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CENTER MANIFOLD REDUCTION OF THE HOPF-HOPF BIFURCATION IN A

TIME DELAY SYSTEM

Christoffer Heckman1, Jakob Kotas2 and Richard Rand3

Abstract. In this work, a differential delay equation (DDE) with a cubic nonlinearity is analyzed
as two parameters are varied by means of a center manifold reduction. This reduction is applied
directly to the case where the system undergoes a Hopf-Hopf bifurcation. This procedure replaces the
original DDE with four first-order ODEs, an approximation valid in the neighborhood of the Hopf-Hopf
bifurcation. Analysis of the resulting ODEs shows that two separate periodic motions (limit cycles) and
an additional quasiperiodic motion are born out of the Hopf-Hopf bifurcation. The analytical results
are shown to agree with numerical results obtained by applying the continuation software package
DDE-BIFTOOL to the original DDE. This system has analogues in coupled microbubble oscillators.

Introduction

Delay in dynamical systems is exhibited whenever the system’s behavior is dependent at least in part on its
history. Many technological and biological systems are known to exhibit such behavior ; coupled laser systems,
high-speed milling, population dynamics and gene expression are some examples of delayed systems. This work
analyzes a simple differential delay equation that is motivated by a system of two microbubbles coupled by
acoustic forcing, previously studied by Heckman et al. [1] [2]. The propagation time of sound in the fluid gives
rise to a time delay between the two bubbles. The system under study has the same linearization as the equations
previously studied, but the sophisticated nonlinear interaction terms in the bubble equations have been replaced
by a cubic term in order to provide first insights into the full bubble equations.

In particular, the system of coupled microbubbles has been witnessed to exhibit damped oscillation, excited
oscillations (i.e. a stable limit cycle created as a result of a supercritical Hopf bifurcation), and quasiperiodic
oscillations. These latter dynamics are unexplained by previous work, but it has been previously suggested
that these dynamics are the result of a Neimark-Sacker bifurcation. This work explores this possibility by
analyzing the dynamics of an analogous system by means of a center manifold reduction. However, in contrast
with previous work, this reduction will analyze the Hopf-Hopf bifurcation that results when two parameters
(corresponding to the speed of sound in the fluid and the delay propagation time) are varied.

1. Center Manifold Reduction

The system under analysis is motivated by the Rayleigh-Plesset Equation with Delay Coupling (RPE), as
studied by Heckman et al. [1] [2]. The equation of motion for a spherical bubble contains quadratic nonlinearities
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and multiple parameters quantifying the fluids’ mechanical properties ; the equations studied in this work are
designed to capture salient dynamical properties while simplifying analysis. The system is :

κẍ+ 4ẋ+ 4κx+ 10ẋ(t− T ) = εx3. (1)

Eq. (1) has the same linearization as the RPE, with a cubic nonlinear term added to it. This system has an
equilibrium point at x = 0 that will correspond to the local behavior of the RPE’s equilibrium point as a result.

In order to put Eq. (1) into a form amenable to treatment by functional analysis, we draw on the method
used by Kalmár-Nagy et al. [3] and Rand [4], [5]. The operator differential equation for this system will now be
developed. Eq. (1) may be written in the form :

ẋ(t) = L(κ)x(t) + R(κ)x(t− τ) + f(x(t),x(t− τ), κ)

where

x(t) =

(
x(t)
ẋ(t)

)
=

(
x1
x2

)
L(κ) =

(
0 1
−4 −4/κ

)
, R(κ) =

(
0 0
0 −10/κ

)
and

f(x(t),x(t− τ), κ) =

(
0

(ε/κ)x31

)
Note that the initial conditions to a differential delay equation consists of a function defined on −τ ≤ t ≤ 0.

As t increases from zero, the initial function on [−τ, 0] evolves to one on [−τ + t, t]. This implies the flow is
determined by a function whose initial conditions are shifting. In order to make the differential delay equation
problem tenable to analysis, it is advantageous to recast it in the context of functional analysis.

