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ẍ1 + x1 − ε(1− x21)ẋ1 = εαẋ2(t− T ) (1)

ẍ2 + x2 − ε(1− x22)ẋ2 = εαẋ1(t− T ) (2)
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I. Introduction

In a recent paper by Sah and Rand [4], it was shown that a class of nonlinear 
oscillators with delayed self-feedback gave rise via a perturbation solution to a DDE 
slow flow. An exact solution was obtained to the DDE slow flow and was compared to 
the approximate solution resulting from the common approach of replacing the delayed 
variables in the slow flow with non-delayed variables, thereby replacing the DDE slow
flow with an easier to solve ODE slow flow.

The paper by Sah and Rand [4] was motivated by numerous papers in the 
literature of nonlinear dynamics in which the DDE slow flow is replaced by an 
approximate ODE slow flow, for example [1], [2], [5].

In particular, in 2002 Wirkus and Rand wrote a paper entitled \The Dynamics of 
Two Coupled van der Pol Oscillators with Delay Coupling" [5] in which averaging was 
used to derive a slow flow which governed the stability of the in-phase mode. In 
studying the resulting slow flow, Wirkus and Rand replaced certain delayed quantities 
with non-delayed versions in order to simplify the analysis. In this paper we reexamine 
the previously studied system with the idea of leaving the delayed quantities in the slow 
flow.

II. Delay-Coupled Van Der Pol Oscillators

The governing equations are:
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Dynamics of Two Coupled Van der Pol Oscillators with Delay Coupling Revisited

This system admits an in-phase mode in which 𝑥𝑥1 = 𝑥𝑥2 = 𝑦𝑦(𝑡𝑡) where

In order to investigate the stability of  the  in - phase mode y (t),  we will first obtain an 
approximate expression for it using Lindstedt's method. We replace independent variable 

t by stretched time :

so that eq.(3) becomes:

where primes represent differentiation with respect to   . We expand   in a power series in
,

and substitute (6) into (5). After collecting terms, we get

We take the solution of (7) to be

and substitute (9) into (8), giving

Removing secular terms in (10), we obtain

Thus the in-phase mode                    ), the stability of which is desired, is given 
by the approximation

III. Stability of the in-Phase Mode

In order to study the stability of the motion (12), we set

where and are deviations off of the in-phase mode ).  Substituting (13)  
into (1) and (2) and using (3), we obtain the following equations on and , linearized 
about 

Equations (14) and (15) can be uncoupled by setting

ÿ + y − ε(1− y2)ẏ = εαẏ(t− T

τ

τ = ωt, where ω = 1 + εk +O(ε2

ω2y′′ + y − ε(1− y2)ωy′ = εαωy′(τ − ωT

y = y0 + εy1 + · · ·

(

(

(

τ y
ε

y′′0 + y0

y′′1 + y1 = −2ky′′0 + (1− y20)y′0 + αy′0(τ − T

= 0 (7)

(

y0 = R cos τ

y′′1 + y1 = (2kR + αR sinT ) cos τ + (−R +
R3

4
− αR cosT ) sin τ +

R3

4
sin(3τ) (10)

k = −α
2

sinT and R = 2
√

1 + α cosT

x1 = x2 = y(t

y(t) = R cosωt = 2
√

1 + α cosT cos
(

1− α

2
ε sinT

)
t

x1 = y(t) + w1 and x2 = y(t) + w2

w1 w2 x1 =x2= y(t
w1 w2

w1 = w2 = 0:

ẅ1 + (1 + 2εyẏ)w1 − ε(1− y2)ẇ1 = εαẇ2(t− T

ẅ2 + (1 + 2εyẏ)w2 − ε(1− y2)ẇ2 = εαẇ1(t− T

(

(

z1 = w1 + w2 and z2 = w1 − w2

Notes

(3)

(4)

(5)

(6)

(8)

(9)

(11)

(12)

(13)

(14)

(15)

