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Abstract

A delay differential equation (DDE) which exhibits a double
Hopf or Hopf-Hopf bifurcation [1] is studied using both Lindst-
edt’s method and center manifold reduction. Results are checked
by comparison with a numerical continuation program (DDE-
BIFTOOL). This work has application to the dynamics of two
interacting microbubbles.
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1 Introduction

Delay in dynamical systems is exhibited whenever the system’s behavior is dependent at least in
part on its history. Many technological and biological systems are known to exhibit such behav-
ior; coupled laser systems, high-speed milling, population dynamics and gene expression are some
examples of delayed systems. This work analyzes a simple differential delay equation that is moti-
vated by a system of two microbubbles coupled by acoustic forcing, previously studied by Heckman
et al. [2–5]. The propagation time of sound in the fluid gives rise to a time delay between the two
bubbles. The system under study has the same linearization as the equations previously studied,
and like them it supports a double Hopf or Hopf-Hopf bifurcation [1] for special values of the system
parameters. In order to study the dynamics associated with this type of bifurcation, we replace
the nonlinear terms in the original microbubble model with a simpler nonlinearity, namely a cubic
term:

κ ẍ+4ẋ+4κx+10ẋd = εx3. (1)
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where xd = x(t −T).
The case of a typical Hopf bifurcation (not a double Hopf) in a system of DDEs has been

shown to be treatable by both Lindstedt’s method and center manifold analysis [6,7]. The present
paper investigates the use of these methods on a DDE which exhibits a double Hopf. This type
of bifurcation occurs when two pairs of complex conjugate roots of the characteristic equation
simultaneously cross the imaginary axis in the complex plane. These considerations are dependent
only on the linear part of the DDE. If nonlinear terms are present, multiple periodic limit cycles
may occur, and in addition to these, quasiperiodic motions may occur, where the quasiperiodicity
is due to the two frequencies associated with the pair of imaginary roots in the double Hopf.

Other researchers have investigated Hopf-Hopf bifurcations, as follows. Xu et al. [8] developed
a method called the perturbation-incremental scheme (PIS) and used it to study bifurcation sets
in (among other systems) the van der Pol-Duffing oscillator. They show a robust method for
approximating complex behavior both quantitatively and qualitatively in the presence of strong
nonlinearities. A similar oscillator system was also studied by Ma et al. [9], who applied a center
manifold reduction and found quasiperiodic solutions born out of a Neimark-Sacker bifurcation.
Such quasiperiodicity in differential-delay equations is well established and has also been studied
by e.g. Yu et al. [10,11] by investigating Poincaré maps. They also show that chaos naturally evolves
via the breakup of tori in the phase space. A study of a general differential delay equation near a
nonresonant Hopf-Hopf bifurcation was conducted by Buono et al. [12], who also gave a description
of the dynamics of a differential delay equation by means of ordinary differential equations on center
manifolds.

In this work we analyze a model problem using both Lindstedt’s method and center manifold
reduction, and we compare results with those obtained by numerical methods, i.e. continuation
software.

2 Lindstedt’s Method

A Hopf-Hopf bifurcation is characterized by a pair of characteristic roots crossing the imaginary
axis at the same parameter value. In order to obtain approximations for the resulting limit cycles,
we will first use a version of Lindstedt’s method which perturbs off of simple harmonic oscillators.
Then the unperturbed solution will have the form:

x0 = Acosτ +Bsinτ

where
τ = ωit, i = 1,2

where iω1 and iω2 are the associated imaginary characteristic roots.
The example system under analysis is motivated by the Rayleigh-Plesset Equation with Delay

Coupling (RPE), as studied by Heckman et al. [2,3]. The equation of motion for a spherical bubble
contains quadratic nonlinearities and multiple parameters quantifying the fluids’ mechanical prop-
erties; Equation (1), the object of study in this work, is designed to capture the salient dynamical
properties of the RPE while simplifying analysis.

