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This paper involves the dynamics of a delay limit cycle oscillator being driven by a time-varying per-
turbation in the delay:

_x ¼ �x t�TðtÞð Þ�ϵx3

with delay TðtÞ ¼ π
2þϵkþϵ cos ωt. This delay is chosen to periodically cross the stability boundary for

the x¼0 equilibrium in the constant-delay system.
For most of parameter space, the system is non-resonant, leading to quasiperiodic behavior. However,

a region of 2:1 resonance is shown to exist where the system's response frequency is entrained to half of
the forcing frequency ω. By a combination of analytical and numerical methods, we find that the tran-
sition between quasiperiodic and entrained behavior consists of a variety of local and global bifurcations,
with corresponding regions of multiple stable and unstable steady-states.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A recent study [1] of dynamical systems with delayed terms has
considered the following “delay limit cycle oscillator” in the form
of a differential-delay equation (DDE):

_x ¼ �xðt�T0Þ�ϵx3 ð1Þ

This system exhibits a supercritical Hopf bifurcation at delay
T0 ¼ π=2 such that the equilibrium point at the origin x¼0 is
stable for T0oπ=2 and unstable otherwise. The stable limit cycle
for T04π=2 is created with natural frequency 1 [2–4]. For an
introduction to DDEs, see [5].

Eq. (1) with ϵ¼ 0 has had application to insect locomotion [6].
This paper considers a system of the same form as Eq. (1), but

with a periodically time-varying delay TðtÞ ¼ π=2þϵkþϵ cos ωt:

_x ¼ �xðt�TðtÞÞ�ϵx3 ¼ �x t�π
2
�ϵk�ϵ cos ωt

� �
�ϵx3 ð2Þ

The delay T is taken to be time-dependent such that the system
may periodically cross the Hopf bifurcation exhibited by the con-
stant T case. This causes the stability of the x¼0 equilibrium to
regularly alternate between stable and unstable. We would
anticipate the equilibrium being stable if it is in the stable region
for more than half of the forcing period, and unstable otherwise.
However, we will show that the effect of this forcing may cause
(R. Rand).
unexpected behavior due to resonance between the forcing fre-
quency ω and the frequency of the limit cycle created in the Hopf.

The effect of time-periodic delay on an oscillator has been
studied with application to turning processes with varying spindle
speed in machine-cutting [7].
2. Non-resonant two-variable expansion

We begin by expanding the system about the ϵ¼ 0 solution,
using two time variables, fast time u and slow time v:

u¼ t v¼ ϵt x¼ x0þϵx1þOðϵ2Þ ð3Þ

The multiple time scales lead to the restatement of the deri-
vative:

_x ¼ dx
dt

¼ ∂x
∂u

du
dt

þ∂x
∂v

dv
dt

¼ xuþϵxv ð4Þ

The delay term is also approximated by its Taylor expansion:

xd ¼ x u�T ; v�ϵTð Þ ¼ x u�π
2
; v

� �
�ϵðkþ cos ωuÞxu u�π

2
; v

� �
�ϵ

π
2
xv u�π

2
; v

� �
þOðϵ2Þ ð5Þ

Within the original equation with these expansions applied, we
can find the coefficients of each power of ϵ. The O ð1Þ terms (ϵ¼ 0)
give the differential equation:

x0uþx0 u�π
2
; v

� �
¼ 0 ð6Þ
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with a solution of the form:

x0ðu; vÞ ¼ AðvÞ cos uþBðvÞ sin u ð7Þ
The OðϵÞ terms are found from the original (expanded) equation

to give an equation for x1:

x1uþx1 u�π
2
; v

� �
¼ �x0vþðkþ cos ωuÞx0u u�π

2
; v

� �
þπ
2
x0v u�π

2
; v

� �
�x30 ð8Þ

Since we will be looking to eliminate secular terms cos ðuÞ and
sin ðuÞ, at this point we note that some terms' resonance or non-
resonance are dependent on the value of ω, in particular:

ð cos ωuÞðA cos uþB sin uÞ ¼ A
2

cos ðωþ1Þuþ cos ðω�1Þuð ÞþB
2

sin ðωþ1Þuð

� sin ðω�1ÞuÞ ð9Þ
Here we will split our analysis into two cases, resonant (ω� 2)

and non-resonant (ω≉2), in order to account for the presence or
absence of the resonant terms that arise from cos ωu.

