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Abstract

Models of evolutionary dynamics are often approached via the
replicator equation, which in its standard form is given by
ẋi = xi ( fi (x)−φ) , i = 1, . . . ,n, where xi is the frequency of strat-
egy i, fi is its fitness, and φ = ∑n

i=1 xi fi is the average fitness. A
game-theoretic aspect is introduced to the model via the payoff
matrix A by taking fi(x) = (A · x)i. This model is based on the
exponential model of population growth, ẋi = xi fi, with φ intro-
duced in order both to hold the total population constant and to
model competition between strategies. We analyze the dynam-
ics of analogous models for the replicator equation of the form
ẋi = g(xi)( fi −φ), for selected growth functions g.

©2013 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

The field of evolutionary dynamics combines game theory with ordinary differential equations to
model Darwinian evolution via competition between adaptive strategies. A common approach [1]
uses the replicator equation, which modifies the exponential model of population growth, ẋi = xi fi,
where fi is the fitness of strategy i, by introducing the average fitness over all strategies, φ . The
change in the relative abundance, xi, is then

ẋi = xi( fi −φ), (1)

where φ is chosen so that {x ∈ Rn : ∑xi = 1,0 ≤ xi ≤ 1} is an invariant manifold. This means that
∑ ẋi = 0, so

φ = ∑xi fi
∑xi

= ∑xi fi. (2)
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In essence, φ acts as a coupling term that introduces dependence on the abundance and fitness of
other strategies.

In this work, we generalize the replicator model by replacing the base model ẋi = xi fi by ẋi =
g(xi) fi, where g is a natural growth function. The replicator equation for each strategy becomes

ẋi = g(xi)( fi −φ), (3)

where φ is now a modified average fitness, again chosen so that ∑xi = 1.
The game-theoretic component of this model lies in the choice of fitness functions. Take the

payoff matrix A, whose (i, j)-th entry is the expected reward for strategy i when it competes with
strategy j. The fitness fi of strategy i is then (A · x)i, where x ∈ Rn is the vector of frequencies xi.
In this work, we use a payoff matrix representing a game analogous to rock-paper-scissors (RPS):
there are three strategies, each of which has an advantage versus one other and a disadvantage
versus the third. Each strategy is neutral versus itself.

Analysis of the resulting dynamical system is presented. We find that for the logistic model

g(x) = x−ax2, (4)

with appropriate choices of the parameter a, there are multiple fixed points of the system that do
not exist in the usual model g(x) = x. We will show that when A is chosen so that the RPS game is
zero-sum, there are 13 equilibria: one neutrally stable equilibrium with all three strategies surviving;
three saddle points with all three strategies surviving; three saddles with only one surviving strategy;
and three attracting and three repelling fixed points where two strategies survive. The system
exhibits both periodic motion and convergence to attractors. We analyze the symmetries of this
system, and its bifurcations as the entries of A vary.

This alternate formulation may be useful in modeling natural or social systems that are not
adequately described by the usual replicator dynamics.

2 Derivation

Let us review the usual replicator dynamics. We have fi = fi (x), where fi (x) = (A · x)i, where A is
the payoff matrix. The average payoff is thus φ = ∑i xi fi, and the change in frequency of strategy i
is given by the product of the frequency xi and its payoff relative to the average. In this model, all
population-dependence of the effectiveness (hence growth rate) of strategy i is accounted for by fi.
However, we wish our fitness functions fi to represent the game-theoretic payoff of individual-level
competition. We therefore include some of the population dependence in a growth function g(xi);
this represents the growth rate of the raw population using strategy i, in the absence of competition.
Thus the expected population-level payoff of strategy i is g(xi) fi, and the average population-level
payoff is

φ = ∑i g(xi) fi
∑i g(xi)

. (5)

We require that in this model, φ (and hence ẋ) is only defined for growth functions g such that
the denominator does not vanish for any x in the region of interest. With that caveat, using this
definition of φ , the replicator equation becomes

ẋi = g(xi)( fi−φ) , i = 1, . . . ,n. (6)
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We can verify that

∑
i

ẋi = ∑
i

g(xi)( fi −φ)

= ∑
i

g(xi) fi−∑
i

g(xi)
∑i g(xi) fi
∑i g(xi)

= 0 (7)

so the total population over all strategies is constant, and it is valid to say that each xi represents the
frequency of strategy i. We will use the term relative abundance for xi whenever there is ambiguity
between xi and the time-frequency of any periodic motion in the dynamics.