(16)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Dynamics of Two Coupled Van der Pol Oscillators with Delay Coupling Revisited

The only difference between these two equations is the sign of the right-hand side, which 
may be absorbed into a new coefficient, call it , which equals either 1 or -1:

where for = 1 and for −1. In eq.(19), is given by eq.(12). In order 
to study the boundedness of solutions to eq.(19), we return to using as independent 
variable, where sin :

We study (20) by using the two variable perturbation method [3]. We let       and         ,
giving:

where sin T and where we have neglected 
terms of        . Now we expand                             and collect terms, giving:

We take the solution of (22) in the form

Note that where

Substituting (24),(25) into (23) and eliminating secular terms gives the slow flow

The slow flow (26),(27) is a system of linear delay-differential equations (DDEs). A 
common approach to treating such a system is to replace the delayed variables by non-
delayed variables, as in and . To support such a step, it is often argued 
that since a Taylor expansion gives , the replacement of by 

is an approximation valid for small [1],[2],[4]. Let us follow this procedure and see 
what we get, and then compare results with what we would get by treating the system as 
a DDE.
Replacing and by and , we obtain the ODE system:

Giving

z̈1 + (1 + 2εyẏ)z1 − ε(1− y2)ż1 = εαż1(t− T ) (17)

z̈2 + (1 + 2εyẏ)z2 − ε(1− y2)ż2 = −εαż2(t− T ) (18)

β

ü+ (1 + 2εyẏ)u− ε(1− y2)u̇ = εβαu̇(t− T

u = z1 β u = z2 β = y(t (

τ=ωt
ω = 1− α

2
ε T

ξ=τ

(

ω2u′′ + (1 + 2εωyy′)u− ε(1− y2)ωu′ = εβαωu′(τ − ωT ) (20)

ω2(uξξ + 2uξη) + (1 + 2εωyyξ)u− ε(1− y2)ωuξ = εβαωuξ(ξ − ωT, η − εωT ) (21)

y(ξ) = R cos ξ, R = 2
√

1 + α cosT , ω = 1 − α
2
ε

η = ετ

O(ε2

( u = u0 + εu1 +O(ε2

(

u0ξξ + u0 = 0 (22)

u1ξξ + u1 = −2u0ξη − α sinT u0ξξ + 8(1 + α cosT ) cos ξ sin ξ u0

−4(1 + α cosT ) cos2 ξ u0ξ + αβu0ξ(ξ − T, η − εT ) (23)

u0 = A(η) cos ξ +B(η) sin ξ (24)

u0(ξ − T, η − εT ) = Ad cos(ξ − T ) +Bd sin(ξ − T )

Ad = A(η − εT ) and Bd = B(η − εT ) (25)

dA

d η
= −A− 3αA cosT

2
+
αB sinT

2
+
αAd β cosT

2
− αβ Bd sinT

2
(26)

dB

d η
= −αA sinT

2
− αB cosT

2
+
αAd β sinT

2
+
αβ Bd cosT

2
(27)

Ad = A Bd = B
A(η − εT ) = A(η) +O(ε (

Ad
A ε

Ad Bd A B

d

dη

A
B

)
=

−1 + α
2
(β − 3) cosT α

2
(1− β) sinT

−α
2
(1− β) sinT −α

2
(1− β) cosT

)(
A
B

)
(28)) )
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Dynamics of Two Coupled Van der Pol Oscillators with Delay Coupling Revisited

This system of ODEs exhibits both Hopf and saddle-node bifurcations. The Hopf 
bifurcations occur when the trace = −1 − 3 cos = 0 with positive determinant, i.e. 
when

Hopf bifurcations:

The saddle-node bifurcations occur when the determinant = 
= 0, i.e. when

Now let us consider the other case, = +1. In this case the ODE system (28) becomes:

From eq.(11) we see that the amplitude of the in-phase mode, whose stability we 
are  investigating,  is given by . Inspection of (32) shows that that 
system exhibits the birth of the in-phase mode when

birth of the in-phase mode:

We note that all of the bifurcations  (30),(31),(33) were  observed  by Wirkus  and 
Rand [5] in their original work on this system.

