ICSNDD 2012, April 30-May 02 2012, Marrakech, Morocco

Center Manifold Reduction of the Hopf-Hopf Bifurcationin a
Time Delay System

Christoffer Heckman!, Jakob Kotas® and Richard Rand**

! Field of Theoretical & Applied Mechanics ; Cornell University ; Ithaca, NY USA

2 Department of Applied Mathematics ; University of Washington ; Seattle, WA USA

- Department of Mathematics ; Cornell University ; Tthaca, NY USA

4 Department of Mechanical & Aerospace Engineering ; Cornell University ; Ithaca, NY USA

Résumé. Inthis work, a differential delay equation with a cubic nonlinearity is analyzed as two parameters are varied
by means of a center manifold reduction. This reduction is applied directly to the case where the system undergoes a
Hopf-Hopf bifurcation, thereby giving rise to two separate modes of oscillation. In performing the reduction, the system
is shown to exhibit quasiperiodic dynamics that are born out of the Hopf-Hopf bifurcation. This system has analogues
in coupled microbubble oscillators.

1 Introduction

Delay in dynamical systems is exhibited whenever the system’s behavior is dependent at least in part on its his-
tory. Many technological and biological systems are known to exhibit such behavior ; coupled laser systems, high-speed
milling, population dynamics and gene expression are some examples of delayed systems. This work analyzes a simple
differential delay equation that is motivated by a system of two microbubbles coupled by acoustic forcing, previously
studied by Heckman et al. [1] [2]. The propagation time of sound in the fluid gives rise to a time delay between the two
bubbles. The system under study has the same linearization as the equations previously studied, but the sophisticated
nonlinear interaction terms in the bubble equations have been replaced by a cubic term in order to provide first insights
into the full bubble equations.

In particular, the system of coupled microbubbles has been witnessed to exhibit damped oscillation, excited oscillations
(i.e. a stable limit cycle created as a result of a supercritical Hopf bifurcation), and quasiperiodic oscillations. These latter
dynamics are unexplained by previous work, but it has been previously suggested that these dynamics are the result of
a Neimark-Sacker bifurcation. This work explores this possibility by analyzing the dynamics of an analogous system by
means of a center manifold reduction. However, in contrast with previous work, this reduction will analyze the Hopf-Hopf
bifurcation that results when two parameters (corresponding to the speed of sound in the fluid and the delay propagation
time) are varied.

2 Center Manifold Reduction

The system under analysis is motivated by the Rayleigh-Plesset Equation with Delay Coupling (RPE), as studied
by Heckman et al. [1] [2]. The equation of motion for a spherical bubble contains quadratic nonlinearities and multiple
parameters quantifying the fluids’ mechanical properties; the equations studied in this work are designed to capture salient
dynamical properties while simplifying analysis. The system is :

KE+ 4%+ dxx + 1050 = T) = ex”. (2.1)

Eg. (2.1) has the same linearization as the RPE, with a cubic nonlinear term added to it. This system has an equilibrium
point at x = 0 that will correspond to the local behavior of the RPE’s equilibrium peint as a result.

In order to put Eq. (2.1) into a form amenable to treatment by functional analysis, we draw on the method used by
Kalmér-Nagy er al. [3] and Rand [4]. The operator differential equation for this system will now be developed. Eq. (2.1)
may be written in the form :

() = L{x() + Rix(t — v) + £x(), x{t — 1), 1)

_fx@y  [m
0= (i0)-(z)

" 0 o0
L= (—4 —4/K) »Rls) = (0 —10/;()

where

and
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0
Fx (0, x(t - 7),6) = ((_E/K)l?)
Thus, the linear mapping of the original equation is given by
L($(0)) = Lx)¢0) + Rix)p(-7)
and F : H — R2 is a nonlinear functional defined by
F(g(8)) = £(p(0), ${-7))

where H = C([-r, 0], R®) is the Banach space of continuously differentiable functions u = (:“) from [—r, 0] into R". The

42

delay differential equation may therefore be expressed as
X = S + -rF(Xr}x (22}
where

X($) =x(@t+¢), ¢el[-70]

Note that the subscript ¢ indicates that time is now a parameter to the function whose domain is the delay interval. If «* is
the critical value of the bifurcation parameter, then when x = «* the operator differential equation has components

iy AN be[-70)
FAu@) = { fu©) +Ru-r)  8=0 23
and
0 9[-0
F(u (@) = 0 e (24)
(e/x)u1 (0 -

Egs. (2.3) and (2.4) are representations of eq. (2.1) in “canonical form.” They contain the corresponding linear and
nonlinear parts of eq. (2.1) as the boundary conditions to the full evolution equation (2.2).