3 Rock-Paper-Scissors

We consider the game-theoretic case in which n = 3 and fi is given by fi (x) = (A · x)i, where A is the
payoff matrix

A =

⎛
⎝ 0 −1 +1

+1 0 −1
−1 +1 0

⎞
⎠ , (8)

representing a zero-sum rock-paper-scissors game. That is, writing (x1,x2,x3) as (x,y,z),

f1 = z− y, f2 = x− z, f3 = y− x. (9)

We note that this model has been shown to be relevant to biological applications [2], [3], and to
social interactions [4]. Note that the dynamics of the 3-strategy game takes place on the triangle
in R

3 (in fact, the three-dimensional simplex)

Σ =
{
(x,y,z) ∈ R

3 : x+ y+ z = 1 and x,y,z ≥ 0
}

. (10)

Therefore we can eliminate z using z = 1− x− y. This reduces the problem to two dimensions,
so that Eq. (6) becomes

ẋ =
g(x) ((1−3y)g(1− x− y)+ (2−3x−3y)g(y))

g(x)+g(y)+g(1− x− y)
(11)

ẏ = −g(y) ((1−3x)g(x)+ (2−3x−3y)g(1− x− y))
g(x)+g(y)+g(1− x− y)

(12)

where we have used φ as defined in Eq. (5). This vector field is defined on the projection of Σ onto
the x− y plane. We will refer to this region as

T = {(x,y) : (x,y,1− x− y) ∈ Σ} . (13)

Note that since Σ, the region of interest for the three-dimensional flow, is confined to a plane in R
3,

the projection down to T loses no information. See Fig. 1.
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Fig. 1 A curve in Σ and its projection in T .

4 Choices of growth function

4.1 Taking g(xi) = xi/(1+axi)

First, consider the case where the growth function is given by g(xi) = xi
1+axi

. This growth function
increases monotonically in xi, leading to dynamics that are qualitatively similar to the standard
g(xi) = xi case. We find that Eqs. (11) and (12) become

ẋ =
−x(−1+ x+2y)(−1+3ay(−1+ x+ y)

−1+3a2xy(−1+ x+ y)+2a(x2 + x(−1+ y)+ (−1+ y)y))
, (14)

ẏ =
y(−1+2x+ y)(−1+3ax(−1+ x+ y))

−1+3a2xy(−1+ x+ y)+2a(x2 + x(−1+ y)+ (−1+ y)y)
. (15)

Solving ẋ = ẏ = 0, we find that the equilibria are located at the corners of T ,

(x,y) = (0,0),(0,1),(1,0)

and at its center,

(x,y) = (
1
3
,
1
3
).

Evaluating the Jacobian at each of these points and examining its eigenvalues, we find that the
three corner points are saddles, with λ1,2 =±1. The point

(
1
3 ,

1
3

)
is a linear center, with λ1,2 =± i

√
3

a+3 .
See Figs. 2 and 3.

As in the case of the standard replicator equation [3], when g(x) = x/(1+ax), the linear center
is surrounded by closed periodic orbits. (Although this claim is presented without proof, we will
prove it in the next case, g(x) = x−ax2. The proof in this case is largely identical.)
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Fig. 2 Vector field in T for the standard replicator equation g(x) = x. The horizontal axis is x and the
vertical axis is y.
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Fig. 3 Vector field in T for g(x) = x/(1+ax) with a = 100. The axes are as above.

4.2 Taking g(xi) = xi−ax2
i

The previous choice of g(xi) did not generate qualitatively different behavior from the usual replica-
tor dynamics. However, it turns out that new behavior occurs when we use g(x) = x−ax2 obtained
by truncating the Maclaurin series

x
1+ax

= x
∞

∑
n=0

(−ax)n (16)

after the x2 term.
Thus we consider the case where the growth function is given by g(xi) = xi−ax2

i . This represents
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the assumption that in the absence of competition, population xi would experience logistic growth.
In this case, Eqs. (11) and (12) become

ẋ =
x(ax−1) (x+2y−1)(a(1+3y(y−1)+ x(3y−1))−1)

a
(
x2 + y2 +(1− x− y)2

)
−1

(17)