To accomplish this, we consider a function space of continuously differential functions on [−τ, 0]. The time
variable t specifies which function is being considered, namely the one corresponding to the interval [−τ + t, t].
The phase variable θ specifies a point in the interval [−τ, 0].

Now, the variable x(t + θ) represents the point in the function space which has evolved from the initial
condition function x(θ) at time t. From the point of view of the function space, t is now a parameter, whereas
θ is the independent variable. To emphasize this new definition, we write

xt(θ) = x(t+ θ), θ ∈ [−τ, 0].

The delay differential equation may therefore be expressed as

ẋt = Axt + F(xt), (2)

The linear mapping of the original equation is given by

L(φ(θ)) = L(κ)φ(0) + R(κ)φ(−τ)

where x(t) = φ(t) for t ∈ [−τ, 0], F : H → R2 is a nonlinear functional defined by

F(φ(θ)) = f(φ(0), φ(−τ)),

and where H = C([−τ, 0],R2) is the Banach space of continuously differentiable functions u =

(
u1
u2

)
from

[−τ, 0] into R2.

If κ∗ is the critical value of the bifurcation parameter, and noting that ∂xt(θ)
∂t = ∂xt(θ)

∂θ (which follows from
xt(θ) = x(t+ θ)), then when κ = κ∗ the operator differential equation has components
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Au(θ) =

{
d
dθu(θ) θ ∈ [−τ, 0)
Lu(0) + Ru(−τ) θ = 0

(3)

and

F(u(θ)) =

 0 θ ∈ [−τ, 0)(
0

(ε/κ)u1(0)3

)
θ = 0

(4)

Eqs. (3) and (4) are representations of eq. (1) in “canonical form.” They contain the corresponding linear
and nonlinear parts of eq. (1) as the boundary conditions to the full evolution equation (2).

A stability analysis of eq. (3) alone provides insight into the asymptotic stability of the original equations.
In the case when eq. (3) has neutral stability (i.e. has eigenvalues with real part zero), analysis of eq. (4) is
necessary. The purpose of the center manifold reduction is to project the dynamics of the infinite-dimensional
singular case onto a low-dimensional subspace on which the dynamics are more analytically tractable.

At a bifurcation, the critical eigenvalues of the operator A coincide with the critical roots of the characteristic
equation. In this system, the target of analysis is a Hopf-Hopf bifurcation, a codimension-2 bifurcation that has
a four-dimensional center manifold [6]. Consequently, there will be two pairs of critical eigenvalues ±iωa and
±iωb with real part zero. Each eigenvalue has an eigenspace spanned by the real and imaginary parts of its
corresponding complex eigenfunction. These eigenfunctions are denoted sa(θ), sb(θ) ∈ H.

The eigenfunctions satisfy

Asa(θ) = iωasa(θ)

Asb(θ) = iωbsb(θ);

or equivalently,

A(sa1(θ) + isa2(θ)) = iωa(sa1(θ) + isa2(θ)) (5)

A(sb1(θ) + isb2(θ)) = iωb(sb1(θ) + isb2(θ)) (6)

Equating real and imaginary parts in eq. (5) and eq. (6) gives

Asa1(θ) = −ωasa2(θ) (7)

Asa2(θ) = ωasa1(θ) (8)

Asb1(θ) = −ωbsb2(θ) (9)

Asb2(θ) = ωbsb1(θ). (10)

Applying the definition of A to eqs. (7)- (10) produces the differential equations

d

dθ
sa1(θ) = −ωasa2(θ) (11)

d

dθ
sa2(θ) = ωasa1(θ) (12)

d

dθ
sb1(θ) = −ωbsb2(θ) (13)

d

dθ
sb1(θ) = ωbsb1(θ) (14)
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with boundary conditions

Lsa1(0) + Rsa1(−τ) = −ωasa2(0) (15)

Lsa2(0) + Rsa2(−τ) = ωasa1(0) (16)

Lsb1(0) + Rsb1(−τ) = −ωbsb2(0) (17)