A stability analysis of eq. (2.3) alone provides insight into the asymptotic stability of the original equations. In the
case when eq. (2.3) has neutral stability {i.e. has eigenvalues with real part zero), analysis of eq. (2.4) is necessary. The
purpose of the center manifold reduction is to project the dynamics of the infinite-dimensional singular case onto a low-
dimensional subspace on which the dynamics are more analytically tractable.

At a bifurcation, the critical eigenvalues of the operator A coincide with the critical roots of the characteristic equation,
In this system, the target of analysis is a Hopf-Hopf bifurcation, a codimension-2 bifurcation that has a four-dimensional
center manifold [5]. Consequently, there will be two pairs of critical eigenvalues +iw, and +iw;, with real part zero. Each
eigenvalue has an eigenspace spanned by the real and imaginary parts of its corresponding complex eigenfunction. These
eigenfunctions are denoted s,(8), s,(6) = H.

The eigenfurnctions satisfy

A (0) = iwy84(6)
Fsp(0) = iwpsp(6);
or equivalently,
Alsa1(6) ti50(8)) = iwa(8a1(0) + is(8) (2.5)
A(sp1(6) + 182(8)) = 1w (8p1(6) + i852(8)) (2.6)

Equating real and imaginary parts in eq. (2.5) and eq. (2.6) gives

Asy1(0) = ~wa522(8) 2.7)
Asg2(0) = wg81(6) (2.8)
Fsy1(6) = —wy8p2(6) (2.9)
Aspp(8) = wpsp (8). (2.10)

Applying the definition of A to egs. (2.7)- (2.10) produces the differential equations
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d :
@Sal(f)) = —wgSa2(8) (2.11)
d . :
d—ysaz(e) = Wa5a1(6) (2.12)
d
%! (8) = ~wpS12(6) (2.13)
d :
5% (#) = wpsp1 (&) (2.14)
with boundary conditions
Lsq1(0) + Rsa1(—1) = —wes2(0) (2.15)
Ls2(0) + Rspn(—1) = w,8,1(0) (2.16)
Lsp1(0) + Rsp1(—7) = —wpse(0) (2.17)
Lsi2(0) + Rspp(—7) = wpsi1 (0) 2.18)

The general solution to the differential equations (2.11)-(2.14) is :

$a1(#) = cos(waiea1 — sin(wabeam
$q2(0) = sin(we8)c, + cos(w.fca
sp1(8) = cos(wpt)eyr — sin(wpBics
$p2(7) = sin{wpd)cm + cos(wsbiem

[>773
(2.18). However, since we are searching for a nontrivial solution to these equations, they must be linearly dependent. We

set the value of four of the unknowns to simplify the final result :

where ¢y = (‘;‘*“). This results in eight unknowns which may be solved by applying the boundary conditions (2.15)-

can=1 ¢co1=0 an=1 ocm=0 (2.19)

This allows egs. (2.15)-(2.18) to be solved uniquely, yielding

1 0 1 0
Ca1 = (0)? Can = (C‘)tz), Cpr = (0)) Cpy = ((-'Jb) .

Next, the vectors that span the dual space H* must be calculated. The boundary value problem associated with this
case has the same differential equations (2.11)-(2.14) except on ng; rather than on sy ; in place of boundary conditions
(2.13)-(2.18), there are boundary conditions

L7ng1(0) + R7ngy (1) = wang(0) (2.20)
L g (0) + R ngp (1) = —wang1 (0) (2.21)
L 1n;1(0) + RTnp () = wpngp (0) (2.22)
Lnz(0) + R sip (1) = —wpmp (0) (2.23)