Equation (1) has the same linearization as the RPE, with a cubic nonlinear term added to it.
This system has an equilibrium point at x = 0 that will correspond to the local behavior of the
RPE’s equilibrium point as a result.
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For ε = 0, equation (1) exhibits a Hopf-Hopf bifurcation with approximate parameters [4]:

κ = 6.8916, T = T ∗ = 2.9811,

ω1 = ωa = 1.4427, ω2 = ωb = 2.7726

where ωa,ωb are values of ωi at the Hopf-Hopf. As usual in Lindstedt’s method we replace t by τ
as independent variable, giving

κω2x′′ +4ωx′ +4κx+10ωx′d = εx3

where ω stands for either ω1 or ω2. Next we expand x in a power series in ε :

x = x0 + εx1 + · · ·

and we also expand ω :
ω = ω∗ + ε p+ · · ·

We expect the amplitude of oscillation and the frequency shift p to change in response to a detuning
of delay T off of the Hopf-Hopf value T ∗:

T = T ∗ + εΔ

For the delay term we have:
xd = x0d + εx1d + · · ·

where

x0d (τ) = x0(τ −ωT)
= x0(τ − (ω∗+ ε p)(T ∗ + εΔ))
= x0(τ −ω∗T ∗)− ε(pT ∗ + ω∗Δ)x′0(τ −ω∗T ∗)+ · · ·

Differentiating,

x′d = x′0(τ −ω∗T ∗)− ε(pT ∗ + ω∗Δ)x′′0(τ −ω∗T ∗)+ εx′1(τ −ω∗T ∗)+ · · ·

We introduce the following abbreviation for a delay argument:

f (∗) = f (τ −ω∗T ∗)

Then
x′d = x′0(∗)− ε(pT ∗+ ω∗Δ)x′′0(∗)+ εx′1(∗)+ · · ·

Next we substitute the foregoing expressions into the Eq. (1) which gives

κ(ω∗ + ε p)2(x′′0 + εx′′1)+4(ω∗ + ε p)(x′0 + εx′1)+4κ(x0 + εx1)

+10(ω∗ + ε p)(x′0(∗)− ε(pT ∗ + ω∗Δ)x′′0(∗)+ εx′1(∗)) = εx3
0

and collect terms, giving:
ε0 : Lx0 = 0
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where
L f (τ) = κω∗2 f ′′ +4ω∗ f ′ +4κ f +10ω∗ f ′(∗)

ε1 : Lx1 = −G(x0)

and
G(x0) = 2κω∗px′′0 +4px′0 +10px′0(∗)−10ω∗(pT ∗ + ω∗Δ)x′′0(∗)− x3

0

Next we solve Lx0 = 0 for the delayed quantity x′0(∗) with the idea of replacing it in G by
non-delayed quantities. We find

x′0(∗) = − 1
10ω∗

{
κω∗2x′′0 +4ω∗x′0 +4κx0

}

Since G contains the quantity x′′0(∗), we differentiate the foregoing formula to obtain:

x′′0(∗) = − 1
10ω∗

{
κω∗2x′′′0 +4ω∗x′′0 +4κx′0

}

We obtain

G(x0) = 2κω∗px′′0 +4px′0 −
p

ω∗ (κω∗2x′′0 +4ω∗x′0 +4κx0)

+ (pT ∗ + ω∗Δ)(κω∗2x′′′0 +4ω∗x′′0 +4κx′0)− x3
0

= κω∗px′′0 −
4κ p
ω∗ x0 +(pT ∗ + ω∗Δ)(κω∗2x′′′0 +4ω∗x′′0

+4κx′0)− x3
0

Now we take x0 = Acosτ and require the coefficients of cosτ and sinτ in G to vanish for no
secular terms. We obtain:

cosτ : A(−κω∗p− 4κ p
ω∗ +(pT ∗ + ω∗Δ)(−4ω∗)− 3

4
A2) = 0

sinτ : A(pT ∗ + ω∗Δ)(κω∗2 −4κ) = 0

The second of these gives

p = −ω∗

T ∗ Δ

whereupon the first gives

A2 = − 4
3ω∗κ p(ω∗2 +4)

which may be rewritten using the foregoing expression for p:

A2 =
4

3T ∗κ(ω∗2 +4)Δ

Using κ = 6.8916 and T ∗ = 2.9811, we obtain:

A2 = 3.0823(ω∗2 +4)Δ

This gives
A = 4.3295

√
Δ for ωa = 1.4427

and
A = 6.0020

√
Δ for ωb = 2.7726
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3 Center Manifold Reduction

We now approach the same problem via a center manifold reduction method, wherein the critical
dynamics of Eq. (1) at the Hopf-Hopf bifurcation are analyzed by seeking a four-dimensional center
manifold description corresponding to the codimension-2 Hopf-Hopf.