In what follows, we return to the DDE system (26)-(27), but we do not make the 
simplifying assumption of replacing by and by . In order to treat the DDE 
system, we set:

where and are constants. We are particularly interested in the effect of the DDE slow 
flow on Hopf bifurcations, eq.(30). Thus we restrict ourselves to the case = 1, 
whereby we obtain the following pair of algebraic equations on and :

For a nontrivial solution, the determinant must vanish:

Recall from eqs.(17)-(19) that there are two cases, = +1 and = −1. In the case 
that = −1, the system (28) becomes:

β β
β

d

dη

A
B

)
=

−1− 2α cosT α sinT
−α sinT −α cosT

)(
A
B

)
(29)) )

α T

α = − 1

3 cosT
(30)

α2 + α cosT + α2 cos2

T

saddle-node bifurcations: α = 0 and α = − cosT

1 + cos2 T
(31)

β

R = 2
√

1 + α cosT

α = − 1

cosT
(33)

Ad A Bd B

A = Peλη, B = Qeλη, Ad = Peλ(η−εT ), Bd = Qeλ(η−εT ) (34)

P Q
β −

P Q

−α e−λ ε T cosT
2

− 3α cosT
2
− λ− 1 α e−λ ε T sinT

2
+ α sinT

2

−α e−λ ε T sinT
2

− α sinT
2

−α e−λ ε T cosT
2

− α cosT
2
− λ

)(
P
Q

)
=

0
0

)
(35)))

α cosT λ e−ε T λ − α2 sin2 T e−ε T λ

2
+
α cosT e−ε T λ

2
+ α2 e−ε T λ

+
α2 e−2 ε T λ

4
+ λ2 + 2α cosT λ+ λ− α2 sin2 T

2
+
α cosT

2
+

3α2

4
= 0 (36)

© 2017  Global Journals Inc.  (US)
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=
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Dynamics of Two Coupled Van der Pol Oscillators with Delay Coupling Revisited

Separating (36) into real and imaginary parts and collecting like powers of allows 
us to obtain the following expressions:

often made approximation based on replacing the delayed variables in the slow flow with 
non-delayed variables.

In the case of the ODE system (29), we obtained the conditions for a Hopf 
bifurcation, namely that there be a pair of pure imaginary eigenvalues, by requiring the 
trace of the matrix (29) to be zero. In the case of the DDE system (26), (27), we seek a 
Hopf bifurcation by setting in (36).
We seek a solution to (36) in the form of a perturbation series in by expanding

λ = iΩ

T = T0 + εT1 + ε2T2 + · · · (37)

Ω = Ω0 + εΩ1 + ε2Ω2 + · · · (38)

ε

ε

cosT0 = − 1

3α
(39)

Ω0 =

√
9α2 − 2

3
(40)

T1 = −
√

9α2 − 1T0

9
(41)

Ω1 = −(18α2 − 5) T0

54
√

9α2 − 2
(42)

T2 =

√
9α2 − 1 (27α2 − 6) T0

2 + (162α4 − 36α2 + 2) T0

1458α2 − 162
(43)

Ω2 =

√
9α2−2

(
(−8019α6+ 5346α4−1206α2+ 91)T0

2+
√

9α2−1 (648α4−324α2+ 40)T0

)
157464α4 − 69984α2 + 7776

(44)

IV. Results and Conclusions

To summarize our treatment of the original coupled van der Pol eqs.(1),(2), we 
first used Lindstedt's method to obtain an approximate expression for the in-phase mode, 
eq.(12). Then we studied the stability of the in-phase mode by applying the two variable 
perturbation method to eq.(20). This resulted in the DDE slow flow (26), (27). We 
investigated this system of equations in two ways:
1) First we followed a number of other works [1],[2],[4] by replacing the delayed variables

and by non-delayed variables and . This resulted in a system of ODEs (28) 
which possessed Hopf and saddle-node bifurcations, in agreement with the earlier work 
of Wirkus and Rand [5].