ẏ = −y(ay−1) (y+2x−1)(a(1+3x(x−1)+ y(3x−1))−1)

a
(
x2 + y2 +(1− x− y)2

)
−1

(18)

The denominators vanish when

x2 + y2 +(1− x− y)2 =
1
a
. (19)

We reject values of a for which Eq. (19) holds for any (x,y) ∈ T . This happens for a ∈ [1,3], so we
stipulate that 0 ≤ a < 1 or a > 3. Geometrically, the vector field in T is undefined for values of a
such that the sphere x2 + y2 + z2 = 1

a intersects Σ, Eq. (10).
This system has 13 equilibrium points:

• The corners of T
(x,y) = (0,0),(0,1),(1,0)

• The center of T

(x,y) =
(

1
3
,
1
3

)

• Two points on each of the edges x = 0, y = 0 and z = 0

(x,y) =
(

0,
1
a

)
,

(
0,

a−1
a

)

(x,y) =
(

1
a
,0

)
,

(
a−1

a
,0

)

(x,y) =
(

1
a
,
a−1

a

)
,

(
a−1

a
,
1
a

)

• Three points on lines that pass through the center of T

(x,y) =
(

1
a
,
1
a

)
,

(
1
a
,
a−2

a

)
,

(
a−2

a
,
1
a

)

Figure 4 shows the location of the equilibria. For 0 ≤ a < 1, only the corners and the center
point lie in T , equation (13), and the dynamics are qualitatively similar to the Rock-Paper-Scissors
game with standard replicator dynamics. Evaluating the Jacobian of [ẋ, ẏ] at each equilibrium and
computing the eigenvalues, we find that

(
1
3 ,

1
3

)
is a linear center and the corner points are saddles.

When (x,y) = (1
3 ,

1
3),

J =
a−3

9

(
1 2
−2 −1

)
⇒ λ1,2 =

±i(a−3)
3
√

3
(20)
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Fig. 4 Location in the (x,y) plane of the 13 equilibria for g(x) = x−ax2 as a varies from a = 0.1 to a = 10.
As discussed in the text, for a > 3 all 13 equilibrium points lie in the region of interest T .
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Fig. 5 Vector field in T for a = 1
5 .

and when (x,y) = (0,0),

J =
(

1 0
0 −1

)
⇒ λ1,2 = ±1. (21)

The stability calculations for the other two corner points are similar. Figure 5 shows the vector
field and equilibria for a = 1

5 .
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For a > 3, the dynamics are more interesting. All 13 equilibria lie in T . By symmetry, the
three equilibria which lie on lines through the center must be of the same type; similarly, the two
equilibria on the edge x = 0 must be of the same types as their counterparts on the other two edges.

(x,y) =
(

1
a
,
1
a

)
⇒ (22)

J =
( 3

a −1 0
0 1− a

3

)
⇒ λ1,2 = ±

(
3
a
−1

)

(x,y) =
(

0,
1
a

)
⇒ (23)

J =
(

1− 3
a 0

0 1

)
⇒ λ1 = 1, λ2 = 1− 3

a

(x,y) =
(

0,1− 1
a

)
⇒ (24)

J =
( 3

a −1 0
− 3

a −1

)
⇒ λ1 = −1, λ2 =

3
a
−1.

Thus the interior equilibria are saddles, and there is a source and a sink on each edge.
Figures 6 and 7 exhibit another feature of this system: in addition to the boundaries of T , the

lines x = 1
a , y = 1

a and x+y = 1− 1
a are also invariant, and for a > 3, portions of these lines fall within

T . Substituting x = 1
a into Eq. (17), we obtain

ẋ = 0

ẏ =

(
y−ay2

)(
y+ 2

a −1
)(

a
(
1+ 3

a

(
1
a −1

)
+ y

(
3
a −1

))−1
)

a
(
(1

a )2 + y2 +
(
1− 1

a − y
)2

)
−1

.
(25)

Similarly, taking y = 1
a gives ẏ = 0. To see that x + y = 1− 1

a is an invariant line, we take
y = 1− x− 1

a , so that

ẋ =
x(a−3)(1+a(x−1)) (2+a(x−1))(ax−1)

a
(
x2 +

(
1− x− 1

a

)2 +
(

1
a

)2
)
−1

(26)

ẏ = −x(a−3)(1+a(x−1))(2+a(x−1)) (ax−1)

a
(
x2 +

(
1− x− 1

a

)2 +
(

1
a

)2
)
−1

(27)

and ẋ+ ẏ = 0.
Notice that there appear to be periodic orbits about the equilibrium

(
1
3 ,

1
3

)
, moving in the

opposite direction from before. We will examine this phenomenon more thoroughly in the next
section.