In order to put Eq. (1) into a form amenable to treatment by functional analysis, we draw on
the method used by Kalmár-Nagy et al. [13] and Rand [6,7]. The operator differential equation for
this system will now be developed. Equation (1) may be written in the form:

ẋ(t) = L(κ)x(t)+R(κ)x(t− τ)+ f(x(t),x(t− τ),κ)

where

x(t) =
(

x(t)
ẋ(t)

)
=

(
x1

x2

)

L(κ) =
(

0 1
−4 −4/κ

)
, R(κ) =

(
0 0
0 −10/κ

)

and

f(x(t),x(t − τ),κ) =
(

0
(ε/κ)x3

1

)

Note that the initial conditions to a differential delay equation consists of a function defined
on −τ ≤ t ≤ 0. As t increases from zero, the initial function on [−τ ,0] evolves to one on [−τ + t, t].
This implies the flow is determined by a function whose initial conditions are shifting. In order to
make the differential delay equation problem tenable to analysis, it is advantageous to recast it in
the context of functional analysis.

To accomplish this, we consider a function space of continuously differential functions on [−τ ,0].
The time variable t specifies which function is being considered, namely the one corresponding to
the interval [−τ + t, t]. The phase variable θ specifies a point in the interval [−τ ,0].

Now, the variable x(t + θ) represents the point in the function space which has evolved from
the initial condition function x(θ) at time t. From the point of view of the function space, t is now
a parameter, whereas θ is the independent variable. To emphasize this new definition, we write

xt(θ) = x(t + θ), θ ∈ [−τ ,0].

The delay differential equation may therefore be expressed as

ẋt = A xt +F (xt), (2)

If κ∗ is the critical value of the bifurcation parameter, and noting that ∂xt(θ )
∂ t = ∂xt(θ )

∂θ (which
follows from xt(θ) = x(t +θ)), then when κ = κ∗ the operator differential equation has components

A u(θ) =
{

d
dθ u(θ), θ ∈ [−τ ,0),
Lu(0)+Ru(−τ), θ = 0,

(3)

and

F (u(θ)) =

⎧⎨
⎩

0, θ ∈ [−τ ,0),(
0

(ε/κ)u1(0)3

)
, θ = 0.

(4)
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The linear mapping of the original equation is given by

L (φ(θ)) = L(κ)φ(0)+R(κ)φ(−τ)

where x(t) = φ(t) for t ∈ [−τ ,0], F : H → R
2 is a nonlinear functional defined by

F(φ(θ)) = f(φ(0),φ(−τ)),

and where H = C([−τ ,0],R2) is the Banach space of continuously differentiable functions u =
(u1,u2)T from [−τ ,0] into R

2.
Equations (3) and (4) are representations of Eq. (1) in “canonical form.” They contain the

corresponding linear and nonlinear parts of Eq. (1) as the boundary conditions to the full evolution
equation (2).

A stability analysis of Eq. (3) alone provides insight into the asymptotic stability of the original
equations. In the case when Eq. (3) has neutral stability (i.e. has eigenvalues with real part zero),
analysis of Eq. (4) is necessary. The purpose of the center manifold reduction is to project the
dynamics of the infinite-dimensional singular case onto a low-dimensional subspace on which the
dynamics are more analytically tractable.

At a bifurcation, the critical eigenvalues of the operator A coincide with the critical roots of
the characteristic equation. In this system, the target of analysis is a Hopf-Hopf bifurcation, a
codimension-2 bifurcation that has a four-dimensional center manifold [14]. Consequently, there
will be two pairs of critical eigenvalues ±iωa and ±iωb with real part zero. Each eigenvalue has
an eigenspace spanned by the real and imaginary parts of its corresponding complex eigenfunction.
These eigenfunctions are denoted sa(θ),sb(θ) ∈ H .

The eigenfunctions satisfy

A sa(θ) = iωasa(θ),
A sb(θ) = iωbsb(θ);

or equivalently,

A (sa1(θ)+ isa2(θ)) = iωa(sa1(θ)+ isa2(θ)), (5)
A (sb1(θ)+ isb2(θ)) = iωb(sb1(θ)+ isb2(θ)). (6)

Equating real and imaginary parts in Eqs. (5) and (6) gives

A sa1(θ) = −ωasa2(θ), (7)
A sa2(θ) = ωasa1(θ), (8)
A sb1(θ) = −ωbsb2(θ), (9)
A sb2(θ) = ωbsb1(θ). (10)

