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Abstract
Synchronization is studied in a population of phase

oscillators with mean-field coupling—a special case
of the more general Winfree model. Each oscillator
is coupled to the mean-field with a strength dependent
on its phase. The uncoupled frequencies of the oscil-
lators are assumed to be randomly distributed accord-
ing to a specified population density. The response of
this system is considered as a function of two parame-
ters. The first describes the strength of the coupling
between each oscillator while the second character-
izes the distribution of uncoupled frequencies in the
population. As these parameters are varied, the syn-
chronous solution can disappear as oscillators near the
edge of the population (large deviation of their natu-
ral frequency from the population mean) no longer re-
main locked to the mean frequency. Using a Poincare-
Lindstedt analysis, the bifurcation describing the loss
of synchrony is characterized for a general oscillator
population. The bifurcation is then calculated for sev-
eral different frequency distributions, including even
polynomial distributions and populations that corre-
spond to a discrete system ofN oscillators. By formu-
lating the discrete system in a continuum framework,
the analysis can be carried through and the bifurcation
curve can be calculated for arbitrarily large discrete
populations. Results of the discrete system will be pre-
sented from N = 2 to N = 106 oscillators. As the
number of discrete oscillators increases, approaching
the continuum uniform distribution, the coefficients of
the bifurcation curve increase and become singular as
N grows without bound.
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1 Introduction
Synchronization describes the collective locking in a

population of oscillators to a single frequency. The
present work considers this phenomenon in a popula-
tion of phase oscillators with mean-field coupling—
a special case of the more general Winfree model
(Winfree, 1967). In this system, each oscillator is cou-
pled to the mean-field with a strength dependent on
its phase. This coupling, described through a phase-
response curve, can either advance or delay the phase
of the oscillator, so that the coupling cannot be de-
scribed as strictly excitatory or inhibitory. Moreover,
the uncoupled frequencies of the oscillators are as-
sumed to be randomly distributed across the popula-
tion according to a specified population density, lead-
ing to an integro-differential equation. The response
of this system is described as two parameters are var-
ied. The first describes the strength of the coupling
between each oscillator while the second characterizes
the distribution of uncoupled frequencies in the popu-
lation.
This work is based on analysis by Ariaratnam and

Strogatz (2001), in which a uniform distribution of
natural frequencies was considered. The authors clas-
sified several qualitatively different states for the pop-
ulation, including incoherence, synchronization, and
oscillator death. As the above parameters are var-
ied, the synchronous solution can disappear as oscil-
lators near the edge of the population (large deviation
of their natural frequency from the population mean)
no longer remain locked to the mean frequency. How-
ever, in Ariaratnam and Strogatz the bifurcation curve
describing the loss of synchrony was only determined
numerically. For the uniform frequency distribution
the bifurcation curve contains a singularity in the co-
efficients of the perturbation expansion. This analysis
is generalized to consider any even distribution for the



uncoupled frequencies of the population.
Using a Poincare-Lindstedt analysis, the bifurcation

describing the loss of synchrony is characterized in
terms of the phase distribution of the oscillators and
the coupling to the mean-field. The bifurcation is then
calculated for several different frequency distributions,
including even polynomial distributions and popula-
tions that correspond to a discrete system of N oscil-
lators. One novel feature of this analysis is that by
formulating the discrete system in a continuum frame-
work, arbitrarily large discrete populations can be con-
sidered. Results of the discrete system will be pre-
sented from N = 2 to N = 106 oscillators. As the
number of discrete oscillators increases, approaching
the continuum uniform distribution, the coefficients of
the bifurcation curve increase without bound.

2 Synchronization in the Winfree Model
Consider a population of oscillators whose evolution

is governed by the integro-differential equation

∂Θ

∂t
(t, ν) = 1 + Γ ν − P sinΘ(t, ν)· (1)

·

∫ 1

−1

(

1 + cos Θ(t, µ)
)

h(µ) dµ.