The general solution to the differential equation associated with this boundary value problem is

n,1(r) = cos(w,o iy — sin(wo)d g
Ng2(0) = siN(weo)da) + cos(wa)da,
ny1(07) = cos(wyo)dp; — sin(wyo)dp
ny2 (o) = sin{wyoidpy + cos(wpo)de

Again, these equations are not linearly independent. Four more equations may be generated by orthonormalizing the
ny; and soy vectors (conditions on the bilinear form between these vectors) :

(Ng1,841) =1, (0g1,822) =0 (2.24)
(Mp1.801) =1, (Mp1,862) =0 (2.25)

where the bilinear form employed is (v, u) = ¥ (0)u(0) + [° v7 (& + DYRu()Z.
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Egs. (2.11)-(2.14) combined with (2.20)-(2.25) may be solved uniquely for d,; in terms of the system parameters.
Using egs. (2.19) as the values for ¢, and substituting relevant values of the parameters ¥ = 6.8916, 7 = 2.9811,
wa = 14427, and wp = 2.7726 to center the perturbation method at the Hopf-Hopf bifurcation yields

e (04786)’ dp = (—0.4079)’

0.1471 0.1726
4, o [ 01287 g 2 0.1570
P1=1_p.1088)°  ©%2 7 10.0892

3 Flow on the Center Manifold

The solution vector x,(0) may be understood as follows. The center subspace is four-dimensional and spanned by the
vectors 8. The solution vector is decomposed into four components g in the s,; basis, but it also contains a part that is

wy

out of the center subspace. This component is infinite-dimensional, and is captured by the term w = (w)) transverse to the

center subspace. The solution vector may therefore be written as

%:(8) = Ya1(1)8a1(6) + Y2 (1)3a2(8) + Yp1 (D)sp1(8) + Yo ()862(6) + W(L)(E)

Note that, by definition,
Ya1(7) = (Ma1,%,)g=0 (3.1)
Y2 (1) = (g2, %e)g=0 (3.2)
o1 (1) = (M1, XeMlo=o (3.3)
Ypa(6) = (M2, X¢)lg—0 (3.4)

The nonlinear part of the operator is crucial for transforming the operator differential equation into the canonical form
described by Guckenheimer & Holmes. This nonlinear operator is

FXND) = F (Ya1(1)sa1 + Yaz (D802 + Yo1()861 + Yo (D)sp2 + W()(E)
J 0 fel[-70)
- b 8=0
l. £(YarCa11 + YarCaz + Y61Co11 + YraCha1 + w1 (H(0)) -

In order to derive the canonical form, we take f; of yg: () from egs. (3.1)-(3.4) and carry through the ditferentiation to the
factors of the bilinear form. Noting that £n,,; = 0,

o1 = a1, Xlo-0 = (a1, Ax, + F (X4))lo0
= (g1, % Ma=o + (Na1, F (X)lg=0
= (A'Na1, X )lg=0 + (Na1, F (X))o
= Wa(Ng2, Xrle=0 + (N, F (X1)le=0
= WaYan + N (OF

and similarly,

Yop = —Walfal + ngz(D)F

where F = F(x,J(0) = F (ya1 (08:1(0) + Yo (0)852(0) + yp1(D861(0) + ypa (£)8p2.(0) + w(2)(0)), recalling that ¥ = ¥ (@), and
this notation corresponds to setting & = 0. Substituting in the definition of ny, and F,

eda2(Yar + s +w)°

Hal = Wallz + = (3.5)
22 (Yo + Y1 + wp)?
o = B €022 (Ya1 Kyhl 1) (3.6)
edpio (a1 + i1 +w1)”
It = Wpy + — A= il 37

) ediaz (a1 + yp1 + w1 )° )
Yoo = —Wplipr + - p (3.8)
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where we have used eq. {2.19). Recall that the center manifold is tangent to the four-dimensional ., center subspace at
the origin and w may be approximated by a quadratic in y,,. Therefore, the terms w; in egs. (3.5)-(3.8) may be neglected,
as their contribution is greater than third order, which had previously been neglected. To analyze this egs. (3.5)-(3.8), a
van der Pol transformation is applied :

