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Summary

 

. This work is concerned with Duffing-type oscillators that have an amplitude-independent frequency/period, i.e. a straight 
vertical backbone curve. Two groups of oscillators are considered by using a perturbation approach and certain transformation approach: 
one with a modified Duffing-type restoring force and the other one with the classical hardening and softening Duffing restoring force. 

Introduction 
 
Classical hardening and softening Duffing oscillators 
 ,03 =±+ xxx  (1) 
are known to have a frequency ω that changes with their amplitude R [1, 2]. Its backbone curve, which is a graphical 
representation of the relationship ω=ω(R), is bent either to the right or to the left.  
This work aims at answering two questions: 
1) Can one modify the model (1) and its restoring force so that the backbone curve unbends to a straight vertical 
line, corresponding thus to an amplitude-independent frequency/period? 
2) Can one design nonlinear oscillators with an amplitude-independent frequency/period without modifying the 
Duffing restoring force?  
 

Lagrangians and equations of motion 
 
Modified Duffing restoring force  
In order to answer the first question we consider the oscillators governed by 
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where a0 1 is fixed to  or 0, while the coefficients a2, a3, a4

In the case when 

 ,… are to be found. These coefficients are calculated by 
using Lindstedt’s method with ω =1, as demonstrated in [3]. 

10 =a  and there are no even-powered terms in Eq. (2), the coefficients 12 +na  ( ,...3,2,1=n ) are found 

to be !)!12/()1(12 +−=+ na n
n . Consequently, Eq. (2) can be presented as containing the sum of restoring terms, or in a 

compact form as follows: 

 ( ) ,0
2

erfi exp
2

.i.e,0
!)!12(

)1(
2

2
12

0

2 2
=








−++=

+
−

++
+∞

=
∑

xxxx
n

xxxx x
nn

n

π
  (3a,b) 

where erfi denotes the imaginary error function. Note that these equations are conservative and Eq. (3b), for example, 
can be derived by using Lagrange’s equation for the Lagrangian ( ) ( ) 4/2/erfi 2/exp 222 xxxL π−=  . To verify these 
results, Eq. (3a) was solved numerically and the frequency was extracted from the time response for different values of 
the initial amplitude R and for various n (note that the initial velocity is assumed to be zero through the whole study). 
The backbone curves of the corresponding oscillators O2n+1

      

 are shown in Figure 1a, where the subscript denotes the 
highest power included into the sum. The higher the value of n, the more straight the backbone curve is. 

 
Figure1. Backbone curves of: a) oscillator (3a); b) oscillator (2), (4a-c) rescaled with xx ε→ , 1.0=ε  for 00 =a  

 
In the case when 00 =a , the coefficients yielding ω =1 are 
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 Figure 1b shows the corresponding backbone curves obtained numerically from Eqs. (2) rescaled with xx ε→ , for the 

coefficients defined by Eqs. (4a-c) when those of even powers a2, a4, a6, … are equal to unity. It is interesting to note 
that if the coefficients a2, a4, a6, !/!)!12()1( 1 nna n

n −−= + are chosen to follow the pattern , Eqs. (4a-c) give the 
coefficients of odd-powered terms having the values of the same general form. The restoring terms can then be summed 
up and presented in a compact form so that the equation of motion becomes 021/11 =+−+ xx , which agrees with 
Urabe’s example of a system exhibiting periodic motion of a fixed period when  2/12/1 <<− x  [4]. 
 
Hardening and softening Duffing restoring force  
In order to answer the second question from the Introduction, we consider the simple harmonic oscillator with the 

Lagrangian 22 22 XXL −=  . By using the transformation 21/ xxX ±=  [5, 6], this Lagrangian yields the 
equation of motion with the Duffing restoring force 
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For the transformation fxX ⋅= , where ( )( )dttxf t∫= 0exp  [6], the following equation of motion is derived  

 .03 3 =+++ xxxxx   (6) 
The same transformation fxX ⋅=  but with ( )( )dttxf t∫= 0cos  [6] leads to 

 ,0tan3 3
111111 =−+− xxxxxx   (7) 

where ( )dttxx t∫= 01 . Numerical solutions of Eqs. (5)-(7) are plotted for different initial amplitudes in Figures 2a-d as 
black dots. They confirm that the period is amplitude-independent. This approach also gives analytical solutions for 
motion [5, 6], which are shown in Figure 2a-d as dashed lines, matching exactly the numerical solutions.  

       
Figure 2. Numerical solutions (dots) and analytical solutions (dashed lines) of: a) Eq. (5) with the upper sign; b) Eq. (5) with the 

lower sign; c) Eq. (6); d) Eq. (7) 
 

Conclusions 
 

We have designed conservative Duffing-type oscillators whose frequency is amplitude-independent and their backbone 
curve is consequently vertical and straight. Two approaches are used: a perturbation approach based on Lindstedt’s 
method and the transformation approach that establishes the equivalence between the Lagrangian of the simple harmonic 
oscillator, which is known to have a constant frequency, and that of the new oscillators. In addition to deriving their 
Lagrangians and the corresponding equations of motion, analytical solutions for motion and conservation laws are 
obtained and discussed as well. 
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