Lsb2(0) + Rsb2(−τ) = ωbsb1(0) (18)

The general solution to the differential equations (11)-(14) is :

sa1(θ) = cos(ωaθ)ca1 − sin(ωaθ)ca2

sa2(θ) = sin(ωaθ)ca1 + cos(ωaθ)ca2

sb1(θ) = cos(ωbθ)cb1 − sin(ωbθ)cb2

sb2(θ) = sin(ωbθ)cb2 + cos(ωbθ)cb2

where cαi =

(
cαi1
cαi2

)
. This results in eight unknowns which may be solved by applying the boundary conditions

(15)-(18). However, since we are searching for a nontrivial solution to these equations, they must be linearly
dependent. We set the value of four of the unknowns to simplify the final result :

ca11 = 1, ca21 = 0, cb11 = 1, cb21 = 0. (19)

This allows eqs. (15)-(18) to be solved uniquely, yielding

ca1 =

(
1
0

)
, ca2 =

(
0
ωa

)
, cb1 =

(
1
0

)
, cb2 =

(
0
ωb

)
.

Next, the vectors that span the dual space H∗ must be calculated. The boundary value problem associated
with this case has the same differential equations (11)-(14) except on nαi rather than on sαi ; in place of
boundary conditions (15)-(18), there are boundary conditions

LTna1(0) + RTna1(τ) = ωana2(0) (20)

LTna2(0) + RTna2(τ) = −ωana1(0) (21)

LTnb1(0) + RTnb1(τ) = ωbnb2(0) (22)

LTnb2(0) + RT sb2(τ) = −ωbnb1(0) (23)

The general solution to the differential equation associated with this boundary value problem is

na1(σ) = cos(ωaσ)da1 − sin(ωaσ)da2

na2(σ) = sin(ωaσ)da1 + cos(ωaσ)da2

nb1(σ) = cos(ωbσ)db1 − sin(ωbσ)db2

nb2(σ) = sin(ωbσ)db2 + cos(ωbσ)db2

Again, these equations are not linearly independent. Four more equations may be generated by orthonormal-
izing the nαi and sαj vectors (conditions on the bilinear form between these vectors) :
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(na1, sa1) = 1, (na1, sa2) = 0 (24)

(nb1, sb1) = 1, (nb1, sb2) = 0 (25)

where the bilinear form employed is (v,u) = vT (0)u(0) +
∫ 0

−τ v
T (ξ + τ)Ru(ξ)dξ.

Eqs. (11)-(14) combined with (20)-(25) may be solved uniquely for dαij in terms of the system parameters.
Using eqs. (19) as the values for cαi and substituting relevant values of the parameters κ∗ = 6.8916, τ∗ = 2.9811,
ωa = 1.4427, and ωb = 2.7726 to center the perturbation method at the Hopf-Hopf bifurcation yields

da1 =

(
0.4786
0.1471

)
, da2 =

(
−0.4079
0.1726

)
,

db1 =

(
0.1287
−0.1088

)
, db2 =

(
0.1570
0.0892

)

2. Flow on the Center Manifold

The solution vector xt(θ) may be understood as follows. The center subspace is four-dimensional and spanned
by the vectors sαi. The solution vector is decomposed into four components yαi in the sαi basis, but it also
contains a part that is out of the center subspace. This component is infinite-dimensional, and is captured by

the term w =

(
w1

w2

)
transverse to the center subspace. The solution vector may therefore be written as

xt(θ) = ya1(t)sa1(θ) + ya2(t)sa2(θ) + yb1(t)sb1(θ) + yb2(t)sb2(θ) + w(t)(θ)

Note that, by definition,

ya1(t) = (na1,xt)|θ=0 (26)

ya2(t) = (na2,xt)|θ=0 (27)

yb1(t) = (nb1,xt)|θ=0 (28)

yb2(t) = (nb2,xt)|θ=0 (29)

The nonlinear part of the operator is crucial for transforming the operator differential equation into the
canonical form described by Guckenheimer & Holmes. This nonlinear operator is