The term h(µ) represents the distribution of natural
frequencies over the population. Moreover h(µ) is as-
sumed to be an even function and

∫ 1

−1

h(µ) dµ = 1. (2)

This system was considered by Ariaratnam and Stro-
gatz (2001) for a population of oscillators with a uni-
form distribution of natural frequencies. The parame-
ters Γ and P are assumed to be small, corresponding
to a system of nearly identical oscillators with weak
coupling, so that Γ → εΓ, and P → εP. For ε = 0 the
evolution equation is simply

∂Θ

∂t
(t, ν) = 1, (3)

which possesses the general solution

Θ(t, ν) = t+ φ0(ν). (4)

Therefore, Eq. (1) is subject to the following transfor-
mation

Θ(t, ν) = Ω t+
(

Φ(ν) + Θ̂(t, ν)
)

. (5)

In this, Ω represents the mean frequency of the pop-
ulation and Φ(ν) + Θ̂(t, ν) describes the evolution of
each oscillator with respect to the mean, so that

∫ 2π

0

Θ̂(τ, ν) dτ = 0. (6)

With this, the evolution equation becomes

∂Θ̂

∂t
(t, ν) = (1 − Ω) + Γ ν (7)

−P sin
(

Ω t+ Φ(ν) + Θ̂(t, ν)
)

·

·

∫ 1

−1

(

1 + cos
(

Ω t+ Φ(µ) + Θ̂(t, µ)
))

h(µ) dµ.

2.1 Lindstedt’s Method
In what follows Lindstedt’s method is used to char-

acterize periodic solutions for ε 6= 0 and to identify
the bifurcation curve on which these periodic solutions
arise. To begin, the time scale τ = Ω t is introduced
together with the following expansions

Γ =

n
∑

i=1

εi γi, P =

n
∑

i=1

εi ρi,

Ω = 1 +

n
∑

i=1

εi ωi, (8)

Θ̂(τ, ν) =

n
∑

i=1

εi θi(τ, ν), Φ(ν) =

n
∑

i=0

εi φi(ν),

and these expansions are returned to Eq. (7). At O(ε)
the resulting equation becomes

∂θ1
∂τ

(τ, ν) = −ω1 + γ1 ν − ρ1 sin(τ + φ0(ν))· (9)

·

∫ 1

−1

(

1 + cos(τ + φ0(µ))
)

h(µ) dµ.

The equations at O(ε2) and O(ε3), although straight-
forward, are lengthy and omitted for brevity. Finally,
the following quantities are identified

βk cos ξk =
1

k!

∫ 1

−1

dk cos(Φ(µ))

dεk

∣

∣

∣

∣

ε=0

h(µ) dµ,

(10a)

βk sin ξk =
1

k!

∫ 1

−1

dk sin(Φ(µ))

dεk

∣

∣

∣

∣

ε=0

h(µ) dµ.

(10b)



Note that B =
∑

εi βi can be identified with the
Kuramoto order parameter (Kuramoto, 1984; Stro-
gatz, 2000). These may be combined to yield

βk =
1

k!

∫ 1

−1

[

cos ξk

(

dk cos(Φ(µ))

dεk

∣

∣

∣

∣

ε=0

)

(11a)

+sin ξk

(

dk sin(Φ(µ))

dεk

∣

∣

∣

∣

ε=0

)]

h(µ) dµ,

0 =
1

k!

∫ 1

−1

[

sin ξk

(

dk cos(Φ(µ))

dεk

∣

∣

∣

∣

ε=0

)

(11b)

− cos ξk

(

dk sin(Φ(µ))

dεk

∣

∣

∣

∣

ε=0

)]

h(µ) dµ.

O(ε). At O(ε), the equation of motion is

∂θ1
∂τ

(τ, ν) = −ω1 + γ1 ν

(12)

−ρ1 sin(τ + φ0(ν))
[

1 + β0 cos(τ + ξ0)
]

.