2) Then we treated the slow flow system (26),(27) as DDEs which resulted in a 
transcendental characteristic equation (36) which is harder to solve than the more 
familiar polynomial characteristic equations of ODEs. We sought a series solution 
(37), (38) and obtained the results listed in eqs.(39)-(44).

Ad Bd A B

The results are plotted in Fig.1 where we show the critical delay for Hopf 
bifurcation versus coupling strength for = 0.5. The dashed curve is the analytical THopf α ε
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For  =0 and = 1 the DDE system (26), (27) reduces to the ODE system (29), 
which exhibits a Hopf bifurcation (30) when .  By determining the location 

of the associated Hopf bifurcation in (36) for 0 we may assess the accuracy of the 

ε β −
α = − 1

3 cosT

ε >



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Dynamics of Two Coupled Van der Pol Oscillators with Delay Coupling Revisited

DDEs (26)-(27) and is the value given by the n-term truncation of eq.(37). We also 
note that the maximum in all three cases was attained at = 1.

The dash-dot curve and the solid curve correspond to the analytical approximations 
respectively given by 2- and 3-term truncations of eq.(37). The + signs represent stability 
transitions obtained by numerical integration of the DDEs (26)-(27).

The comparison between the various approximations for the critical delay for Hopf 
bifurcation shown in Fig.1 is further explored in Table 1, where we list the errors 
obtained using 1-, 2- and 3-term truncations of eq.(37) compared to values obtained by 
numerical integration of the DDEs (26)-(27). The maximum error is computed over the 
set 1]. (Here is chosen because is a point of intersection 
of the bifurcation curves and , compare eqs.(30),(31).) We consider 

absolute error relative error , and percent error

100%, where is the value we get by numerical integration of the 

α ∈ [
√
2
3
, α=

√
2
3

α, T ) = (
√
2
3
, 3π

4
( (

α=− cosT
1+cos2 T

α=− 1
3 cosT

max
α∈[

√
2
3
, 1]

|T (α)−Tn(α)|, max
α∈[

√
2
3
, 1]

|T (α)−Tn(α)
T (α)

|

max
α∈[

√
2
3
, 1]

|T (α)−Tn(α)
T (α)

|× T (α (

Tn(α (

α
As previously noted, replacing the delay terms in the slow flow (26),(27) by non 

delayed variables means that we take only the first term in eq.(37) and = 1. In this 
case, the error incurred by omitting the delay terms in the slow flow is generally about 3 
to 15% for small values of . On the other hand, the 3-term truncation of eq.(37) typically 
has the percent error less than 1%.

n

ε

Figure 1: Critical delay for Hopf bifurcation versus 𝛼𝛼 for 𝜀𝜀 = 0.5. Dashed curve is the 
analytical approximation based on replacing the delay terms in the slow flow (26), (27) 
by non-delayed variables, as in Ad = A and Bd = B. Thus the dashed curve corresponds 
to 𝜀𝜀 = 0. The dash-dot curve and the solid curve correspond to the analytical 
approximations respectively given by 2- and 3-term truncations of eq.(37). The + signs 
represent stability transitions obtained by numerical integration of the DDEs (26)-(27).
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approximation based on replacing the delay terms in the slow flow (26),(27) by non-
delayed variables, as in and . Thus the dashed curve corresponds to = 0. Ad = A Bd =B ε
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Table 1: Errors in critical delay for Hopf bifurcation produced by 1-, 2- and 3-term 
truncations of eq.(37) as compared to values obtained by numerical integration of the 

slow flow (26)-(27). The errors  are  defined  as absolute  error , 

relative error ,  and percent error , where 

is the value we get by numerical integration of the DDEs (26)-(27) and is the 
value given by the n-term truncation of eq.(37).
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ε = 0.1 ε = 0.3 ε = 0.5
n terms in (37) n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
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