefficients of P and I" on the
bifurcation curve satisfy

(@ _ E) _ 32)
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2.2 Uniform Distribution
For a uniform population of oscillators (h(v) = 1/2),
the equilibrium distribution at the bifurcation from the
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O(e) analysis can be written as

2’)/1 ™
po="0_1
P1 4

—  sin(yo(v)) =v. (33)
Therefore the equilibrium distribution covers the in-
terval g € [—m/2,7/2]. When Eq. (32) is evaluated
to determine the cubic coefficients of the bifurcation
curve, the integral
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is singular for the uniform distribution, so that the cu-
bic coefficients of P and I" are undefined. However,
in Ariaratham and Strogatz (2001) numerical results
are presented for 800 oscillators (approximating the
uniform distribution), and the location of the bifur-
cation curve is identified in terms of the parameters.
Surprisingly, no singularity in the bifurcation curve is
observed for the numerical results.

2.3 Discrete Population

Now consider a discrete population of N oscillators,
for which the distribution function h(v) can be written
as a sum of delta functions

h(v) = %Za(y—%) (35)

In the limit N — oo, this approaches a uniform distri-
bution with h(v) = 1/2. With this specific population,
the equilibrium distribution at the bifurcation is deter-
mined by the solution to (from Eq. (23))
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The solution to this equation can then be used to deter-
mine the expansion for ~ at the bifurcation.

In Figure 2 the cubic coefficient in the expansion for
v, from Eq. (32), is shown as the number of oscilla-
tors in the discrete system increases. As N — oo this
coefficient increases and numerically appears to in-
crease unbounded, although very slowly—at N = 10°
Eq. (32) is evaluated to yield v3 ~ —1.6. Eq. (36) was
solved with a bracketing method in MATLAB, using
double precision variables to ensure an accurate solu-
tion for large .

For this system the mean distribution can be written
to O(e) as

sin (¥ (v)) = %V (37)
= {2 (60 = conlunt)
—% sin(yo(v) — 51)} + O(e%).

The value of | sin (®(v)) | must be less than one for all
values of v. In particular, for v = 1, this provides an
estimate of the allowable range of ¢ over which this
expansion is valid. That is at the bifurcation value of

61 =0

p1Bo — 2m '
360 (ﬂo - COS(%@)))

<8

(38)

As N — oo, the quantity p; 5y — 21 goes to zero, so
that the allowable range of £ over which this expansion
is valid vanishes. Viewing Figure 2, although the cubic
coefficient of the bifurcation curve blows up as N —
00, the range of validity of this expansion vanishes as
the continuum limit is approached.

2.4 Polynomial Distribution
For a general even continuous population, the fre-
quency distribution can be expressed as

=> hy v|*. (39)
k=0

With this distribution, the saddle-node bifurcation con-
dition becomes

_ b cos 21/)0

0= / oG] Zh i (40)
B e 2hk 1Z’o(l) .k
= m/ cos(2¢) sin” (o) dibo.

As before, the solution (1) must lie in the inter-
val [0, 7/2]. For solutions of this equation for which
g (1) is greater than /2 the equilibrium distribution,
given by Eq.(16) is not defined, so that these solutions
are invalid.

As an example, consider a piecewise linear distribu-
tion of the form

h(v) = ho + (1 — 2hg) |v|. (41)
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Figure 2. Cubic coeffi cient 13 (03 = 0) at the bifurcation as IV
varies.

As illustrated in Figure 3, for hg = 1 this can be de-
scribed as a tent-shaped distribution, while for hg =
1/2 it reduces to the uniform distribution considered
above. With this, the condition for the saddle-node bi-
furcation reduces to

0= (") eosttwiia) (@2)

L= ) ostui (1) - (F2).

One solution to this equation is always given by
cos(¢% (1)) = 1, while the remaining solutons satisfy
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Figure3. Piecewiselinear population densities(h1 = 1—2 hy).
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Figure4. Piecewiselinear population densities(h1 = 1—2 hy).

the equation

0 = cos® (14 (1)) +cos(ypg (1)) + (22hE h01> - 3)

cos(¥5(1)) = —% + /46(2_4322). (44)

As seen in Figure 4 as hg — 1/2, the extent of the
equilibrium distribution at the bifurcation approaches
/2. Recall that ¢y (1) must lie in the interval [0, /2],
so that 0 < cos(1o(1)) < 1. Therefore admissi-
ble solutions to this quadratic equation only exist for
0 < hg < 1/2. For1/2 < hg < 1 no saddle-node
bifurcation occurs in the system. Instead, synchrony
is lost as the O(e) equilibrium distribution covers the
interval —7/2 < 9o (v) < 7/2.

so that

3 Conclusions
Synchronization has been considered in a population
of phase oscillators with mean-field coupling, where



the uncoupled frequencies of the oscillators are dis-
tributed across a specified population density. It was
found that synchrony can be lost in either a classical
saddle-node bifurcation or as the equilibrium distribu-
tion covers the interval [—x/2, 7, 2]. For the saddle-
node bifurcation a Poincaré-Lindstedt method was ap-
plied and the coefficients of the resulting bifurcation
curve were identified. Finally, a number of specific
distributions were evaluated, including the uniform
distribution, polynomial distributions, and a popula-
tion density corresponding to a system of discrete os-
cillators. By formulating the discrete problem in a
continuum framework, the Poincaré-Lindstedt analy-
sis for the saddle node bifurcation was carried out for
as many as N = 10 oscillators.
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