In this equation terms that are not periodic in τ lead to
secular terms in the solution for θ1. To remove these
undesirable terms, the secular condition is identified as

0 = −ω1 + γ1 ν −
ρ1β0

2
sin(φ0(ν) − ξ0). (13)

Also, from Eqs. (11)

β0 =

∫ 1

−1

cos(φ0(µ) − ξ0) h(µ) dµ, (14a)

0 =

∫ 1

−1

sin(φ0(µ) − ξ0) h(µ) dµ. (14b)

Solving Eq. (13) for sin(φ0(ν) − ξ0) and substituting
into the second of these relations, one obtains

ω1 = 0, (15)

and the secular condition reduces to

2γ1

ρ1β0
ν = sin(ψ0(ν)), (16)

where ψ0(ν) = φ0(ν)− ξ0. Returning to the equation
of motion at O(ε)

∂θ1
∂τ

(τ, ν) = −ρ1 sin((τ + ξ0) + ψ0(ν)) (17)

−
ρ1β0

2
sin(2 (τ + ξ0) + ψ0(ν)),

ψ0

π

2

Figure 1. Geometrical solution to Eq. (20). The solid curve rep-

resents the right hand side of Eq. (20) while the dashed line is

2 γ1/ρ1 (shown at two different values). Intersections determine

the value of ψ?0(1). Note that a saddle-node bifurcation occurs for

sufficiently large values of 2 γ1/ρ1.

so that

θ1(τ, ν) = ρ1 cos((τ + ξ0) + ψ0(ν)) (18)

+
ρ1β0

4
cos(2 (τ + ξ0) + ψ0(ν)).

To evaluate this solution the value of β0 must still be
found in a self-consistent manner from Eq. (11) so that

β0 =

∫ 1

−1

cos(ψ0(µ)) h(µ) dµ. (19)

Changing variables from µ to ψ0

2 γ1

ρ1
=

∫ ψ0(1)

−ψ0(1)

cos2(ψ0) h

(

sin(ψ0)

sin(ψ0(1))

)

dψ0,

(20)
which can be solved for ψ0(1), as illustrated in Fig-
ure 1. Then from Eq. (16), β0 is determined as

β0 =
2 γ1

ρ1 sin(ψ0(1))
. (21)

As illustrated in Figure 1, the equilibrium distribu-
tion can disappear in a saddle-node bifurcation for suf-
ficiently large values of 2 γ1/ρ1. In addition, from
Eq. (16), sin(ψ0(ν)) must increase monotonically
with increasing ν so that ψ0(1) must lie in the interval
[0, π/2], or equivalently 0 ≤ β0 ≤ (2 γ1)/ρ1. There-
fore, the equilibrium distribution can also be lost as its
extent ψ0(1) reaches the boundary at π/2.



Saddle-node Bifurcations. One can show that a
saddle-node bifurcation occurs if, in addition to
Eq. (20), the following is satisfied

β0 =

∫ 1

−1

sin2(ψ0(µ))

cos(ψ0(µ))
h(µ) dµ. (22)

These may be combined so that the location of the
saddle-node bifurcation is determined from the solu-
tion of the equation

0 =

∫ 1

−1

cos(2ψ0(µ))

cos(ψ0(µ))
h(µ) dµ,

=

∫ ψ?

0
(1)

−ψ?

0
(1)

cos(2ψ0) h

(

sin(ψ0)

sin(ψ?0(1))

)

dψ0, (23)

where ψ?0(1) corresponds to the extent of the equilib-
rium distribution at the bifurcation.

O(ε2). At O(ε2), the secularity condition can be
expressed as

0 = −ω2 + γ2 ν (24)

−
ρ2
1

2

{(

1 +
β2

0

8

)

+
β0

8
cos(ψ0(ν))

}

−
1

2

{

ρ2β0 sin(ψ0(ν))

+ ρ1 β1 sin(ψ0(ν) + (ξ0 − ξ1))

+ ρ1 β0 φ1(ν) cos(ψ0(ν))

}

.

Integrating this condition over the population and solv-
ing for ω2

ω2 = −
ρ2
1

2

(

1 +
β2

0

4

)

. (25)

Using Eq. (16), the secularity condition reduces to

0 =
ρ2
1

2

[

β0

8

(

β0 − cos(ψ0(ν))

)]

(26)

−
ρ1β0

2

[

φ1(ν) cos(ψ0(ν)) +
β1

β0
sin(ψ0(ν) − δ1)

+

(

ρ2

ρ1
−
γ2

γ1

)

sin(ψ0(ν))

]

,

where δ1 = ξ1 − ξ0. The self-consistency condition
can be expressed as

β1 cos(δ1) = −

∫ 1

−1

φ1(µ) sin(ψ0(µ)) h(ν) dν, (27)

and at the bifurcation

β0

(

ρ2

ρ1
−
γ2

γ1

)

= 0. (28)

Subsequently solving the O(ε2) secularity condition

φ1(ν) cos(ψ0(ν)) =
ρ1

8

(

β0 − cos(ψ0(ν))

)

(29)

−
β1

β0
sin(ψ0(ν) − δ1).

