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ABSTRACT

This paper presents an analytical study of the stability of the

steady state solutions of a gene regulatory network with time de-

lay. The system is modeled as a continuous network and takes the

form of a nonlinear delay differential-integral equation coupled

to an ordinary differential equation. Two examples are given in

which the critical delay causing instability is computed.

INTRODUCTION

Understanding the interactions between genes and their pro-

tein products is an important part of experimental and theoret-

ical biology. Recent experiments [10, 29] and theoretical tech-

niques [20, 33, 34] have been developed to understand the dy-

namics of gene regulatory networks. From a theoretical point of

view, the gene network structure is an abstraction of the system’s

chemical dynamics, and it includes how protein products affect

the expression of other genes and their associated proteins. If the

network involves only a few genes then its dynamical behavior

could be studied directly [7, 10]. On the other hand, if the net-

work is formed of hundreds or thousands of genes then its exper-

imental or theoretical study may be highly difficult [4, 24]. Nev-

ertheless, research trends show that the study of these complex

dynamical networks is a natural step in genomic research [32].

Several mathematical models of gene regulatory networks

have been developed over the last couple of decades (for an ex-

tensive review see [13,15,28]). Some of the most common mod-

eling techniques involve the use of graphs [17, 21], Boolean net-

works [3, 25, 26], Bayesian networks [8], Petri nets [9, 19], re-

verse engineering methods [30], and coupled differential equa-

tions (linear [16], nonlinear [5, 12, 22], partial [31], stochas-

tic [11, 27, 36], and delayed [1, 6, 33]). Here we are interested

in models where the natural lags or delays play an important role

in the system’s dynamics [18,23,33,34]. These delays arise nat-

urally from transcription, translation, degradation, and other cel-

lular processes. If the time delays are of the order of the system’s

time scale, then taking them into account can potentially change

the system’s dynamics.

In this work, we study the steady state solutions and the sta-

bility of two different models of a gene network with time de-

lay. Both of these models are characterized by a system of two

coupled equations: an ordinary differential equation and a de-

lay differential-integral equation. The first model considers uni-

form weighting, where each ribosome produces a given quantity

of protein which is then shared equally amongst all gene sites.

The second model is characterized by an exponential weighting,

where each protein product is shared unequally, with nearby gene

units being repressed to a greater extent than more distant genes.

Both of these cases exhibit a steady state, which is stable when

there is no delay. Linear analysis then reveals that a critical de-

lay exists, where the steady state becomes unstable. Closed form

expressions for the critical delay Tcr and associated frequency ω
are thus found. We then confirm our results for the exponential

weighting case by discretizing the continuous system into an N-

dimensional system and showing that the discrete critical delays

approach the continuous Tcr as N becomes large.

BIOLOGICAL BACKGROUND

Transcription and translation are the main processes by

which a cell expresses the instructions encoded in its genes.

Transcription is the first step in gene expression and it includes

the identical replication of a gene into messenger RNA (mRNA).

The second step is the translation process, where the information

in the mRNA is translated into a protein with a specific amino

acid sequence. The latter process is accomplished by a well-

known protein-manufacturing machine called a ribosome. Once

the protein is created, it unbinds from the ribosome and carries

out its cellular function. From these processes mRNA and pro-

tein concentrations arise naturally as the main intracellular regu-
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latory agents for gene expression.

There are several mechanisms that the cell uses to regulate

the levels of mRNA and protein concentrations. An example

is the cell’s ability to increase or decrease the concentration of

enzymes that degrade proteins. Another important regulatory

mechanism is the cell’s capacity to turn on and off the transcrip-

tion process of a specific gene. The latter can be accomplished

by means of feedback inhibition, where the expression of a gene

is regulated by its own protein product. This feedback mecha-

nism arises when the protein product returns to the nucleus and

stops the transcription of its own mRNA by binding to the gene’s

promoter site. Previous findings [18,23] show that there are time

delays associated with this feedback mechanism. These delays

arise naturally as transcriptional delays (time it takes the gene to

get copied into mRNA) and translational delays (time it takes the

ribosome to translate mRNA into protein). Furthermore, recent

studies have shown that it suffices to consider only the transcrip-

tional time delay to have an accurate dynamic model [18,23,33].

