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Abstract

Evolutionary dynamics combines game theory and nonlinear dynam-
ics to model competition in biological and social situations. The
replicator equation is a standard paradigm in evolutionary dynamics.
The growth rate of each strategy is its excess fitness: the deviation of
its fitness from the average. The game-theoretic aspect of the model
lies in the choice of fitness function, which is determined by a payoff
matrix. Previous work by Ruelas and Rand investigated the Rock-
Paper-Scissors replicator dynamics problem with periodic forcing of
the payoff coefficients. This work extends the previous to consider
the case of quasiperiodic forcing. This model may find applications
in biological or social systems where competition is affected by cycli-
cal processes on different scales, such as days/years or weeks/years.
We study the quasiperiodically forced Rock-Paper-Scissors problem
using numerical simulation, and Floquet theory and harmonic bal-
ance. We investigate the linear stability of the interior equilibrium
point; we find that the region of stability in frequency space has frac-
tal boundary.

©2015 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

The field of evolutionary dynamics combines game theory and nonlinear dynamics to model population
shifts due to competition in biological and social situations. One standard paradigm [1, 2] uses the
replicator equation,

ẋi = xi( fi(x)−φ), i = 1, . . . ,n (1)

where xi is the frequency, or relative abundance, of strategy i; the unit vector x is the vector of
frequencies; fi(x) is the fitness of strategy i; and φ is the average fitness, defined by

φ = ∑
i

xi fi(x). (2)

The replicator equation can be derived [3] from an exponential model of population growth,

ξ̇i = ξi fi, i = 1, . . . ,n. (3)
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where ξi is the population of strategy i, assuming that fi depends only on the frequencies: fi = fi(x).
The derivation consists of a simple change of variables: xi ≡ ξi/p where p = ∑i ξi is the total population.

The game-theoretic component of the replicator model lies in the choice of fitness functions. Define
the payoff matrix A = (ai j) where ai j is the expected reward for a strategy i individual vs. a strategy
j individual. We assume the population is well-mixed, so that any individual competes against each
strategy at a rate proportional to that strategy’s frequency in the population. Then the fitness fi is
the total expected payoff for strategy i vs. all strategies:

fi(x) = (Ax)i = ∑
j

ai jx j. (4)

In this work, we generalize the replicator model to systems in which the payoff coefficients are
quasiperiodic functions of time. Previous work by Ruelas and Rand [4,5] investigated the Rock-Paper-
Scissors replicator dynamics problem with periodic forcing of the payoff coefficients. We also consider a
forced Rock-Paper-Scissors system. The quasiperiodically forced replicator model may find applications
in biological or social systems where competition is affected by cyclical processes on different scales,
such as days/years or weeks/years.

2 The model

2.1 Rock-Paper-Scissors games with quasiperiodic forcing

Rock-Paper-Scissors (RPS) games are a class of three-strategy evolutionary games in which each strat-
egy is neutral vs. itself, and has a positive expected payoff vs. one of the other strategies and a negative
expected payoff vs. the remaining strategy. The payoff matrix is thus

A =

⎛
⎝ 0 −b2 a1

a2 0 −b3

−b1 a3 0

⎞
⎠ . (5)

We perturb off of the canonical case, a1 = · · · = b3 = 1, by taking

A =

⎛
⎝ 0 −1−F(t) 1 +F(t)

1 0 −1
−1 1 0

⎞
⎠ , (6)

where the forcing function F is given by

F(t) = ε((1−δ )cosω1t + δ cos ω2t). (7)

For ease of notation, write (x1,x2,x3) = (x,y,z). The dynamics occur in the simplex

S ≡ {(x,y,z) ∈ R |x,y,z ∈ [0,1],x+ y+ z = 1}, (8)

but since x,y,z are the frequencies of the three strategies, and hence x+ y+ z = 1, we can eliminate z
using z = 1− x− y. Therefore, the region of interest is T , the projection of S into the x− y plane:

T ≡ {(x,y) ∈ R |x,y,x+ y ∈ [0,1]}. (9)

See Figure 1. Thus the replicator equation (1) becomes

ẋ = −x(x+ 2y−1)(1 + (x−1)F(t)), (10)
ẏ = y(2x+ y−1− x(x+ 2y−1)F(t)). (11)
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Fig. 1 A curve in S and its projection in T .

Note that ẋ = 0 when x = 0, ẏ = 0 when y = 0, and

ẋ+ ẏ = (x+ y−1)(xF(t)(x+ 2y−1)− x+ y) (12)

so that ẋ+ ẏ = 0 when x+ y = 1, which means that x+ y = 1 is an invariant manifold. This shows that
the boundary of T is invariant, so trajectories cannot escape the region of interest.

It is known [6] that in the unperturbed case (ε = 0) there is an equilibrium point at (x,y) = (1
3 , 1

3),
and the interior of T is filled with periodic orbits. We see from Equations (10) and (11) that this interior
equilibrium point persists when ε �= 0. Numerical integration suggests that the Lyapunov stability of
motions around the equilibrium point depends sensitively on the values of ω1 and ω2. See Figure 2.
We investigate the stability of the interior equilibrium using Floquet theory and harmonic balance, as
well as by numerical methods.

