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Summary. The theory of differential delay equations is applied to analyze a systamodbubbles related via a delayed coupling
term. The dynamics of the system are described by perturbation analydebifurcations are detected via continuation using DDE-
BIFTOOL. It is shown that for these delays, synchronized oscillati@hcarasiperiodic motions exist for the coupled system.

M otivation

Microbubbles have been a topic of research for almost a pgntith contemporary research focused on potential appli-
cations of bubbles for biomedical purposes such as ultrasooaging. Other work has analyzed single bubbles under the
influence of an ultrasound driver, revealing the existeri@eahaotic attractor for naturally realized parameter gaj].

The present study is concerned with the behavior of two lmsbhk a system of coupled oscillators with interactions
depending on the delayed state of each bubble. The studsfohethas applications in the broader theory of differéntia
delay equations (DDEsS).

Equations of motion

Central to this study is the equation that governs the ratyinbm- \

ics of a gas-filled bubble in a fluid. This equation is known fees t \ \ | T
Rayleigh-Plesset Equation; the form used in our analysis adea | ‘ |

rived by Keller et al. [2] using the wave equation on potdritiac- /
tions for the fluid velocity. Y /
The radius of a bubble submerged in a fluid is inversely rdlade / Sd /
the pressure in the fluid. If the radius is changing with titheends — y ~~
pressure waves through the compressible fluid, which may dfe % q
fect the radial dynamics of surrounding bubbles. This ftairae -
gives rise to a time delay in the coupled bubble dynamics.€etjua- s
tions of motion for the coupled system are shown in eq. (1). P
To analyze this system, we restrict our study to the in-plnazei- _ -
fold (IPM) for which the dynamics of the two bubbles are ideaf;

i.e.a = b, a = b. This distills (1) into a single nonlinear two-degregigure 1: Two microbubbles in a fluid with sound speed

of freedom DDE. c separated by a distanek giving rise to a time delay
for acoustic waves = d/c.
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Dynamics on the in-phase manifold
On the in-phase manifold, (1) has an equilibrium solution ef 1 which we refer to as the “in-phase mode.” Rewriting
(1) by substituting: = 1 + z to track deviations: from the equilibrium point and linearizing abatit= 0 gives

¢+ 3yt +3cyr = Pi (t—T) 2
0.05 This equation has solutions = exp(At). Substituting
Re () o-00 AAANAAN this solution into (2) yields a characteristic equation)on

with an infinite number of roots. To determine stability
of the equilibrium point, we identify whether any of these
W —_— roots are on the right-half of the complex plane. If so, the
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equilibrium point is unstable; otherwise, it is stable.

Using AUTO, we may track the real and imaginary parts
-0.25 J of each root of (2) a¥” varies. Fig. 2 shows how the real

/ part of several roots close to the imaginary axis behave—
note that for regions o’ where a root ha®t(\) > 0, the

0. 10. 2. 1. 40, 2. . 1. In-phase mode is unstable. To calculate these roots, we
specify representative parameter valges: %, P =10,
andc = 94.

T
Figure 2: Locus ofR(\) vs. T'.
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By setting\ = iw.., one may calculate pairs of solutiots.,., T.,-) corresponding to when the equilibrium point has
neutral stability. We find that while only two values ©f, solve the equation (henceforth called andwg), there are
two “kinds” of T, solving (2). The bifurcation points i are

arccos (—.4) + 2mn —arccos (—.4) 4+ 2mm

T, = ™ (neZ),Ts = o (meZ)
These changes in stability correspond to Hopf bifurcati@msl periodic solutions split from the in-phase mode in the

form of limit cycles. These limit cycles have been analyzsithg Lindstedt’s method [3].
Sequence of Hopf bifurcations

All T,, Hopfs are associated with eigenvalues crossing into thé-higlf of the complex plane, whereasalj Hopfs have

a pair of roots returning to the left-half plane. Thds, is associated with supercritical Hopf bifurcation, &figwith
subcritical Hopf bifurcation.

Using numerical integration and continuation in DDE-BIFDDQ the bifurcation diagram for the system for very delays
large may be drawn. Far < T < 40, Fig. 3 illustrates typical bifurcating sequences withr@asingl'.

Figure 3: Profiles of bifurcating limit cycles for regions Bfwith distinctly different dynamics. Note that the solid blue curves are
continuation, dashed red curves are integration with incre&sjramd dot-dashed black curves are integration with decredsing

For large enough T, a 5-Hopf precedes an a-Hopf

The countable infinity of Hopf bifurcations is not evenly sad. Using the previously specified parameteysz 2.0493
andwg ~ 1.9518; this means that for some, m there will be a subsequence of tweHopfs without am-Hopf between
them. In the neighborhood of this switching, quasiperiattutions and periodic solutions coexist. Figure 4 proside
a bifurcation diagram of this region, as well as a time seofethe quasiperiodic solutions. It is suspected that this
quasiperiodic behavior is connected with the unfolding bfogof-Hopf bifurcation, corresponding to a four-dimensibn
center manifold and in the neighborhood of which torus loifitions are present, see [4].
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Figure 4: Behavior of the in-phase mode in the third region. Numericajiation tracks the quasiperiodic behavior, whereas continu-
ation shows the persistence of periodic solutions.
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