These transcriptional delay models can be represented by the fol-

lowing pair of equations:

dm

dt
= −µm m(t)+ H (p(t −T )) (1)

d p

dt
= αp m(t)−µp p(t) (2)

where the time dependent variables are the mRNA concentration,

m(t), and its associated protein concentration, p(t), and where

the constants µm and µp are the decay rates of the mRNA and

protein molecules, αp is the rate of production of new protein

molecules per mRNA molecule, and H(p(t −T )) is a Hill func-

tion representing the rate of delayed production of new mRNA

molecules. We assume that H(p(t −T )) is a decreasing func-

tion of the concentration of protein present at a previous time

p(t −T ), where T represents the transcriptional time delay.

Recent findings reveal how the dynamics of the system de-

pends on the model parameters [33]. For simplicity, in this paper

we assume that µm=µp=µ and αp=1.

MATHEMATICAL MODEL

In this work we investigate a model of gene expression in

which the protein product of a given gene not only represses its

own mRNA production, but also represses the mRNA production

of other nearby genes. We tag a given gene with a variable x ∈
[0,1], and we generalize the system (1),(2) to be of the form:

ṁ = −µ m+

Z 1

0
K(x− x̄)H(pd(x̄))dx̄ (3)

ṗ = m−µ p (4)

where m = m(x, t), p = p(x, t), and pd(x̄) = p(x̄, t − T ). Here

K(x− x̄) is a weighting function.

In this paper we consider two special cases of Eqs.(3),(4):

CASE 1: UNIFORM WEIGHTING

This case is characterized by the choice K(x− x̄) = 1. Here each

ribosome produces a given quantity of protein which is shared

equally amongst all gene sites. For the rate of production of

mRNA H(pd(x̄)) we choose the following Hill function [23,33]:

H(pd(x̄)) =
1

1 +
(

pd(x̄)
p0(x̄)

)n (5)

where pd(x̄) = p(x̄, t − T ) is the delayed protein concentration

at location x̄, and where p0(x̄) is a reference concentration of

protein at x̄, and n is a parameter [23]. The resulting system is of

the form:

ṁ = −µ m+

Z 1

0

1

1 +
(

pd(x̄)
p0(x̄)

)n dx̄ (6)

ṗ = m−µ p (7)

CASE 2: EXPONENTIAL WEIGHTING

This case is characterized by the choice K(x− x̄) = e−|x−x̄|. Here

each protein product is shared unequally, with nearby gene sites

being repressed to a greater extent than more distant ones. For

mathematical simplicity we choose the rate of production of

mRNA H(pd(x̄)) to be given by a linear function of pd :

H(pd(x̄)) = 1− pd(x̄) (8)

The resulting system is of the form:

ṁ = −µ m+
Z 1

0
e−|x−x̄|(1− pd(x̄))dx̄ (9)

ṗ = m−µ p (10)

STEADY STATE SOLUTIONS

In this section we consider the steady state behavior of

the system (3),(4). Setting ṗ=ṁ=0 we see that at steady state

m∗=µp∗ and p∗d=p∗, where a * represents the steady state

solution.

CASE 1: UNIFORM WEIGHTING

At steady state, Eqs.(6),(7) give

µ2 p∗(x) =

Z 1

0

1

1 +
(

p∗(x̄)
p0(x̄)

)n dx̄ (11)

Since the RHS of Eq.(11) is independent of x, we see that

p∗(x)=p∗ is a constant. Because of the difficulty in evaluating

the integral in Eq.(11) for a general function p0(x̄), numerical

integration is required in order to obtain an approximate value
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for p∗. In order to illustrate the process we choose a tractable

function p0(x̄) = 1 + x̄, together with n = 3 and µ = 0.2, in

which case Eq.(11) gives p∗ = 2.9876.

CASE 2: EXPONENTIAL WEIGHTING

At steady state, Eqs.(9),(10) give

µ2 p∗(x) =

Z 1

0
e−|x−x̄|H(p∗(x̄))dx̄ (12)

which may be written in the form:

µ2 p∗(x) = e−x

Z x

0
ex̄H(p∗(x̄))dx̄ + ex

Z 1

x
e−x̄H(p∗(x̄))dx̄

(13)

Differentiating Eq.(13) twice [14] we obtain the equivalent sec-

ond order ODE for the steady state solution p∗=p∗(x):

d2 p∗

dx2
− p∗ = − 2

µ2
H(p∗) (14)

where the boundary conditions are given by

p∗(0) =
1

µ2

Z 1

0
e−x̄H(p∗(x̄))dx̄ (15)

p∗(1) =
1

eµ2

Z 1

0
ex̄H(p∗(x̄))dx̄. (16)