2.2 Linearization

To study the linear stability of the equilibrium point, we set x = u+ 1
3 , y = v+ 1

3 , substitute these into
(10) and (11) and linearize, to obtain

u̇ = −1
9

(u+ 2v)(3 + 2F(t)), (13)

v̇ =
1
9

(F(t)(u+ 2v) + 3(2u+ v)). (14)

The linearized system (13)-(14) can also be written [7] as a single second-order equation on u, by
differentiating (13) and substituting in expressions for v̇ from (14) and v from (13). This gives us

g(t)ü− ġ(t)u̇− 1
9
g2(t)u = 0, (15)

where
g(t) = −3−2F(t) = −3−2ε((1−δ )cosω1t + δ cosω2t). (16)

Now that we have a linear system with coefficients that are functions of time, we use Floquet theory
to determine the stability of the origin.



134 Elizabeth Wesson, Richard Rand /Journal of Applied Nonlinear Dynamics 4(2) (2015) 131–140

0 100 200 300 400 500 600 700
t

0.2

0.4

0.6

0.8

1.0
x

(a) ω1 = ω2 = 1.2

0 100 200 300 400 500 600 700
t

0.2

0.4

0.6

0.8

1.0
x

(b) ω1 = ω2 = 0.9

Fig. 2 Numerical solutions for x(t) with identical initial conditions x(0) = y(0) = 0.33 and parameters
ε = 0.9,δ = 0.6, but with different ω1,ω2.

3 Floquet theory

Floquet theory is concerned with systems of differential equations of the form

dx
dt

= M(t)x, M(t +T ) = M(t). (17)

We have the system (13) and (14), which can be written as
[

u̇
v̇

]
=

1
9

[
g(t) 2g(t)

1
2 (9−g(t)) −g(t)

][
u
v

]
≡ B(t)

[
u
v

]
, (18)

where g(t) is as in (16).
In general, B(t) is not periodic, since ω1 and ω2 are rationally independent. However, the set of

points for which ω1 and ω2 are rationally dependent is dense in the ω1−ω2 plane, and solutions of (18)
must vary continuously with ω1 and ω2, so it is reasonable to consider only the case that F(t), and
hence g(t) and B(t), are in fact periodic.

Assume that ω2 = a
bω1 in lowest terms, where a and b are relatively prime integers. Then we can

make the change of variables τ = ω1t, so ω2t = a
bτ . Since a and b are relatively prime, we see that F,

and hence g and B, have period T = 2πb in τ . Thus (18) becomes
[

u′

v′

]
=

1
ω1

B(τ)
[

u
v

]
, B(τ + 2πb) = B(τ), (19)

where u′ indicates du/dτ . This has the same form as (17), so we can apply the results of Floquet theory.
Suppose that there is a fundamental solution matrix of (19),

X(τ) =
[

u1(τ) u2(τ)
v1(τ) v2(τ)

]
, (20)

where [
u1(0)
v1(0)

]
=
[

1
0

]
,

[
u2(0)
v2(0)

]
=
[

0
1

]
. (21)
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Then the Floquet matrix is C = X(T ) = X(2πb), and stability is determined by the eigenvalues of C:

λ 2 − (trC)λ + detC = 0. (22)

We can show [8] that detC = 1, as follows. Define the Wronskian

W (τ) = detX(τ) = u1(τ)v2(τ)−u2(τ)v1(τ). (23)

Notice that W (0) = detX(0) = 1. Then taking the time derivative of W and using (19) gives

dW
dτ

= u′1(τ)v2(τ) +u1(τ)v′2(τ)−u′2(τ)v1(τ)−u2(τ)v′1(τ)

=
1

9ω1
(g(τ)(u1 + 2v1)v2 +

1
2
u1(9u2 − (u2 + 2v2)g(τ)) (24)

−g(τ)(u2 + 2v2)v1 − 1
2
u2(9u1 − (u1 + 2v1)g(τ))) = 0.

This shows that W (τ) = 1 for all τ , and in particular W (T ) = detC = 1. Therefore,

λ =
trC±√

trC2 −4
2

, (25)

which means [8] that the transition between stable and unstable solutions occurs when |trC| = 2, and
this corresponds to periodic solutions of period T = 2πb or 2T = 4πb.

Given the period of the solutions on the transition curves in the ω1 −ω2 plane, we use harmonic
balance to approximate those transition curves.

4 Harmonic balance

We seek solutions to (15) of period 4πb in τ :

u =
∞

∑
k=0

αk cos(
kτ
2b

) + βk sin(
kτ
2b

). (26)

Since ω2 = a
bω1 where a and b are relatively prime, any integer k can be written as na+ mb for some

integers n and m [9, 10]. That is, there is a one-to-one correspondence between integers k and ordered
pairs (m,n). We can therefore write the solution as

u =
∞

∑
m=0

∞

∑
n=−∞

αmn cos(
ma+nb

2b
τ) + βmn sin(

ma+nb
2b

τ) (27)

=
∞

∑
m=0

∞

∑
n=−∞

αmn cos(
mω2 +nω1

2
t) + βmn sin(

mω2 +nω1

2
t). (28)

We substitute a truncated version of (28) into (15), expand the trigonometric functions and collect like
terms. This results in cosine terms whose coefficients are functions of the αmn, and sine terms whose
coefficients are functions of the βmn. Let the coefficient matrices of these two sets of terms be Q and
R, respectively. In order for a nontrivial solution to exist, the determinants of both coefficient matrices
must vanish [8]. We solve the equations detQ = 0 and detR = 0 for relations between ω1 and ω2. This
gives the approximate transition curves seen in Figure 3.