F(xt)(θ) = F(ya1(t)sa1 + ya2(t)sa2 + yb1(t)sb1 + yb2(t)sb2 + w(t))(θ)

=

 0 θ ∈ [−τ, 0)(
0

ε
κ (ya1ca11 + ya2ca21 + yb1cb11 + yb2cb21 + w1(t)(0))3

)
θ = 0

In order to derive the canonical form, we take d
dt of yαi(t) from eqs. (26)-(29) and carry through the differentiation

to the factors of the bilinear form. Noting that d
dtnαi = 0,
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ẏα1 = (nα1, ẋt)|θ=0 = (nα1,Axt + F(xt))|θ=0

= (nα1,Axt)|θ=0 + (nα1,F(xt))|θ=0

= (A∗nα1,xt)|θ=0 + (nα1,F(xt))|θ=0

= ωα(nα2,xt)|θ=0 + (nα1,F(xt))|θ=0

= ωαyα2 + nTα1(0)F

and similarly,

ẏα2 = −ωαyα1 + nTα2(0)F

where F = F(xt)(0) = F(ya1(t)sa1(0) + ya2(t)sa2(0) + yb1(t)sb1(0) + yb2(t)sb2(0) + w(t)(0)), recalling that
F = F(θ), and this notation corresponds to setting θ = 0. Substituting in the definition of nαi and F,

ẏa1 = ωaya2 +
εda12(ya1 + yb1 + w1)3

κ
(30)

ẏa2 = −ωaya1 +
εda22(ya1 + yb1 + w1)3

κ
(31)

ẏb1 = ωbya2 +
εdb12(ya1 + yb1 + w1)3

κ
(32)

ẏb2 = −ωbyb1 +
εdb22(ya1 + yb1 + w1)3

κ
(33)

where we have used eq. (19). Recall that the center manifold is tangent to the four-dimensional yαi center
subspace at the origin and w may be approximated by a quadratic in yαi. Therefore, the terms w1 in eqs. (30)-
(33) may be neglected, as their contribution is greater than third order, which had previously been neglected.
To analyze this eqs. (30)-(33), a van der Pol transformation is applied :

ya1(t) = ra(t) cos(ωat+ θa(t))

ya2(t) = −ra(t) sin(ωat+ θa(t))

yb1(t) = rb(t) cos(ωbt+ θb(t))

yb2(t) = −rb(t) sin(ωbt+ θb(t))

transforms the coupled differential equations (30)-(33) into

ṙa =
ε

κ
(cos(tωa + θa)ra + cos(tωb + θb)rb)

3(da12 cos(tωa + θa)− da22 sin(tωa + θa)) (34)

θ̇a =
−ε
κra

(cos(tωa + θa)ra + cos(tωb + θb)rb)
3(da22 cos(tωa + θa) + da12 sin(tωa + θa)) (35)

ṙb =
ε

κ
(cos(tωa + θa)ra + cos(tωb + θb)rb)

3(db12 cos(tωb + θb)− db22 sin(tωb + θb)) (36)

θ̇b =
−ε
κrb

(cos(tωa + θa)ra + cos(tωb + θb)rb)
3(db22 cos(tωb + θb) + db12 sin(tωb + θb)) (37)
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By averaging the differential equations (34)-(37) over a single period of tωα + θα, the θα dependence of the
ṙα equations may be eliminated. Note that ωa and ωb are non-resonant frequencies, so averages may be taken
independently of one another.