Ya1{l) = ra(t) cos{wat + 8:(1))
Yall) = —14(0) sin(w,t + G4(1))
yer(t) = () cos{wpt + 85(1)
yre (1) = —rp(8) sin{wst + 6,(1))

transforms the coupled differential equations (3.5)-(3.8) into

Fy= E(cos(rwa + 0,0 + cos(twy + )rs) (durn cOS(rw, + 82) — dagp sintew, + 6,)) (3.9)

0, = E(cos(rwa + 8,0, + cos(twy + 0513 (dua cOS(twy + 6,) + dapa sin(taw, + 8,)) (3.10)
2

By E (CO8 (2w + Ba)a + cOS(twp + Gp)s)? (do1z COS(twy + Oy) — dya Sin(tws + 65)) G.11)

by = !:—r':(cos(twa + 8,)15 + CO8(twp + Bp)1p) (dozz cOS(twy + By) + dyia sin(twy + 6)) (3.12)

By averaging the differential equations (3.9)-(3.12) over a single period of 1w, +6,, the 8, dependence of the 7, equations
may be eliminated. Note that w, and w; are non-resonant frequencies, so averages may be taken independently of one

another.

w, ut o 3e
il
=2 F Fodt = ——d.ﬂgr,,(ng + 1)
2 Je, 8 x

i [V 28 vl
2 Ja, bl = 7= Gp12tp (2 b)

According to Guckenheimer & Holmes, the normal form for a Hopf-Hoepf bifurcation in polar coordinates is

d_i‘;rﬂ = fla¥a + auty + antary + O(r’)
dfgﬁr) = oty + axty + anrprs + O(rl%)
d%f” = w, + OrP)
d%f” = wp +0(rP)

where u; = R% and 7" is the critical time-delay for the Hopf-Hopf bifurcation (note that this bifurcation is of
codimension 2, so both 7 = 1" and « = «~ at the bifurcation). Taking the derivative of the characteristic equation with

respect to T and solving for %(P gives
da(r) 5Ky
dr 5+ 2exp(rA(D) — StAlT) + exp(rA(T)rd(r)’

Letting A(7) = iw(7) and substituting in v = 77, x = ", as well as w, and wy, respectively yields

tta = ~0.1500A (3.13)
= 021334 (3.14)

where A = v — 7. This results in the equations for the flow on the center manifold :
#5 = —0.1500A7, + 0.0080r,(217 + 12)
#p = 0.2133Ar5 ~ 0.00591,(27 + 13)

Te normalize the coefficients and finally obtain the flow on the center manifold in normal form, let 7, = r, V0.0080
and 7 = r; Y0.0059, and drop the bars, resulting in :
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Figure 1. Partial bifurcation set and phase portraits for the unfolding of this Hopf-Hopf bifurcation. Figure reproduced from Gucken-
heimer & Holmes [3] Figure 7.5.5. Note that the labels A : gy = aaipta. B 1 pto = il — Uftan + 1), C : pp = =g/ ann.

Fo = =0.1500Ar, + 13 + 27042517

ip = 0.2133Ar; — 1.479272r, ~ 13

This has quantities ay; = 1, a3z = —1, @12 = 2.7042, and a5 = —1.4792, which implies that this Hopf-Hopf bifurcation
has the unfelding illustrated in Figure 1.

For the calculated a;;, the bifurcation curves in Figure | become A @ pgp = —1.47924,, B 1 iy = —.699241,, and C :
My = —. 36971, From eqs. (3.13)-(3.14), system (2.1) has p1, = —1.422y, for the given parameter values. Comparison
with Figure 1 shows that this implies the system exhibits two unstable limit cycles and an unstable quasiperiodic motion
when A > 0. We note that the center manifold analysis is local and is expected to be valid only in the neighborhood of the

origin.
4 Conclusion

This work explored the center manifold reduction of a Hopf-Hopf bifurcation in a nonlinear differential delay equation.
When analvzing a system of coupled oscillators that separately undergo Hopf bifurcation, there exists the possibilily of
the full system to undergo this codimension 2 bifurcation. In doing so, a wealth of sophisticated dynamics may arise that
are not immediately anticipated, for instance the quasiperiodic motions. This work has served to rigorously show that
a system inspired by the physical application of delay-coupled microbubble oscillators exhibits quasiperiodic motions
because in part of the occurrence of a Hopf-Hopf bifurcation.
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