It has been shown [4,7] that in a periodically forced RPS system (i.e. δ = 0 in our model) there are
tongues of instability emerging from ω1 = 2/n

√
3 in the ω1 − ε plane. Our harmonic balance analysis
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Fig. 3 Transition curves predicted by harmonic balance with −5 ≤ m ≤ 5, 0 ≤ n ≤ 5 for various values of ε.

is consistent with this: we observe bands of instability around ω1 = 2/
√

3 and ω2 = 2/
√

3, which get
broader as ε increases. We also see narrower regions of instability along the lines nω1 +mω2 = 2/

√
3,

for each n,m used in the truncated solution (28).
Thus the boundary of the region of instability exhibits self-similarity when we consider ω1,ω2 ∈

[0,21−k] for k = 0,1, . . . .



Elizabeth Wesson, Richard Rand /Journal of Applied Nonlinear Dynamics 4(2) (2015) 131–140 137

5 Numerical integration

In order to check the results of the harmonic balance method, we generate an approximate stability
diagram by numerical integration of the linearized system (15).

For randomly chosen parameters (ω1,ω2) ∈ [0,2], we choose random initial conditions (u(0), u̇(0))
on the unit circle - since the system is linear, the amplitude of the initial condition needs only to be
consistent between trials. We then integrate the system for 1000 time steps using ode45 in Matlab.
This is an explicit Runge-Kutta (4,5) method that is recommended in the Matlab documentation for
most non-stiff problems. We considered a motion to be unstable if max |u(t)| > 10. The set of points
(ω1,ω2) corresponding to unstable motions were plotted using matplotlib.pyplot in Python. See
Figure 4. Each plot in Figure 4 contains approximately 5×104 points.

We note that the unstable regions given by numerical integration appear to be consistent with
the transition curves predicted by harmonic balance (Figure 3). The regions of instability around
ω1 = 2/

√
3 and ω2 = 2/

√
3 are visible for all tested values of ε and δ , and as ε increases, more tongues

of the form nω1 +mω2 = 2/
√

3 become visible.

6 Lyapunov exponents

A second, and more informative, numerical approach for determining stability is the computation
of approximate Lyapunov exponents. This is a measure of a solution’s rate of divergence from the
equilibrium point [11], and is defined as

λ = limsup
t→∞

1
t

ln |u(t)|. (29)

If the limit is finite, then u(t) ∼ eλt or smaller as t → ∞. A positive Lyapunov exponent indicates that
the solution is unstable.

We do not find any negative Lyapunov exponents, but note [8] that the system (15) can be converted
to a Hill’s equation

z̈− z(
4g(t)3 + 27ġ(t)2 −18g(t)g̈(t)

36g(t)2 ) = 0 (30)

by making the change of variables u =
√

g(t)z. Since
√

g(t) is bounded, u is bounded if and only if z is
bounded. And since there is no dissipation in (30), stable solutions correspond to λ = 0.

We approximate the Lyapunov exponents numerically by integrating as above, and taking

λ ≈ sup
900<t<1000

1
t

ln |u(t)|. (31)

See Figure 5. The shape of the unstable region is the same as in Figure 4, but this method allows us
to see a sharp increase in unstable solutions’ rate of growth along the line ω1 = ω2.

7 Conclusion

The replicator equation with quasiperiodic perturbation may be used to model biological or social
systems where competition is affected by cyclical processes on different scales. We have investigated
the linear stability of the interior equilibrium point for RPS systems with quasiperiodic perturbation,
using Floquet theory and harmonic balance, as well as numerical integration and numerical computation
of Lyapunov exponents. We find that stability depends sensitively on the frequencies ω1 and ω2, and
that the region of instability in the ω1 −ω2 plane exhibits self-similarity.
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(a) ε = 0.5, δ = 0.6 (b) ε = 0.9, δ = 0.6

(c) ε = 1.3, δ = 0.6 (d) Detail view: ε = 1.3, δ = 0.6

Fig. 4 Plots of unstable points in the (ω1,ω2) plane for various values of ε.
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(a) ε = 0.5, δ = 0.6. Contours between λ = 0 and λ = 0.04. (b) ε = 0.9, δ = 0.6. Contours between λ = 0 and λ = 0.08.

(c) ε = 1.3, δ = 0.6. Contours between λ = 0 and λ = 0.12. (d) Detail view: ε = 1.3, δ = 0.6. Contours as in (c).

Fig. 5 Contour plot of Lyapunov exponents in the (ω1,ω2) plane for various values of ε.
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