For the choice of H(p(x̄)) given by Eq.(8), Eq.(14) becomes

d2 p∗

dx2
− γ p∗ = 1− γ (17)

where

γ = 1 +
2

µ2
> 0 (18)

Thus

p∗(x) = c1 sinh
√

γx + c2 cosh
√

γx +
2

µ2γ
(19)

where c1 and c2 are determined by substituting Eq.(19) into (15)

and (16):

c1 =
(

1− e
√

γ
)

K (20)

c2 =
(

1 + e
√

γ
)

K (21)

where

K =
1−√

γ−
(

1 +
√

γ
)

e
√

γ

γ
[(

µ2
√

γ+µ2 +1
)

e2
√

γ +µ2
√

γ−µ2 −1
] (22)

For example, in the case that µ = 0.2, we obtain

p∗(x) = 0.12040 sinh
√

51x − 0.12059 cosh
√

51x +
50

51
(23)

See Fig.1.

STABILITY OF STEADY STATE

To study the stability of the steady state solu-

tion (m∗(x), p∗(x)), we set p(x, t)=p∗(x)+η(x, t) and

m(x, t)=m∗(x)+ξ(x, t) and linearize the resulting equations

in η(x, t) and ξ(x, t).

CASE 1: UNIFORM WEIGHTING

Here the steady state solution p∗ is constant in x. Eqs.(6),(7) give

ξ̇ = − µξ−
Z 1

0
K1(x̄)ηd(x̄)dx̄ (24)

η̇ = ξ−µη (25)

where

K1(x̄) =
nβ

(1 +β)2 p∗
, where β = β(x̄) =

(

p∗

p0(x̄)

)n

. (26)

To study the stability of the origin we assume solutions of the

form

ξ(x, t) = A(x)eλt , η(x, t) = B(x)eλt (27)

and substitute them into Eqs.(24) and (25). Solving for B(x)
yields the following integral equation

r B(x) =

Z 1

0
K1(x̄)B(x̄)dx̄ (28)

where

r = −eλT (λ +µ)2 (29)

To solve Eq.(28), we note that the RHS is independent of x,

which tells us that B(x)=B is constant. Eliminating B from

Eq.(28), we obtain

r =

Z 1

0
K1(x̄)dx̄ (30)

Here K1(x̄) is given by Eq.(26), so that r is known. We are

left with the problem of determining λ from Eq.(29) when r

is known. This problem is common to both the present case
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of uniform weighting as well as to the case of exponential

weighting. To avoid repeating the treatment, we handle this

problem in the Appendix. There are two important situations:

(i) when T = 0, in which case λ determines the stability of the

system with no delay, and (ii) when T = Tcr, where the delay Tcr

corresponds to pure imaginary λ and corresponds to a change in

stability.

(i) When T = 0, Eq.(57) in the Appendix gives

λ = −µ±

√

−
Z 1

0
K1(x̄)dx̄ (31)

which shows that the system with no delay is stable since

K1(x̄)>0 from (26).

(ii) When T = Tcr, Eqs.(62),(61) in the Appendix give

Tcr =
1

ω
arctan

( 2ωµ

ω2 −µ2

)

(32)

ω =

√

−µ2 +

Z 1

0
K1(x̄)dx̄ (33)

We continue the example given in the previous section,

namely, p0(x̄) = 1 + x̄, n = 3 and µ = 0.2, which yielded the

steady state p∗ = 2.9876. By substituting Eq.(26) into (33) we

obtain ω = 0.24977 which we substitute into (32) to obtain the

critical delay Tcr = 5.40638, where the steady state becomes

unstable.

CASE 2: EXPONENTIAL WEIGHTING

In this case the steady state p∗(x) satisfies the ODE (14). To

study its stability, we linearize Eqs.(9) and (10), which give

ξt = −µ ξ−
Z 1

0
e−|x−x̄| ηd(x̄)dx̄ (34)

ηt = ξ−µ η (35)

If ξ(x, t)=φ(x)eλt and η(x, t)=ψ(x)eλt then Eqs.(34) and (35) be-

come

−eλT (λ +µ)φ(x) =

Z 1

0
e−|x−x̄| ψ(x̄)dx̄ (36)

(λ +µ)ψ(x) = φ(x) (37)