Applying the definition of A to Eqs. (7)–(10) produces the differential equations

d
dθ

sa1(θ) = −ωasa2(θ), (11)

d
dθ

sa2(θ) = ωasa1(θ), (12)

d
dθ

sb1(θ) = −ωbsb2(θ), (13)

d
dθ

sb1(θ) = ωbsb1(θ), (14)
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with boundary conditions

Lsa1(0)+Rsa1(−τ) = −ωasa2(0), (15)
Lsa2(0)+Rsa2(−τ) = ωasa1(0), (16)
Lsb1(0)+Rsb1(−τ) = −ωbsb2(0), (17)
Lsb2(0)+Rsb2(−τ) = ωbsb1(0). (18)

The general solution to the differential equations (11)–(14) is:

sa1(θ) = cos(ωaθ)ca1 − sin(ωaθ)ca2,

sa2(θ) = sin(ωaθ)ca1 + cos(ωaθ)ca2,

sb1(θ) = cos(ωbθ)cb1 − sin(ωbθ)cb2,

sb2(θ) = sin(ωbθ)cb2 + cos(ωbθ)cb2,

where cα i = (cα i1,cα i2)T . This results in eight unknowns which may be solved by applying the
boundary conditions (15)–(18). However, since we are searching for a nontrivial solution to these
equations, they must be linearly dependent. We set the value of four of the unknowns to simplify
the final result:

ca11 = 1, ca21 = 0, cb11 = 1, cb21 = 0. (19)

This allows Eqs. (15)–(18) to be solved uniquely, yielding

ca1 =
(

1
0

)
, ca2 =

(
0

ωa

)
, cb1 =

(
1
0

)
, cb2 =

(
0

ωb

)
.

Next, the vectors that span the dual space H ∗ must be calculated. The boundary value problem
associated with this case has the same differential equations (11)–(14) except on nα i rather than
on sα i; in place of boundary conditions (15)–(18), there are boundary conditions

LTna1(0)+RTna1(τ) = ωana2(0), (20)

LTna2(0)+RTna2(τ) = −ωana1(0), (21)

LTnb1(0)+RTnb1(τ) = ωbnb2(0), (22)

LT nb2(0)+RT sb2(τ) = −ωbnb1(0). (23)

The general solution to the differential equation associated with this boundary value problem
is

na1(σ) = cos(ωaσ)da1 − sin(ωaσ)da2,

na2(σ) = sin(ωaσ)da1 + cos(ωaσ)da2,

nb1(σ) = cos(ωbσ)db1 − sin(ωbσ)db2,

nb2(σ) = sin(ωbσ)db2 + cos(ωbσ)db2.

Again, these equations are not linearly independent. Four more equations may be generated by
orthonormalizing the nα i and sα j vectors (conditions on the bilinear form between these vectors):

(na1,sa1) = 1, (na1,sa2) = 0, (24)
(nb1,sb1) = 1, (nb1,sb2) = 0, (25)
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where the bilinear form employed is (v,u) = vT (0)u(0)+
´ 0
−τ vT (ξ + τ)Ru(ξ )dξ .

Equations (11)–(14) combined with Eqs. (20)–(25) may be solved uniquely for dα i j in terms of
the system parameters. Using Eqs. (19) as the values for cα i and substituting relevant values of
the parameters κ∗ = 6.8916, τ∗ = 2.9811, ωa = 1.4427, and ωb = 2.7726 [4] yields

da1 =
(

0.4786
0.1471

)
, da2 =

(−0.4079
0.1726

)
,

db1 =
(

0.1287
−0.1088

)
, db2 =

(
0.1570
0.0892

)
.

4 Flow on the Center Manifold

The solution vector xt(θ) may be understood as follows. The center subspace is four-dimensional
and spanned by the vectors sα i. The solution vector is decomposed into four components yα i in
the sα i basis, but it also contains a part that is out of the center subspace. This component is
infinite-dimensional, and is captured by the term w = (w1,w2)T transverse to the center subspace.
The solution vector may therefore be written as

xt(θ) = ya1(t)sa1(θ)+ ya2(t)sa2(θ)+ yb1(t)sb1(θ)+ yb2(t)sb2(θ)+w(t)(θ).