O(ε3). As was done at O(ε2), integrating the O(ε3)
secularity condition (not shown) over the population
and solving for ω3 yields

ω3 = −

{

ρ2
1β0β1

4
cos(δ1) + ρ1ρ2

(

1 +
β2

0

4

)

}

.

(30)
At the bifurcation, the self-consistency condition can
be reduced to

0 =







β0

(

ρ3

ρ1
−
γ3

γ1

)

(31)

−
ρ2
1β0

64

[

17 +

(
∫ 1

−1

cos(2 ψ0(µ)) h(µ) dµ

)2
]

+
ρ2
1β0

64

[

1 −
β0

2

∫ 1

−1

1

cos3(ψ0(ν))
h(ν) dν

]







−
β2

1

β2
0







cos2(δ1)

2

∫ 1

−1

1

cos3(ψ0(ν))
h(ν) dν







.

This equation has either zero, one, or two solutions
depending on the value of β1 cos(δ1). In particular,
for δ1 = π/2, the cubic coefficients of P and Γ on the
bifurcation curve satisfy

(

ρ3

ρ1
−
γ3

γ1

)

= (32)

ρ2
1

64



16 +

(
∫ 1

−1

cos(2ψ0(ν)) h(ν) dν

)2

+

(

β0

2

∫ 1

−1

1

cos3(ψ0(ν))
h(ν) dν

)



 .

2.2 Uniform Distribution
For a uniform population of oscillators (h(ν) = 1/2),

the equilibrium distribution at the bifurcation from the



O(ε) analysis can be written as

β0 =
2 γ1

ρ1
=
π

4
, −→ sin(ψ0(ν)) = ν. (33)

Therefore the equilibrium distribution covers the in-
terval ψ0 ∈ [−π/2, π/2]. When Eq. (32) is evaluated
to determine the cubic coefficients of the bifurcation
curve, the integral

∫ 1

−1

1

cos3(ψ0(ν))
h(ν) dν, (34)

is singular for the uniform distribution, so that the cu-
bic coefficients of P and Γ are undefined. However,
in Ariaratnam and Strogatz (2001) numerical results
are presented for 800 oscillators (approximating the
uniform distribution), and the location of the bifur-
cation curve is identified in terms of the parameters.
Surprisingly, no singularity in the bifurcation curve is
observed for the numerical results.

2.3 Discrete Population
Now consider a discrete population of N oscillators,

for which the distribution function h(ν) can be written
as a sum of delta functions

h(ν) =
1

N

N
∑

i=1

δ

(

ν −
N + 1 − 2i

N − 1

)

. (35)

In the limit N → ∞, this approaches a uniform distri-
bution with h(ν) = 1/2. With this specific population,
the equilibrium distribution at the bifurcation is deter-
mined by the solution to (from Eq. (23))

0 =
2

N

N
∑

i=1

[

1 −

(

2 γ1

ρ1 β0

N + 1 − 2i

N − 1

)2
]1/2

(36)

−
1

N

N
∑

i=1

[

1 −

(

2 γ1

ρ1 β0

N + 1 − 2i

N − 1

)2
]

−1/2

.

The solution to this equation can then be used to deter-
mine the expansion for γ at the bifurcation.
In Figure 2 the cubic coefficient in the expansion for
γ, from Eq. (32), is shown as the number of oscilla-
tors in the discrete system increases. As N → ∞ this
coefficient increases and numerically appears to in-
crease unbounded, although very slowly—atN = 106

Eq. (32) is evaluated to yield γ3 ∼ −1.6. Eq. (36) was
solved with a bracketing method in MATLAB, using
double precision variables to ensure an accurate solu-
tion for large N .

For this system the mean distribution can be written
to O(ε) as

sin (Ψ(ν)) =
2γ1

ρ1β0
ν (37)

+ε

{

ρ1

8

(

β0 − cos(ψ0(ν))
)

−
β1

β0
sin(ψ0(ν) − δ1)

}

+ O(ε2).