5 Further examination of the g(xi) = xi−ax2
i case

We have observed that the
(

1
3 ,

1
3

)
equilibrium is a linear center, and the orbits about it appear to

be periodic. To verify this, we show that there is a degenerate Hopf bifurcation in the more general
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Fig. 6 Vector field in T for a = 5.
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Fig. 7 Equilibrium points and invariant lines of the system for a = 5.

system

ẋi = g(xi) ( fi−φ (x)) = g(xi)((A · x)i −φ (x)) , (28)

where the payoff matrix is

A =

⎛
⎝ 0 −a2 b3

b1 0 −a1

−a3 b2 0

⎞
⎠ (29)
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and φ (x) is defined as before. We substitute this choice of A into Eq. (28), take the Jacobian, and
find that when (x,y,z) =

( 1
3 ,

1
3 ,

1
3

)
and a1 = · · · = b3 = 1, the eigenvalues are

λ1,2 = ± i(a−3)
3
√

3
, λ3 = 0. (30)

Thus there is a Hopf bifurcation at this point in the parameter space, as we might expect from the
standard replicator equation [5].

To show that the Hopf bifurcation is in fact degenerate, we follow [6]. First we project the
system into the (x,y) plane as before, and make the coordinate translation

(x,y) = (u+
1
3
,v+

1
3
) (31)

to move the bifurcation to the origin. We then write the system as
(

u̇
v̇

)
= J

(
u
v

)
+

(
f (u,v)
g(u,v)

)
(32)

Then we make a coordinate transformation u = 2r, v = −r− s
√

3. This gives the normal form
(

ṙ
ṡ

)
=

(
0 −ω
ω 0

)(
r
s

)
+

(
h(r,s)
k(r,s)

)
(33)

where ω = (a−3)/3
√

3, and h and k are not listed for brevity. Finally, we substitute the resulting
nonlinear parts into the equation for the cubic stability coefficient (see [6] pp. 150–155)

c =
1
16

[hrrr +hrss + krrs + ksss] (34)

+
1

16ω
[hrs(hrr +hss)− krs(krr + kss)−hrrkrr +hsskss]

and find that c = 0. Thus the bifurcation is degenerate.
Generically, as the parameters a1, . . . ,b3 pass through the critical value a1 = · · · = b3 = 1, the

equilibrium point at (x,y) =
(

1
3 , 1

3

)
changes from a stable focus to an unstable focus. In what follows

we will show that this happens without the appearance of a traditional limit cycle. The family
of periodic orbits associated with any Hopf bifurcation will be shown in this case to occur at the
critical value, so that the space is filled with closed orbits.

5.1 Further symmetries

We have seen that the Hopf bifurcation is degenerate to at least third order. However, it is possible
to show by a symmetry argument that the degeneracy extends to all orders, and the orbits inside
the region bounded by the invariant lines are periodic.

Note that the flow in Fig. 6 appears conservative in the central region (i.e. all integral curves
are closed). However, it is not conservative, as shown by the existence of attracting fixed points.
The occurrence of periodic orbits is due to symmetry, not conservative dynamics, as we will now
demonstrate.



Wesson, Rand/Journal of Applied Nonlinear Dynamics 2(2) (2013) 193–206 203

uv

w

x

y

z

Fig. 8 The unit vectors x, y, z, u, v and w shown with a curve in Σ.

u

v r

Θ

Fig. 9 Polar coordinates (r,θ ) on Σ. The w direction is out of the page.

