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Summary: A model of a simplified MEMS device which has been previously shown to support a limit cycle [1] is used to model a
pair of coupled MEMS oscillators. The stability and bifurcation of in-phase and out-of-phase modes is investigated.

1 Introduction
This work is concerned with a type of MEMS device in which a laser is used to measure the device’s deformation via an
interference pattern. As a side effect, the laser heats the device and affects the interference gap, resulting in a feedback
loop which causes the device to vibrate in a limit cycle. A model of this process has been given in a JMEMS paper of
2004 [2], [1]:
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Q
(z′ −DT ′) + (1 + CT )(z −DT ) + β(Z −DT )3 = 0 and T ′ +BT = AP (α+ γ sin2 2π(z − z0)) (1)

Here z is the displacement of a mechanical oscillator and T is its temperature due to laser illumination. In the mechanical
equation Q is the quality factor, C is the stiffness change due to temperature, D is the displacement due to temperature
and β is the coefficient of the cubic nonlinearity. In the thermal equation the quantities α and γ represent the average
and contrast of the absorption of laser power, P is the laser power, A and B represent the thermal mass and heat loss
rate. The offset z0 models the equilibrium position of the oscillator with respect to the interference field created by
the oscillator/gap/substrate stack. This sophisticated model, which includes effects of damping, stiffness change due to
heating, periodic dependence of light absorption on interferometric gap, and nonlinearity, was shown in [2] to support
limit cycle oscillations.

In the present work and in [1], a simplified model of the foregoing equation is considered which omits damping and
various other effects:

z′′ + z = T, T ′ + T = z2 − pz (2)

where the parameter p stands for z0 in eq.(1) and can be given a representative value of 0.1. Using perturbation methods,
it was shown in [1] that this system admits a limit cycle having the approximate form:
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where
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√
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3
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. (4)

In the present work we use eq.(2) to model a system of two coupled MEMS oscillators:

z′′1 + z1 = T1 + α(z2 − z1), T ′
1 + T1 = z21 − pz1 (5)

z′′2 + z2 = T2 + α(z1 − z2), T ′
2 + T2 = z22 − pz2 (6)

where α is a coupling constant.

2 Analysis
Inspection of eqs.(5),(6) shows that they exhibit an in-phase (IP) mode, i.e. the 6-dimensional system (5),(6) admits a
3-dimensional invariant manifold z1 = z2, T1 = T2. The flow on this IP manifold is the same as the flow (3),(4) of the
individual oscillator (2). In order to study the stability of the IP mode, we recast the system (5),(6) in terms of sum and
difference variables

x = z1 + z2, u = z1 − z2, y = T1 + T2, v = T1 − T2 (7)

The system (5),(6) becomes:

x′′ + x = y, y′ + y =
x2 + u2

2
− px (8)

u′′ + (1 + 2α)u = v, v′ + v = xu− pu (9)
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Here the IP manifold corresponds to the exact solution u = v = 0. The flow on the IP manifold can be written
x = 2F (t), y = 2G(t) where F (t) and G(t) are given by z and T in eqs.(3). To determine stability of the IP mode, we
write

x = 2F (t) +X, y = 2G(t) + Y, u = 0 + U, v = 0 + V (10)

where X,Y, U, V are small variations. The linearized variational equations become:

X ′′ +X = Y, Y ′ + Y = 2F (t)X − pX (11)
U ′′ + (1 + 2α)U = V, V ′ + V = 2F (t)U − pU (12)

Eqs.(11) represent the stability of the IP mode due to variations in the invariant x− y manifold. As is well known [3], the
limit cycle motion in this case is Liapunov unstable but is orbitally stable. Eqs.(12) represent the stability of the invariant
manifold due to variations in directions normal to the IP invariant manifold. Differentiating eq.(12.1) and then substituting
(12.2), we obtain the following third order ODE:

U ′′′ + U ′′ + (1 + 2α)U ′ + (1 + 2α+ p+ 2F (t))U = 0 (13)

Approximating F (t) ≈ A cosωt, cf. eqs.(3),(4), and treating p as a higher order quantity, we obtain an equation which
we refer to as a third order Mathieu equation:

U ′′′ + U ′′ + δ U ′ + (δ + ε cos t) U = 0 (14)

where δ = 1+ 2α and ω ≈ 1. Using regular perturbations, we obtain expressions for the transition curves in eq.(14). For
p = 0.1, the analysis gives that there is a transition from stable to unstable when α is lowered beyond 0.04, a fact which
is confirmed by numerical simulations.

What about an out-of-phase (OP) mode? Inspection of eqs.(8),(9) shows that the expected x = y = 0 is not an exact
solution. Nevertheless, numerical simulation of eqs.(5),(6) shows that they support an OP mode. To study this mode, we
introduce a small parameter ε and use Lindstedt’s perturbation method. The resulting approximation for the OP mode is
then inserted into the associated variational equation which yields the value of α = 0.88 above which the OP mode loses
stability, which is in good agreement with the numerically observed value of α = 0.83.

Thus the IP mode is stable when α > 0.04 and the OP mode is stable when α < 0.83, which is to say that both the
IP and OP modes are stable when α lies between 0.04 and 0.83. With both modes stable, we expect an unstable motion
which has a stable manifold which lies on the boundary of the basins of attraction of the stable modes. Although this
separatrix motion is unstable, we may seek it by numerically varying initial conditions, trying to find the point where
the motion switches between the IP and OP modes. The resulting separatrix motion appears to be quasiperiodic. This
situation is reminiscent of the dynamics of two coupled van der Pol oscillators [4], where a perturbation approximation
for the separatrix motion was obtained.
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