The value of | sin (Φ(ν)) | must be less than one for all
values of ν. In particular, for ν = 1, this provides an
estimate of the allowable range of ε over which this
expansion is valid. That is at the bifurcation value of
β1 = 0

ε < 8
ρ1β0 − 2γ1

ρ2
1β0

(

β0 − cos(ψ0(ν))
) . (38)

As N → ∞, the quantity ρ1β0 − 2γ1 goes to zero, so
that the allowable range of ε over which this expansion
is valid vanishes. Viewing Figure 2, although the cubic
coefficient of the bifurcation curve blows up as N →
∞, the range of validity of this expansion vanishes as
the continuum limit is approached.

2.4 Polynomial Distribution
For a general even continuous population, the fre-

quency distribution can be expressed as

h(ν) =

∞
∑

k=0

hk |ν|
k
. (39)

With this distribution, the saddle-node bifurcation con-
dition becomes

0 =

∫ 1

−1

cos(2ψ0(µ))

cos(ψ0(µ))

∞
∑

k=0

hk |µ|
k
dµ, (40)

=
∞
∑

k=0

2 hk

sink(ψ0(1))

∫ ψ?

0
(1)

0

cos(2ψ0) sink(ψ0) dψ0.

As before, the solution ψ?0(1) must lie in the inter-
val [0, π/2]. For solutions of this equation for which
ψ?0(1) is greater than π/2 the equilibrium distribution,
given by Eq.(16) is not defined, so that these solutions
are invalid.
As an example, consider a piecewise linear distribu-

tion of the form

h(ν) = h0 + (1 − 2h0) |ν|. (41)
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Figure 2. Cubic coefficient γ3 (ρ3 = 0) at the bifurcation asN
varies.

As illustrated in Figure 3, for h0 = 1 this can be de-
scribed as a tent-shaped distribution, while for h0 =
1/2 it reduces to the uniform distribution considered
above. With this, the condition for the saddle-node bi-
furcation reduces to

0 =

(

h0 − 2

3

)

cos3(ψ?0(1)) (42)

+(1 − h0) cos(ψ?0(1)) −

(

1 − 2h0

3

)

.

One solution to this equation is always given by
cos(ψ?0(1)) = 1, while the remaining solutons satisfy

ν

1−1

h0 = 1.00

h0 = 0.50

h0 = 0.00

Figure 3. Piecewise linear population densities (h1 = 1−2h0).

h0

ψ?

0(1)

1

π

2

Figure 4. Piecewise linear population densities (h1 = 1−2h0).

the equation

0 = cos2(ψ?0(1))+cos(ψ?0(1))+

(

2h0 − 1

2 − h0

)

, (43)

so that

cos(ψ?0(1)) = −
1

2
±

√

6 − 9h0

4 (2 − h0)
. (44)

As seen in Figure 4 as h0 → 1/2, the extent of the
equilibrium distribution at the bifurcation approaches
π/2. Recall that ψ0(1) must lie in the interval [0, π/2],
so that 0 ≤ cos(ψ0(1)) ≤ 1. Therefore admissi-
ble solutions to this quadratic equation only exist for
0 ≤ h0 ≤ 1/2. For 1/2 < h0 ≤ 1 no saddle-node
bifurcation occurs in the system. Instead, synchrony
is lost as the O(ε) equilibrium distribution covers the
interval −π/2 ≤ ψ0(ν) ≤ π/2.

3 Conclusions
Synchronization has been considered in a population

of phase oscillators with mean-field coupling, where



the uncoupled frequencies of the oscillators are dis-
tributed across a specified population density. It was
found that synchrony can be lost in either a classical
saddle-node bifurcation or as the equilibrium distribu-
tion covers the interval [−π/2, π, 2]. For the saddle-
node bifurcation a Poincaré-Lindstedt method was ap-
plied and the coefficients of the resulting bifurcation
curve were identified. Finally, a number of specific
distributions were evaluated, including the uniform
distribution, polynomial distributions, and a popula-
tion density corresponding to a system of discrete os-
cillators. By formulating the discrete problem in a
continuum framework, the Poincaré-Lindstedt analy-
sis for the saddle node bifurcation was carried out for
as many as N = 106 oscillators.
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