Note that, by definition,

ya1(t) = (na1,xt)|θ=0, (26)
ya2(t) = (na2,xt)|θ=0, (27)
yb1(t) = (nb1,xt)|θ=0, (28)
yb2(t) = (nb2,xt)|θ=0. (29)

The nonlinear part of the operator is crucial for transforming the operator differential equation
into the canonical form described by Guckenheimer & Holmes. This nonlinear operator is

F (xt)(θ) = F (ya1(t)sa1 + ya2(t)sa2 + yb1(t)sb1 + yb2(t)sb2 +w(t))(θ)

=

⎧⎪⎪⎨
⎪⎪⎩

0, θ ∈ [−τ ,0),⎛
⎝ 0

ε
κ (ya1ca11 + ya2ca21 + yb1cb11

+yb2cb21 +w1(t)(0))3

⎞
⎠ , θ = 0.

In order to derive the canonical form, we take d
dt of yα i(t) from Eqs. (26)–(29) and carry through

the differentiation to the factors of the bilinear form. Noting that d
dt nα i = 0,

ẏα1 = (nα1, ẋt)|θ=0 = (nα1,A xt +F (xt))|θ=0

= (nα1,A xt)|θ=0 +(nα1,F (xt))|θ=0

= (A ∗nα1,xt)|θ=0 +(nα1,F (xt))|θ=0

= ωα(nα2,xt)|θ=0 +(nα1,F (xt ))|θ=0

= ωαyα2 +nT
α1(0)F
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and similarly,

ẏα2 = −ωαyα1 +nT
α2(0)F,

where F = F (xt)(0) = F (ya1(t)sa1(0) + ya2(t)sa2(0) + yb1(t)sb1(0) + yb2(t)sb2(0) + w(t)(0)), recalling
that F = F (θ), and this notation corresponds to setting θ = 0. Substituting in the definition of
nα i and F,

ẏa1 = ωaya2 +
εda12(ya1 + yb1 +w1)3

κ
, (30)

ẏa2 = −ωaya1 +
εda22(ya1 + yb1 +w1)3

κ
, (31)

ẏb1 = ωbya2 +
εdb12(ya1 + yb1 +w1)3

κ
, (32)

ẏb2 = −ωbyb1 +
εdb22(ya1 + yb1 +w1)3

κ
, (33)

where we have used Eq. (19). Recall that the center manifold is tangent to the four-dimensional
yα i center subspace at the origin and w may be approximated by a quadratic in yα i. Therefore,
the terms w1 in Eqs. (30)–(33) may be neglected, as their contribution is greater than third order,
which had previously been neglected. To analyze these Eqs. (30)–(33), a van der Pol transformation
is applied:

ya1(t) = ra(t)cos(ωat + θa(t)),
ya2(t) = −ra(t)sin(ωat + θa(t)),
yb1(t) = rb(t)cos(ωbt + θb(t)),
yb2(t) = −rb(t)sin(ωbt + θb(t)),

which transforms the coupled differential equations (30)–(33) into

ṙa =
ε
κ

(cos(tωa + θa)ra + cos(tωb + θb)rb)3 (34)

(da12 cos(tωa + θa)−da22 sin(tωa + θa)),

θ̇a =
−ε
κra

(cos(tωa + θa)ra + cos(tωb + θb)rb)3 (35)

(da22 cos(tωa + θa)+da12 sin(tωa + θa)),

ṙb =
ε
κ

(cos(tωa + θa)ra + cos(tωb + θb)rb)3 (36)

(db12 cos(tωb + θb)−db22 sin(tωb + θb)),

θ̇b =
−ε
κrb

(cos(tωa + θa)ra + cos(tωb + θb)rb)3 (37)

(db22 cos(tωb + θb)+db12 sin(tωb + θb)).

By averaging the differential equations (35)–(37) over a single period of tωα +θα , the θα dependence
of the ṙα equations may be eliminated. Note that ωa and ωb are non-resonant frequencies, so
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averages may be taken independently of one another.

ωa

2π

ˆ θa+ 2π
ωa

θa

ṙadt =
3
8

ε
κ

da12ra(2r2
b + r2

a),

ωb

2π

ˆ θb+ 2π
ωb

θb

ṙbdt =
3
8

ε
κ

db12rb(2r2
a + r2

b).