Substituting Eq.(37) into (36) gives

r ψ(x) =

Z 1

0
e−|x−x̄| ψ(x̄)dx̄ (38)

where r is given by Eq.(54). Next we transform the integral equa-

tion (38) to the following equivalent second order ODE [14]

d2ψ

dx2
+

(

2

r
−1

)

ψ = 0 (39)

which will have solutions of the form

ψ(x) = c1 sin(ρ x)+ c2 cos(ρ x) (40)

where c1 and c2 are constants and ρ =
√

2
r
−1. The endpoint

boundary conditions of the second order ODE (39) are obtained

from Eq.(38) as follows

ψ(0) =
ρ2 +1

2

Z 1

0
e−x̄ψ(x̄)dx̄ (41)

ψ(1) =
ρ2 +1

2e

Z 1

0
ex̄ψ(x̄)dx̄. (42)

Substituting Eq.(40) into (41) and (42) gives a system of equa-

tions on the constants c1 and c2 which yields the following con-

dition on ρ for nontrivial solutions

∣

∣

∣

∣

ρ sinρ− cosρ− e −sinρ−ρ cosρ + eρ
eρ sinρ− e cosρ−1 −e sinρ− eρ cosρ +ρ

∣

∣

∣

∣

= 0 (43)

or equivalently

(

ρ2 −1
)

sinρ−2 ρ cosρ = 0 (44)

Eq.(44) has an infinite number of roots, the first three

of which are ρ = 1.30654,3.67319,6.58462, · · · which give

the following corresponding values for r = 2/(1 + ρ2) =
0.73881,0.13800,0.04509, · · ·. Now that we know r, we may use

the results in the Appendix to determine stability of the steady

state. Returning to eq.(40), we find

c2 = ρc1 (45)

See Fig.2.

(i) When T = 0, Eq.(57) in the Appendix gives

λ = −µ ±√−r which, in view of the fact that all the val-

ues of r are positive, shows that the system with no delay is

stable.

(ii) When T = Tcr, Eqs.(61) and (62) in the Appendix give

expressions for ω and Tcr. Since we are interested in the smallest

value for Tcr, we take r = 0.73881, which gives, for µ = 0.2, the

values ω = 0.83595 and Tcr = 0.56184.

In order to check this result, we replace the continuous vari-

ables ξ(x, t) and η(x, t) in Eqs.(34),(35) by a discrete set of N+1

variables ξi(t) and ηi(t). This corresponds to a model of N+1

coupled gene units, and replaces the integral in Eq.(34) by a sum

of N+1 terms. As we now demonstrate, analysis of this system

shows that Tcr → 0.56184 as N goes to infinity, for µ = 0.2,
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in agreement with the foregoing analysis. We start by dis-

cretizing the continuous system, Eqs.(34),(35), into an (2N+2)-

dimensional system given by

ξ̇i = −µ ξi −
1

N +1

N

∑
j=0

e−|i− j|/N η j(t −T ) (46)

η̇i = ξi −µ ηi (47)

where i = 0,1, . . .,N . Next we assume solutions of the form

ξi = φi eλt (48)

ηi = ψi eλt (49)

and substitute them into (46),(47) to obtain

−eλT (λ +µ)φi =
1

N +1

N

∑
j=0

e−|i− j|/N ψ j (50)

(λ +µ)ψi = φi (51)

eliminating φi we obtain

cψi =
N

∑
j=0

e−|i− j|/N ψ j (52)

where c = (N + 1)r and r is given by (54). For nontrivial

solutions, the system (52) of N+1 algebraic equations, must

satisfy det(K − cI) = 0 where K is the (N+1)×(N+1) matrix

K=[Ki j]=[exp(−|i− j|/N)] and c is its associated eigenvalue.

Since K is a symmetric matrix, all of its eigenvalues are real

and thus c is a real number. Numerical evaluation of these

eigenvalues c shows that they are all positive. The stability

results for the steady state are summarized as follows:

(i) When T = 0, we see from Eq.(57) in the Appendix with

r = c/(N +1) that the steady state in the system with no delay is

stable.

(ii) When T = Tcr, we choose the smallest value of c for

a given truncation size N , and use Eqs.(61) and (62) in the

Appendix to obtain values for ω and Tcr where we take r =
c/(N + 1). Table 1 shows results for µ = 0.2 for various val-

ues of N.