2.1. Non-resonant behavior

Eliminating secular terms in the case where ω≉2 results in the
approximation and slow flow:

ð2π2þ8ÞA0 ¼ 8kA�4πkBþð3πB�6AÞðA2þB2Þ ð10Þ
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Fig. 1. Regions with 1, 3, and 5 slow flow equilibria, bounded by (dashed) double
saddle-node bifurcations and (solid) pitchfork bifurcations.

-1.0 -0.5 0.0 0.5 1.0 1.5
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R

Fig. 2. AUTO results for k¼ �0:1 with varying Δ. Plotting the amplitude R¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

p
of the x(t) response for the equilibria, with stability information (solid is

stable, dashed is unstable). All points on the Ra0 curve represent 2 equilibria by
symmetry.
ð2π2þ8ÞB0 ¼ 8kBþ4πkA�ð3πAþ6BÞðA2þB2Þ ð11Þ
Transforming to polar form by taking A¼ R cos θ and

B¼ R sin θ, to result in the new form x0ðu; vÞ ¼ RðvÞ cos ðu�θðvÞÞ,
gives:

ðπ2þ4ÞR0 ¼ Rð4k�3R2Þ ð12Þ

ð2π2þ8Þθ0 ¼ πð4k�3R2Þ ð13Þ
The R0 equation is uncoupled, allowing us to study it separately.

R¼0 solves R0 ¼ 0 for all parameter values (representing the origin
x¼0); this solution is stable for all ko0. For k40 the stable
solution is R¼ 4k=3, with a corresponding θ0 ¼ 0. Based on this
result, x(t) is approximated to have response frequency 1 for k40,
as in the original limit cycle oscillator Eq. (1) with T04π=2.

We note that in this expansion, the periodic forcing is shown to
have no effect to this order. By expanding about the resonant
forcing frequency ω¼ 2 below, we will see that the second fre-
quency does have an effect on the non-resonant behavior as well
as behavior within the resonant region.
3. Resonant two-variable expansion

According to Eq. (9), the choice ω¼ 2 makes the system reso-
nant. To consider this behavior, we will redefine the two-variable
expansion about this value by defining ω¼ 2þϵΔ.

Using new variables for fast time ξ and slow time η to expand
about the resonance at ω¼ 2:

ωt ¼ 2ξ¼ 2ð1þϵΔ=2Þt η¼ ϵt ð14Þ

_x ¼ dx
dt

¼ ∂x
∂ξ

dξ
dt

þ∂x
∂η

dη
dt

¼ ð1þϵΔ=2Þxξþϵxη ð15Þ

We proceed as before. The x0 solution takes the same form as
Eq. (7) in terms of the new time variables:

x0ðξ;ηÞ ¼ AðηÞ cos ξþBðηÞ sin ξ ð16Þ
while the OðϵÞ terms give the following equation for x1:

x1ξþx1 ξ�π
2
;η

� �
¼ �x0η�

Δ
2
x0ξþ

πΔ
4

þkþ cos 2ξ
� �

x0ξ ξ�π
2
;η

� �

þπ
2
x0η ξ�π

2
;η

� �
�x30 ð17Þ
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Fig. 3. Stability of x¼0 near the resonance; “U” is unstable, “S” is stable. Changes in
stability are caused by pitchfork bifurcations (solid line) and Hopf bifurcations
(dashed line).
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Within the resulting equation, we choose AðηÞ and BðηÞ to
eliminate secular terms by collecting the coefficients of the sin ðξÞ
and cos ðξÞ terms. This results in the following system of ordinary
differential equations as the slow flow of the system:

ð2π2þ8ÞA0 ¼ ð8kþ4ÞAþð2π�4πk�π2Δ�4ΔÞBþð�6Aþ3πBÞðA2þB2Þ ð18Þ

ð2π2þ8ÞB0 ¼ ð2πþ4πkþπ2Δþ4ΔÞAþð8k�4ÞBþð�6B�3πAÞðA2þB2Þ ð19Þ
where we have used x0ðξ�π=2;ηÞ ¼ �x0ξ from the Oð1Þ terms to
simplify the delay terms in Eq. (17). We note that Eqs. (18) and (19)
are similar to the non-resonant slow flow Eqs. (10) and (11), but
include additional terms caused by the resonance with the para-
metric forcing term.

