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Summary This work concerns the dynamics of nonlinear systems that are subjected to delayed self-feedback. Perturbation methods applied
to such systems give rise to slow flows which characteristically contain delayed variables. We consider two approaches to analyzing Hopf
bifurcations in such slow flows. In one approach, which we refer to as approach I, we follow many researchers in replacing the delayed
variables in the slow flow with non-delayed variables, thereby reducing the differential-delay equation (DDE) slow flow to an ordinary
differential equation (ODE). In a second approach, which we refer to as approach II, we keep the delayed variables in the slow flow. By
comparing these two approaches we are able to assess the accuracy of making the simplifying assumption which replaces the DDE slow
flow by an ODE.

INTRODUCTION

When investigating a differential-delay equation (DDE) by use of a perturbation method, one is often confronted with a
slow flow which contains delay terms. It is usually argued that since the parameter of perturbation, call it €, is small, € << 1,
the delay terms which appear in the slow flow may be replaced by the same term without delay, see e.g. [1, 2, 3]. The purpose
of the present paper is to analyze the slow flow with the delay terms left in it, and to compare the resulting approximation with
the usual one in which the delay terms have been replaced by terms without delay.

EXAMPLE 1: DUFFING EQUATION
For example take the following version of the Duffing equation with delayed self-feedback.
;'v'—&—x:e[—ax'—vx?’—&—kxd] (€))]

where x4 = z(t — T'), where T' = delay. We treat eq.(1) with the two variable perturbation method, where x (¢, ), where
¢ =tandn = et. We expand & = g + ex1 + O(€?) and obtain the following equation on z:

Lo =xoge + 10 =0 = z0(§,n) = A(n) cos§ + B(n)sin ()

Eliminating secular terms in the x; equation gives the following slow flow:
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where A; = A(n — €T) and By = B(n — €T') are delay terms in the slow flow.
Method I involves replacing the delay terms Ay, By in the slow flow (3),(4) respectively by undelayed terms A, B,
resulting in a slow flow of ODEs. It is argued that such a step is justified if the product €7" is small:

Ag=An—€l) = A(n) +O(¢),  Ba=B(n—€l)~ B(n)+O(e). Q)
Method II involves studying the slow flow (3),(4) as it is.

Figure 1 (left side) shows a comparison, in the case of the Duffing equation (1), between the analytical Hopf conditions
obtained via the two approaches and the numerical Hopf curves. The approach II plotted by red/dashed curves gives a better
result than the approach I (black/dashdot curves). Therefore in the case of Duffing equation, treating the slow flow as a DDE
gives better results than approximating the DDE slow flow by an ODE.
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Figure 1: Numerical Hopf bifurcation curves (blue/solid). Also shown are the results of approach I (black/dashdot), and the
results of approach II (red/dashed)

EXAMPLE 2: VAN DER POL EQUATION

As a second example, we consider a version of the van der Pol equation with delayed self-feedback [4]:

itz=c[2(1-2%)+kzs—kal (6)

We apply the same procedure here as we did for the Duffing equation (1) and show the results in Figure 1 (right). Figure
1 (right) shows that approach II gives better results than approach I. However approach I still gives a good fit for the lower
Hopf curve.

CONCLUSIONS

When a DDE with delayed self-feedack is treated using a perturbation method (such as the two variable expansion method,
multiple scales, or averaging), the resulting slow flow typically involves delayed variables. In this work we compared the be-
havior of the resulting DDE slow flow with a related ODE slow flow obtained by replacing the delayed variables in the slow
flow with non-delayed variables. We studied sample systems based on the Duffing equation with delayed self-feedback, eq.(1),
and on the van der Pol equation with delayed self-feedback, eq.(6). In both cases we found that replacing the delayed variables
in the slow flow by non-delayed variables (approach I ) gave better results on the lower Hopf curve than on the upper Hopf

curve.

Our conclusion is therefore that the researcher is advised to perform the more lengthy approach II analysis on the DDE
slow flow in situations where values of the product €71’ is relatively large, as in the upper Hopf curves in Figures 1.
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