CONCLUSIONS
In this paper we investigated the steady state solutions of

a continuous gene regulatory network model. The model takes

the form of an ordinary differential equation coupled to a de-

lay differential-integral equation having time, t , and gene loca-

tion, x, as independent variables. The study was divided into two

Table 1. NUMERICAL RESULTS FOR µ = 0.2

N c ω Tcr

1 1.3678 0.8024 0.6089

2 2.0612 0.8044 0.6059

3 2.7844 0.8100 0.5977

5 4.2494 0.8175 0.5870

7 5.7215 0.8216 0.5813

10 7.9338 0.8253 0.5761

15 11.6246 0.8285 0.5718

30 22.7034 0.8320 0.5671

50 37.4783 0.8336 0.5649

100 74.4173 0.8348 0.5634

200 148.2960 0.8353 0.5627

300 222.1740 0.8355 0.5623

cases: uniform weighting and exponential weighting. For the

uniform weighting case we showed that the steady state is not

only constant in time but in space as well. This allowed us to

solve the associated eigenvalue problem and prove that the sys-

tem is stable when there is no delay. Subsequently, we showed

that the system becomes unstable for a critical delay and found

closed form expressions for the critical delay and associated fre-

quency. For the exponential weighting case, we found that the

steady state solution depends on gene location. This was accom-

plished by transforming the steady state integral equation into

a second order differential equation. By solving the differential

equation we found a closed form expression for the x-dependent

steady state. Stability analysis then revealed that the nondelayed

system is stable and expressions for the critical delay and associ-

ated frequency were found. We confirmed our results by means

of a numerical approximation where the continuous system was

discretized, which resulted in an N-dimensional system with de-

lay. Numerical evaluations for different N were performed and

good agreement was found with the continuous counterpart as N

became large.

The model assumes that the rate at which mRNA is pro-

duced at a given site x depends on the concentration of protein at

all sites 0 ≤ x ≤ 1. Analysis of the model shows that the pres-

ence of delay produces an instability in the steady state leading

to periodic behavior. The present model differs from previous

models [33], [34] in that the steady state here can have spatial de-

pendence, cf.eqs.(19),(23). In the real cell, the number of DNA

sites and ribosomes are large but finite, whereas our system mod-

els them as being continuous, i.e., infinite in number. However

we checked our continuum model against a finite N-dimensional

approximation and saw that the two converged as N → ∞.

The present work is a first step in studying the periodic re-

sponse of this model of a gene regulatory network. Current work
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involves extending this analysis to include nonlinear terms so that

the amplitude of oscillation can be predicted as a function of de-

lay.

Figure 1. Steady state for CASE 2, p∗(x) vs. x, eq.(23).

Figure 2. Bifurcation mode shape from linearized stability analysis,

ψ(x) vs. x, eqs.(40),(45) with c1=1.

APPENDIX

In Eqs.(28) and (38) we have the following eigenvalue prob-

lem

r f (x) =

Z 1

0
K(x, x̄) f (x̄)dx̄ (53)

where K(x, x̄) is a symmetric integral kernel, f (x) is the eigen-

function, and r is the associated eigenvalue given by

r = − eλT (λ +µ)2 (54)

Note that r is real since the RHS of (53) contains a symmetric

kernel and thus is a self-adjoint operator of the form

L(·) =

Z 1

0
K(x, x̄)(·)dx̄ (55)

which has real eigenvalues.

Now given r we wish to determine λ in two special situ-

ations: (i) when T = 0, and (ii) when T = Tcr and λ is pure

imaginary, corresponding to a change in stability.

(i) When T = 0, Eq.(54) becomes

r = − (λ +µ)2 (56)

and gives

λ = −µ±
√
−r (57)

If r > 0 then the Re(λ) = −µ < 0 (for positive µ), and we have

stability of the system with no delay.

(ii) When T = Tcr and λ = iω, Eq.(54) becomes

r = − eiωTcr(iω+µ)2 (58)

which gives the two real equations

r = 2 µ ω sin ωTcr +
(

ω2 −µ2
)

cosωTcr (59)

0 =
(

ω2 −µ2
)

sinωTcr −2 µ ω cosωTcr (60)

Solving Eqs.(59),(60) for sinωTcr and cosωTcr, and using the

identity sin2 +cos2=1 we obtain

ω =
√

r−µ2 (61)

Dividing the expressions for sinωTcr and cosωTcr and solving

for Tcr we also obtain

Tcr =
1

ω
arctan

(

2µω

ω2 −µ2

)

(62)
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