This system of slow flow equations exhibits an assortment of
bifurcation phenomena. Its steady-state solutions will include
equilibrium points, representing periodic motions in x(t), and limit
cycles, corresponding to quasiperiodic behavior of the original
system.
4. Slow flow equilibria

Equilibria in the slow flow solve A0 ¼ B0 ¼ 0. We use Maxima to
eliminate B and obtain a single expression f ðAÞ ¼ 0, then addi-
tionally require f 0ðAÞ ¼ 0 to find double roots in A, which will
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Fig. 4. Numbers of stable/unstable non-trivial equilibria (that is, besides A¼ B¼ 0).
Ellipse is the set of pitchfork bifurcations (Eq. (20)). Vertical lines are double sad-
dle-node bifurcations (Eq. (21)). The dashed curve is a Hopf bifurcation (Eq. (28)).
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Fig. 5. Local bifurcation curves (solid lines) as seen in Figs. 3 and 4. Global bifur-
cation curves (dashed lines) found numerically. Degenerate point P also marked,
see Fig. 8.
include pairs of equilibrium points coalescing in saddle-node
bifurcations.

Eliminating A from these equations results in multiple
expressions representing curves in Δ�k parameter space. The
following locations in parameter space are observed to correspond
to double roots in (A,B):

16k2þ8πΔkþðπ2þ4ÞΔ2 ¼ 4 ð20Þ

Δ¼ 71 ð21Þ
Eq. (20) is an ellipse which may be shown to represent a pair of

pitchfork bifurcations off of A¼ B¼ 0. Eq. (21) represents double
saddle-node bifurcations away from the origin, transitioning
between regions of 1 and 5 equilibria; this restricts them to k
values above the ellipse. Together these bifurcation curves
describe regions in parameter space with 1, 3, and 5 slow flow
equilibria, as can be seen in Fig. 1.

Results from AUTO bifurcation continuation software [8], used
on the slow flow for k¼ �0:1 and varying Δ, show the interaction
of the equilibria as the system crosses these bifurcation curves (see
Fig. 2).
5. Stability of x¼0

The stability of the x¼0 solution is governed by the Jacobian
matrix J for the slow flow about A¼ B¼ 0:

J ¼ 8kþ4 2π�4πk�ðπ2þ4ÞΔ
2πþ4πkþðπ2þ4ÞΔ 8k�4

" #
ð22Þ

Since the eigenvalues λ of J satisfy the characteristic equation:

λ2�trðJÞλþdetðJÞ ¼ 0 ð23Þ
the condition for stability ReðλÞo0 requires both detðJÞ40 and
trðJÞo0 [9].

The stability boundary detðJÞ ¼ 0 gives Eq. (20) and corresponds
to the ellipse in Fig. 1. The inside of the ellipse gives detðJÞo0 such
that the origin is a saddle point and therefore unstable.

Outside the ellipse where detðJÞ40, the stability of the origin
depends on the sign of trðJÞ ¼ 16k. At the stability boundary
trðJÞ ¼ 0, the eigenvalues λ are purely imaginary leading to a Hopf
bifurcation. Thus the origin A¼ B¼ 0 undergoes a Hopf bifurcation
at k¼0 under the condition which restricts to the outside of the
ellipse:

Δ241=ðπ2þ4Þ ð24Þ
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Fig. 6. Zoom of Fig. 5 with labeled points explored in Figs. 7 and 8.
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Fig. 7. Representative phase portraits of the slow flow from each region of parameter space, locations as marked in Fig. 6. Obtained with numerical integration via pplane.
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At the Hopf bifurcation, the eigenvalues λ¼ iW give the
response frequency to be:

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ2þ4Þ2Δ2�4ðπ2þ4Þ

q
ð25Þ

in slow time η, or frequency ϵW in t.
These conditions on the determinant and trace, together with

the corresponding pitchfork and Hopf bifurcation curves, lead to
the stability regions seen in Fig. 3.
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Fig. 10. Representative phase portraits of the slow flow from regions of parameter spa
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tively identical to points a, b, f, and g respectively from Fig. 6.
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Fig. 8. Schematic at degenerate point P from Figs. 5 and 6, showing the number of
limit cycles (LC) and equilibrium points (EP) in each labeled region. Bifurcation types
also shown: Hopf (H), pitchfork (PF), heteroclinic (Het), and limit cycle fold (FLC).
6. The limit cycle from k¼0 Hopf

The Hopf bifurcation off the origin at k¼0 is found to be
supercritical, resulting in a stable limit cycle in the slow flow for
k40 for values of Δ satisfying Eq. (24), i.e. outside the ellipse. This
limit cycle represents a quasiperiodic motion in the overall system,
on account of the two frequencies represented: the original Hopf
frequency ϵW and the halved forcing frequency ω=2¼ 1þϵΔ=2.