ωa
2π

∫ θa+
2π
ωa

θa

ṙadt =
3

8

ε

κ
da12ra(2r2b + r2a)

ωb
2π

∫ θb+
2π
ωb

θb

ṙbdt =
3

8

ε

κ
db12rb(2r

2
a + r2b )

According to Guckenheimer & Holmes, the normal form for a Hopf-Hopf bifurcation in polar coordinates is

dra(t)

dt
= µara + a11r

3
a + a12rar

2
b +O(|r|5)

drb(t)

dt
= µbrb + a22r

3
b + a21rbr

2
a +O(|r|5)

dθa(t)

dt
= ωa +O(|r|2)

dθb(t)

dt
= ωb +O(|r|2)

where µi = <dλi(τ
∗)

dτ , and τ∗ is the critical time-delay for the Hopf-Hopf bifurcation (note that this bifurcation
is of codimension 2, so both τ = τ∗ and κ = κ∗ at the bifurcation). Taking the derivative of the characteristic

equation with respect to τ and solving for dλ(τ)
dτ gives

dλ(τ)

dτ
=

5λ(τ)2

5 + 2 exp(τλ(τ))− 5τλ(τ) + exp(τλ(τ))κλ(τ)
.

Letting λ(τ) = iωα(τ) and substituting in τ = τ∗, κ = κ∗, as well as ωa and ωb respectively yields

µa = −0.1500∆ (38)

µb = 0.2133∆ (39)

where ∆ = τ − τ∗. This results in the equations for the flow on the center manifold :

ṙa = −0.1500∆ra + 0.0080ra(2r2b + r2a) (40)

ṙb = 0.2133∆rb − 0.0059rb(2r
2
a + r2b ) (41)

To normalize the coefficients and finally obtain the flow on the center manifold in normal form, let ra =
ra
√

0.0080 and rb = rb
√

0.0059, resulting in :

ṙa = −0.1500∆ra + r3a + 2.7042rar
2
b

ṙb = 0.2133∆rb − 1.4792r2arb − r3b

This has quantities a11 = 1, a22 = −1, a12 = 2.7042, and a21 = −1.4792, which implies that this Hopf-Hopf
bifurcation has the unfolding illustrated in Figure 1.
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Figure 1. Partial bifurcation set and phase portraits for the unfolding of this Hopf-Hopf
bifurcation. Figure reproduced from Guckenheimer & Holmes [6] Figure 7.5.5. Note that the
labels A : µb = a21µa, B : µb = µa(a21 − 1)/(a12 + 1), C : µb = −µa/a12.
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Figure 2. Comparison of predictions for the amplitudes of limit cycles bifurcating from the
Hopf-Hopf point in eq. (1) obtained by (a) numerical continuation of eq. (1) using the software
DDE-BIFTOOL (blue solid lines) and (b) center manifold reduction, eqs. (42), (43) (red dashed
lines).

For the calculated aij , the bifurcation curves in Figure 1 become A : µb = −1.4792µa, B : µb = −.6992µa,
and C : µb = −.3697µa. From eqs. (38)-(39), system (1) has µb = −1.422µa for the given parameter values.
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Comparison with Figure 1 shows that this implies the system exhibits two unstable limit cycles and an unstable
quasiperiodic motion when ∆ > 0. We note that the center manifold analysis is local and is expected to be valid
only in the neighborhood of the origin.

For comparison, the center manifold reduction eqs. (40), (41) predict three solutions bifurcating from the
Hopf-Hopf (the trivial solution notwithstanding) :

(ra, rb) =



(√
18.7446∆, 0

)
(42)(

0,
√

36.0238∆
)

(43)(√
17.7649∆,

√
0.4899∆

)
(quasiperiodic motion) (44)

Figure 2 shows a plot of these results along with those obtained from numerical continuation of the original
system (1) with the software package DDE-BIFTOOL [7]. The two methods are shown to agree. Note that only
the two limit cycles are plotted for comparison.

3. Conclusion

This work explored the center manifold reduction of a Hopf-Hopf bifurcation in a nonlinear differential delay
equation. When analyzing a system of coupled oscillators that separately undergo Hopf bifurcation, there exists
the possibility of the full system to undergo this codimension 2 bifurcation. In doing so, a wealth of sophisticated
dynamics may arise that are not immediately anticipated, for instance the quasiperiodic motions. This work
has served to rigorously show that a system inspired by the physical application of delay-coupled microbubble
oscillators exhibits quasiperiodic motions because in part of the occurrence of a Hopf-Hopf bifurcation.
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