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Dynamics of Coupled Microbubbles with Large Fluid-Compressibility Delays
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Summary. The theory of differential delay equations is applied to analyze a system oftwo bubbles related via a delayed coupling
term. The dynamics of the system are described by perturbation analyses and bifurcations are detected via continuation using DDE-
BIFTOOL. It is shown that for these delays, synchronized oscillation and quasiperiodic motions exist for the coupled system.

Motivation

Microbubbles have been a topic of research for almost a century, with contemporary research focused on potential appli-
cations of bubbles for biomedical purposes such as ultrasound imaging. Other work has analyzed single bubbles under the
influence of an ultrasound driver, revealing the existence of a chaotic attractor for naturally realized parameter values[1].
The present study is concerned with the behavior of two bubbles as a system of coupled oscillators with interactions
depending on the delayed state of each bubble. The study therefore has applications in the broader theory of differential
delay equations (DDEs).

Equations of motion

Figure 1: Two microbubbles in a fluid with sound speed
c separated by a distanced, giving rise to a time delay
for acoustic wavest = d/c.

Central to this study is the equation that governs the radialdynam-
ics of a gas-filled bubble in a fluid. This equation is known as the
Rayleigh-Plesset Equation; the form used in our analysis was de-
rived by Keller et al. [2] using the wave equation on potential func-
tions for the fluid velocity.
The radius of a bubble submerged in a fluid is inversely related to
the pressure in the fluid. If the radius is changing with time,it sends
pressure waves through the compressible fluid, which may then af-
fect the radial dynamics of surrounding bubbles. This transit time
gives rise to a time delay in the coupled bubble dynamics. Theequa-
tions of motion for the coupled system are shown in eq. (1).
To analyze this system, we restrict our study to the in-phasemani-
fold (IPM) for which the dynamics of the two bubbles are identical,
i.e.a = b, ȧ = ḃ. This distills (1) into a single nonlinear two-degree
of freedom DDE.
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Dynamics on the in-phase manifold
On the in-phase manifold, (1) has an equilibrium solution ofa = 1 which we refer to as the “in-phase mode.” Rewriting
(1) by substitutinga = 1 + x to track deviationsx from the equilibrium point and linearizing aboutx = 0 gives

cẍ+ 3γẋ+ 3cγx = P ẋ (t− T ) (2)
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Figure 2: Locus ofℜ(λ) vs.T .

This equation has solutionsx = exp(λt). Substituting
this solution into (2) yields a characteristic equation onλ

with an infinite number of roots. To determine stability
of the equilibrium point, we identify whether any of these
roots are on the right-half of the complex plane. If so, the
equilibrium point is unstable; otherwise, it is stable.
Using AUTO, we may track the real and imaginary parts
of each root of (2) asT varies. Fig. 2 shows how the real
part of several roots close to the imaginary axis behave—
note that for regions ofT where a root hasℜ(λ) > 0, the
in-phase mode is unstable. To calculate these roots, we
specify representative parameter valuesγ = 4

3
, P = 10,

andc = 94.
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By settingλ = iωcr, one may calculate pairs of solutions(ωcr, Tcr) corresponding to when the equilibrium point has
neutral stability. We find that while only two values ofωcr solve the equation (henceforth calledωα andωβ), there are
two “kinds” of Tcr solving (2). The bifurcation points inT are

Tα =
arccos (−.4) + 2πn

ωα

(n ∈ Z) , Tβ =
− arccos (−.4) + 2πm

ωβ

(m ∈ Z)

These changes in stability correspond to Hopf bifurcations, and periodic solutions split from the in-phase mode in the
form of limit cycles. These limit cycles have been analyzed using Lindstedt’s method [3].

Sequence of Hopf bifurcations

All Tα Hopfs are associated with eigenvalues crossing into the right-half of the complex plane, whereas allTβ Hopfs have
a pair of roots returning to the left-half plane. Thus,Tα is associated with supercritical Hopf bifurcation, andTβ with
subcritical Hopf bifurcation.
Using numerical integration and continuation in DDE-BIFTOOL, the bifurcation diagram for the system for very delays
large may be drawn. For0 < T < 40, Fig. 3 illustrates typical bifurcating sequences with increasingT .
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Figure 3: Profiles of bifurcating limit cycles for regions ofT with distinctly different dynamics. Note that the solid blue curves are
continuation, dashed red curves are integration with increasingT , and dot-dashed black curves are integration with decreasingT .

For large enough T , a β-Hopf precedes an α-Hopf
The countable infinity of Hopf bifurcations is not evenly spread. Using the previously specified parameters,ωα ≈ 2.0493
andωβ ≈ 1.9518; this means that for somen,m there will be a subsequence of twoβ-Hopfs without anα-Hopf between
them. In the neighborhood of this switching, quasiperiodicsolutions and periodic solutions coexist. Figure 4 provides
a bifurcation diagram of this region, as well as a time seriesof the quasiperiodic solutions. It is suspected that this
quasiperiodic behavior is connected with the unfolding of aHopf-Hopf bifurcation, corresponding to a four-dimensional
center manifold and in the neighborhood of which torus bifurcations are present, see [4].
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Figure 4: Behavior of the in-phase mode in the third region. Numerical integration tracks the quasiperiodic behavior, whereas continu-
ation shows the persistence of periodic solutions.
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