We will show that this limit cycle is destroyed as the system
parameters move into the resonance region (i.e. as ω-2 or Δ-0).
7. Stability of xa0 slow flow equilibria

Just as for the A¼ B¼ 0 equilibrium above, we consider the
linear stability of the non-trivial equilibria of the slow flow by
linearizing about their locations [9]. The pair of equilibria found in
both the regions of 3 and 5 equilibria (see Fig. 1) have the loca-
tions:

Am ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k
3
þπΔ

6
þ1
3

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Δ2

q� �
�Δ2

3

s
ð26Þ

Bm ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k
3
þπΔ

6
�1
3

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Δ2

q� �
þΔ2

3

s
ð27Þ
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Fig. 11. The system is entrained to periodic motion (P) at frequency ω=2 within the
resonance region (shown for k¼0.05). It exhibits quasiperiodic motion (QP) with
multiple frequencies everywhere else.
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By linearizing about this location and looking for pure ima-
ginary eigenvalues, we find that these equilibria change stability in
Hopf bifurcations on the curve:

k¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Δ2

q
�πΔ

2
ð28Þ

This curve intersects with the ellipse when k¼0 and therefore
only exists for k40. It reaches an end by approaching Δ¼ �1
tangentially as k approaches π=2.

In contrast, the pair of equilibria which exist only in the region
of 5 equilibria (see Fig. 1):

Ap ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k
3
þπΔ

6
þ1
3

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Δ2

q� �
�Δ2

3

s
ð29Þ

Bp ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k
3
þπΔ

6
�1
3

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Δ2

q� �
þΔ2

3

s
ð30Þ

are found to be unstable saddle points wherever they exist.
The foregoing discussion of stability of the non-trivial equilibria

is summarized in Fig. 4.
8. Slow flow phase portraits

So far we have considered local bifurcations (pitchfork, saddle-
node, Hopf) as seen in Figs. 3 and 4. Fig. 5 shows these bifurcations
along with the global bifurcations that we will now discuss, being
limit cycle folds and heteroclinic bifurcations.

We use Matlab to plot numerically obtained phase portraits of
the slow flow Eqs. (18) and (19). Fig. 6 is a zoom of the left half of
Fig. 5 with regions labeled corresponding to phase portraits in
Fig. 7. Fig. 8 shows a schematic of the bifurcation curves in the
neighborhood of point P.

Fig. 9 is a zoom of the right half of Fig. 5 with regions labeled
corresponding to phase portraits in Fig. 10.
9. Stable motions of Eq. (2)

The previous figures (Figs. 1–10) correspond to the behaviors of
the slow flow equations (18) and (19). Now we summarize the
corresponding stable motions x(t) in the original system Eq. (2).
(Unstable motions are not mentioned since they will not be seen
in simulations.)

� Region a: origin only, x¼0 (no oscillation)
� Regions f, g: entrained motion only
� Region b, c, j: quasiperiodic (unentrained) motion only
� Regions d, e, h, i, r: quasiperiodic and entrained motions
� Region s: origin x¼0 (no oscillation) and entrained oscillation

We note that in the regions with multiple stable solutions, the
basins of attraction for each stable behavior are defined by initial
conditions which are functions of time.
10. Conclusions

In this work, we considered the dynamics of a delay limit cycle
oscillator whose delay is varied periodically across a critical value
of the delay corresponding to a Hopf bifurcation, such that the
equilibrium solution x¼0 alternates in time between being stable
and unstable.

For most forcing frequencies of the delay, the equilibrium at the
origin x¼0 is stable provided the average delay is smaller than the
critical delay. If the average delay is larger than the critical delay,
the system exhibits quasiperiodic behavior due to the coap-
pearance of oscillations at the forcing-frequency along with
oscillations at the limit cycle frequency.

However, the system has a 2:1 resonance which results in a
small region of parameter space about ω¼ 2 where the oscillator
behaves periodically. Within this region, the system is entrained to
oscillate at half of the forcing frequency, see Fig. 11. We conjecture
that other resonances (m:n) exist in this problem just as they do in
Mathieu's equation [2], but we have not found them analytically or
numerically as yet.

Within the transition between resonance and non-resonance,
the system is found to have regions of multiple stable behaviors
(periodic and quasiperiodic motions). Each steady-state has its
own basin of attraction, and the long-term behavior is then
determined by the initial conditions on x(t). (These initial condi-
tions consist of functions of time for a differential-delay equation.)

This system represents a particular form of parametric excita-
tion which has been previously unstudied, where the periodic
forcing term appears in the delay. A remarkably similar bifurcation
set has been observed in a system which did not involve delay
[10]. The system in [10] involved a second-order differential
equation undergoing a Hopf bifurcation which was being forced
parametrically.
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