To show this, we define (ẋ, ẏ, ż) using Eq. (6) with the usual zero-sum RPS payoff matrix and
g(x) = x−ax2. We do not eliminate z, but instead define coordinates

⎛
⎝ u

v
w

⎞
⎠ =

⎛
⎜⎜⎝

−
√

2
3

1√
6

1√
6

0 − 1√
2

1√
2

1√
3

1√
3

1√
3

⎞
⎟⎟⎠

⎛
⎝x

y
z

⎞
⎠ . (35)

This is an orthogonal linear transformation such that the plane containing Σ is orthogonal to
the w direction, as shown in Figs. 8 and 9. In these coordinates, the point (x,y,z) =

(
1
3 ,

1
3 , 1

3

)
is

(u,v,w) =
(
0,0, 1√

3

)
, and ẇ = 0, so the dynamics can be analyzed in terms of u and v only with no

loss of information or symmetry.
Next, we transform (u,v) into polar coordinates (r,θ) via

u = rcosθ , v = r sinθ . (36)
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Fig. 10 Boundary of Σ, invariant lines, and equilibrium points for a = 5, in the (θ ,r) plane.
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Fig. 11 Vector field in (θ ,r) plane for 0 < θ < 2π
3 and a = 5. Boundaries of Σ and invariant lines shown.

Applying the two successive coordinate changes Eqs. (35) and (36) to Eq. (28) and solving for
ṙ and θ̇ , we obtain

ṙ = − r2 sin(3θ)
6(3ar2 +a−3)

(
√

2(a−3)(2a−3)+3
√

3a2r3 cos(3θ)) (37)

θ̇ = − 1
18(3ar2 +a−3)

(9
√

3a2r4 cos2(3θ)+
√

3(a−3)(9ar2 +2a−6) (38)

+3r
√

2(2a−3)(3ar2 +a−3)cos(3θ)).

Since θ appears only in terms of cos(3θ) and sin(3θ), we see that the vector field is periodic in θ
with period 2π

3 . Figures 10 and 11 show the boundaries of Σ and the vector field in the (θ ,r) plane.
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Fig. 12 If r0 �= r1, then Trajectory A and Trajectory C must cross.

Finally we show that the central region of Σ is filled with periodic orbits. Notice that ṙ is odd,
and θ̇ is even, considered as functions of θ . So, if we let

ψ = −θ , τ = −t (39)

then

dr
dτ

∣∣∣∣
(r,ψ)

=
dr

d(−t)

∣∣∣∣
(r,−θ )

=
dr
dt

∣∣∣∣
(r,θ )

(40)

dψ
dτ

∣∣∣∣
(r,ψ)

=
d(−θ)
d(−t)

∣∣∣∣
(r,−θ )

=
dθ
dt

∣∣∣∣
(r,θ )

. (41)

Thus if there is a trajectory (Trajectory A) that starts at (r,θ) = (r0,0) at t = 0 and goes through
(r,θ) =

(
r1,

2π
3

)
at t = t1, then there is a matching trajectory (Trajectory B) that starts at (r,ψ) =

(r0,0) at τ = 0 and goes through (r,ψ) =
(
r1,

2π
3

)
at τ = t1.

By the definitions of ψ and τ , Trajectory B in terms of θ starts at (r,θ) =
(
r1,− 2π

3

)
at t = −t1

and goes through (r,θ) = (r0,0) at t = 0. (A schematic of these trajectories is shown in Fig. 12.)
Since ṙ and θ̇ are autonomous (hence invariant under translations in time) and 2π

3 -periodic
in θ , there is a trajectory (Trajectory C) that starts at (r,θ) = (r1,0) at t = 0 and goes through
(r,θ) = (r0,

2π
3 ) at t = t1.

In order for this to occur, if r0 �= r1, Trajectory A and Trajectory C must cross. This cannot
happen since ṙ and θ̇ are well-defined functions. Therefore r0 = r1, and we see that all trajectories
that pass through both θ = 0 and θ = 2π

3 are in fact closed orbits.
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6 Conclusion

We have investigated the dynamics of certain systems of the form

ẋi = g(xi) ( fi−φ)

where fi(x) = (A ·x)i. For g(x) = x−ax2, and the zero-sum RPS choice of A, we find that the system
has several fixed points that do not exist in the usual replicator model. It exhibits both periodic
motion and convergence to attractors.

This alternate formulation may be instructive in modeling natural or social systems that are
not adequately described by the usual replicator dynamics. In particular, this model may apply to
systems that exhibit both monotonic and periodic responses depending on initial conditions.
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