According to Guckenheimer & Holmes, the normal form for a Hopf-Hopf bifurcation in polar
coordinates is

dra(t)
dt

= μara +a11r
3
a +a12rar

2
b +O(|r|5),

drb(t)
dt

= μbrb +a22r
3
b +a21rbr

2
a +O(|r|5),

dθa(t)
dt

= ωa +O(|r|2),
dθb(t)

dt
= ωb +O(|r|2),

where μi = ℜdλi(τ∗)
dτ , and τ∗ is the critical time-delay for the Hopf-Hopf bifurcation (note that this

bifurcation is of codimension-2, so both τ = τ∗ and κ = κ∗ at the bifurcation). Taking the derivative
of the characteristic equation with respect to τ and solving for dλ(τ)

dτ gives

dλ (τ)
dτ

=
5λ (τ)2

5+2exp(τλ (τ))−5τλ (τ)+ exp(τλ (τ))κλ (τ)
.

Letting λ (τ) = iωα(τ) and substituting in τ = τ∗, κ = κ∗, as well as ωa and ωb respectively
yields

μa = −0.1500Δ, (38)
μb = 0.2133Δ, (39)

where Δ = τ − τ∗. This results in the equations for the flow on the center manifold:

ṙa = −0.1500Δra +0.0080ra(2r2
b + r2

a), (40)

ṙb = 0.2133Δrb −0.0059rb(2r2
a + r2

b). (41)

To normalize the coefficients and finally obtain the flow on the center manifold in normal form,
let ra = ra

√
0.0080 and rb = rb

√
0.0059, resulting in:

ṙa = −0.1500Δra + r3
a +2.7042rar

2
b,

ṙb = 0.2133Δrb −1.4792r2
arb − r3

b.

This has quantities a11 = 1, a22 = −1, a12 = 2.7042, and a21 = −1.4792, which implies that this
Hopf-Hopf bifurcation has the unfolding illustrated in Fig. 1.

For the calculated ai j, the bifurcation curves in Fig. 1 become A : μb = −1.4792μa, B : μb =
−.6992μa, and C : μb =−.3697μa. From Eqs. (38)–(39), system (1) has μb =−1.422μa for the given
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Fig. 1 Partial bifurcation set and phase portraits for the unfolding of this Hopf-Hopf bifurcation. After
Guckenheimer & Holmes [14] Figure 7.5.5. Note that the labels A : μb = a21μa, B :
μb = μa(a21−1)/(a12 +1), C : μb = −μa/a12.

parameter values. Comparison with Fig. 1 shows that this implies the system exhibits two limit
cycles with saddle-like stability and an unstable quasiperiodic motion when Δ > 0. We note that
the center manifold analysis is local and is expected to be valid only in the neighborhood of the
origin.

For comparison, the center manifold reduction Eqs. (40), (41) predict three solutions bifurcating
from the Hopf-Hopf (the trivial solution notwithstanding):

(ra,rb) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
4.3295

√
Δ,0

)
, (42)(

0,6.0020
√

Δ
)

, (43)(
4.2148

√
Δ,0.6999

√
Δ
)

(quasiperiodic). (44)

We note that Eqs. (42), (43) are the same as obtained via Lindstedt’s Method in the previous
section.

5 Continuation

Figure 2 shows a plot of these results along with those obtained from numerical continuation of
the original system (1) with the software package DDE-BIFTOOL [15]. Note that only the two
limit cycles are plotted for comparison. The numerical method is seen to agree with the periodic
motions predicted by Lindstedt’s Method and center manifold reduction.
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Fig. 2 Comparison of predictions for the amplitudes of limit cycles bifurcating from the Hopf-Hopf point
in Eq. (1) obtained by (a) numerical continuation of Eq. (1) using the software DDE-BIFTOOL (solid
lines) and (b) center manifold reduction, Equations. (42), (43) (dashed lines).

6 Conclusion

This work has demonstrated agreement between Lindstedt’s Method for describing the amplitude
growth of limit cycles after a Hopf-Hopf bifurcation and the center manifold reduction of a Hopf-
Hopf bifurcation in a nonlinear differential delay equation. While the center manifold reduction
analysis is considerably more involved than the application of Lindstedt’s Method, it does uncover
the quasiperiodic motion which neither Lindstedt’s Method nor numerical continuation revealed.
Note that in addition to the two limit cycles which were expected to occur due to the Hopf-Hopf
bifurcation, the codimension-2 nature of this bifurcation has introduced the possibility of more
complicated dynamics than originally anticipated, namely the presence of quasiperiodic motions.
This work has served to rigorously show that a system inspired by the physical application of delay-
coupled microbubble oscillators exhibits quasiperiodic motions because in part of the occurrence of
a Hopf-Hopf bifurcation.
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