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a b s t r a c t

This paper investigates the dynamics of a delay limit cycle oscillator under periodic external forcing. The
system exhibits quasiperiodic motion outside of a resonance region where it has periodic motion at the
frequency of the forcer for strong enough forcing. By perturbation methods and bifurcation theory, we
show that this resonance region is asymmetric in the frequency detuning, and that there are regions
where stable periodic and quasiperiodic motions coexist.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The following equation is perhaps the simplest possible differ-
ential-delay equation (DDE) that has interesting dynamics [1,2]:

( ) = − ( − ) − ( ) ( )
dx
dt

t x t T x t 1
3

It combines delay with nonlinearity and exhibits a Hopf bifurcation.
Although it involves only a first derivative in time, it is, as a DDE,
infinite dimensional. Thus unlike first order ODEs, which are dy-
namically much simpler than second order ODEs (for example au-
tonomous first order ODEs cannot oscillate), Eq. (1) supports a limit
cycle oscillation.

In this work we shall refer to Eq. (1) as a delay limit cycle os-
cillator (DLCO). Variants of Eq. (1) have been the subject of two
recent studies. These have involved Eq. (1) under linear self-
feedback [3], i.e.

α( ) = − ( − ) − ( ) + ( ) ( )
dx
dt

t x t T x t x t 2
3

and under a periodic variation within the delay term [4], i.e.

π ω( ) = − ( − ) − ϵ ( ) = + ϵ + ϵ ( )
dx
dt

t x t T x t T k t,
2

cos 3
3

In the present work we continue our investigation of variants
of the DLCO by studying the effect of a periodic forcing term:

α ω( ) = − ( − ) − ϵ ( ) + ϵ ( )
dx
dt

t x t T x t tcos 4
3

The linearized version of Eq. (1),

( ) = − ( − ) ( )
dx
dt

t x t T 5

has been applied to the growth of sunflowers relative to the angle
of the sun [5], and to the motion of beetles in tracking their prey
[6].
2. Derivation of slow flow

Since Eq. (1) exhibits a Hopf at π=T /2, we perturb off of that
critical value:

π= + ϵ ( )T
2 6

We define two time variables:

ξ ω η ω Δ= = ϵ = + ϵ ( )t t, , where 1 7

Then the first derivative is expanded into two terms:

ξ
ξ

η
η

ξ
Δ

η
= ∂

∂
+ ∂

∂
= ∂

∂
( + ϵ ) + ∂

∂
ϵ

( )
dx
dt

x d
dt

x d
dt

x x
1

8

Additionally, the delayed term is expanded as a Taylor series for
small ϵ:

ξ ω η( − ) = ( − − ϵ ) ( )x t T x T T, 9

ξ Δ η( − ) = ( − ( + ϵ ) − ϵ ) ( )x t T x T T1 , 10
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Fig. 1. Saddle-node bifurcation curves (Eq. (27)) in Δ α( ), parameter space for α ≥ 0. The number of equilibrium points in each region is also labeled. The curves meet in two
cusps, C C,1 2, as well as at the origin.

Fig. 2. Hopf bifurcation curve given as two branches of the ( ) =Jtr 0 condition (Eq.
(33)), resulting in a stable limit cycle (SLC) or unstable limit cycle (ULC). When

( ) <Jdet 0 (between points P and Q), the ( ) =Jtr 0 curve is not a Hopf bifurcation.

Fig. 3. Saddle-node (Eq. (27)) and Hopf bifurcation (Eq. (33)) curves plotted in Δ α( ),
bifurcation continuation software [8].
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where ( )ξ η˜ = − πx x ,
2

.
Next we expand

= + ϵ + (ϵ ) ( )x x x O 140 1
2

and substitute Eq. (14) into Eq. (4), collect terms and set coeffi-
cients of like powers of ϵ equal to zero. This gives:

= ( )Lx 0 150

⎛
⎝⎜

⎞
⎠⎟ξ

Δ
η

Δ π
ξ

π
η

α ξ= − ∂
∂

− ∂
∂

+ + ∂˜
∂

+ ∂˜
∂

− +
( )

Lx
x x x x

x
2

1
2

cos
16

1
0 0 0 0

0
3

parameter space for α ≥ 0. These results have also been confirmed with AUTO



Fig. 4. Homoclinic bifurcations −P G1 and −Q G2 are shown along with Hopf bi-
furcations −P E1 and −Q E2. Cf. Fig. 3. This figure is schematic and is not drawn to
scale.

Fig. 6. Schematic of bifurcation curves around points P, E1, and G1: saddle-node
(SN), Hopf (H), and homoclinic (Hom). The limit cycles (LC) and number of equi-
librium points (EP) are also shown for each region. The right SN becomes an in-
finite-period bifurcation below point G1. Labels (a–e) correspond to Fig. 7, where
representative phase portraits are given.
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where

ξ
= ∂

∂
+ ˜

( )
Lx

x
x

17i
i

i

Note that Eq. (16) can be simplified by using Eqs. (15), (17) to write

ξ ξ η η ξ
∂˜
∂

= − ∂
∂

∂˜
∂

= − ∂
∂ ∂ ( )

x x x x
,

18
0

2
0

2
0

2
0

giving

⎛
⎝⎜

⎞
⎠⎟ξ

Δ
η

Δ π
ξ

π
η ξ

α ξ= − ∂
∂

− ∂
∂
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− +
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Lx
x x x x
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2

1
2

cos
19

1
0 0

2
0

2

2
0

0
3

Eq. (15), representing the unperturbed equation, has the gen-
eral solution:

η ξ η ξ= ( ) + ( ) ( )x A Bcos sin 200

Substituting Eq. (20) into Eq. (19) and removing secular terms
Fig. 5. Limit cycle fold bifurcations occur along a curve which starts at point G2 and e
sequence of slow flow phase plane plots for fixed α = 0.243 and increasing Δ for trajecto
Δ = − 0.282691.
gives the following slow flow:

( ) ( )
( )η

π Δ π π π α

π
= −

+ − + + − − + −

+ 21
dA
d

B B AB A B A A2 8 3 6 4 3 8 6 8

2 8

2 3 2 2 3

2

( ) ( )
( )η

π Δ π πα π π

π
=

+ − − + − + − +

+ 22
dB
d

A B AB A B A A2 8 6 3 8 6 4 3 4

2 8

2 3 2 2 3

2

3. Analysis of slow flow

3.1. Equilibria and saddle-node bifurcations

We begin by looking for the equilibrium points of the slow
flow, which satisfy:
xtends upwards in the direction of increasing α. The figure on the right shows a
ries marked (a–n). Curve a corresponds to Δ = − 0.2850 and curve n corresponds to



Fig. 7. Representative phase portraits in (A,B) from each region (a–e) of parameter space from Fig. 6. A stable limit cycle exists only in regions (c) and (e), as marked. Obtained
with numerical integration via pplane [7].
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( ) ( )π Δ π π π α= − + + − − − +

− + ( )

B B AB A B

A A

0 2 8 3 6 4 3 8

6 8 23

2 3 2 2

3

( ) ( )π Δ π πα π

π

= + − − + − + −

+ ( )

A B AB A B A

A

0 2 8 6 3 8 6 4 3

4 24

2 3 2 2 3

First note that = =A B 0 (corresponding to ( ) =x t 0) is not an
equilibrium solution, due to the presence of the forcing term α.
Using Maxima to eliminate B from this set of equations gives a
cubic equation ( ) =f A 0:

α αΔ Δ πΔ α π Δ

Δ πα αΔ παΔ α

( ) = + + + − +

+ − Δ + + − = ( )
f A A A A A A A

A A

9 24 16 16 12 4

16 6 16 8 12 0 25

2 3 2 2 2 3 2 2 4

4 2 2 3 3

To search for double roots, which will signify saddle-node bi-
furcations, we look for the condition ′ ( ) =f A 0 to be satisfied si-
multaneously with ( ) =f A 0:



Fig. 8. Schematic of bifurcation curves around points Q, E2, and G2: saddle-node
(SN), Hopf (H), homoclinic (Hom), and limit cycle fold (LC fold). The limit cycles (LC)
and number of equilibrium points (EP) are also shown for each region. Labels (a–e)
correspond to Fig. 9, where representative phase portraits are given.
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α αΔ Δ πΔ α π Δ

Δ πα Δ

′ ( ) = + + + − +

+ − = ( )
f A A A27 48 16 16 12 4

16 6 0 26

2 2 2 2 3 2 2 4

4 2

By eliminating A from this pair of Eqs. (25), (26), we find
multiple expressions where the equilibrium value of A occurs at a
double root. By considering the same process to find double roots
in B, eliminating A from the equations first, we eliminate extra-
neous results. The remaining saddle-node bifurcation curve is
found at:

π Δ π Δ Δ π Δ πΔ π Δ Δ
π α Δ πα Δ πΔ π α Δ α Δ

Δ πα Δ α α

+ + + + + +
− − + − −
+ − + − = ( )

4 32 64 32 128 96 128

6 216 128 36 432

64 72 243 48 0 27

4 6 2 6 6 3 5 5 2 4 4

3 2 3 2 3 3 2 2 2 2 2

2 2 4 2

Note that α only appears at even powers; the transformation
α α→ − only affects the phase of the forcing term, which has no
effect due to the autonomous nature of the system. We will take
α ≥ 0 for simplicity.

Fig. 1 shows the saddle-node bifurcation curves and marks the
regions of 1 and 3 equilibrium points.

The saddle-node bifurcation curves meet in cusps where the
equilibrium is a triple root of the system. To find the locations of
the cusps, we look for triple roots in A by finding ″ ( ) =f A 0:

α αΔ″( ) = + = ( )f A A54 48 0 282 2

Solving this alongside equations (25) and (26), we find the lo-
cations of cusps C1 and C2 to be:

Δ α( ) = ( ) ( ), 6.201, 22.126 29C1

Δ α( ) = ( − ) ( ), 0.3027, 0.2386 30C2

These cusps may also be seen in Fig. 1.

3.2. Hopf bifurcations

Consider the equilibrium points to be ( )A B,E E . Then linearize
the slow flow about the equilibrium point and construct the Ja-
cobian matrix J:
⎡
⎣
⎢
⎢π

π π π

π π Δ π π
( + ) =

− + − + ( + )

− − ( + ) + + + +
J

A A B B

A A B B A
2 8

18 6 6 8 4 2 8

4 2 8 9 12 3 6
E E E E

E E E E E

2
2 2 2

2 2 2 2
For a Hopf bifurcation, we require ( ) =Jtr 0 and ( ) >Jdet 0. The
first condition takes the form:

( + ) − = ( )A B3 2 0 32E E
2 2

We solve this alongside the equilibrium conditions in AE and BE
to acquire several equations in Δ and α. Extraneous expressions
are eliminated by numerical observations to give a single equation
for Hopf bifurcations:

( )α π Δ πΔ= ( + ) + + ( )4 2 1 33H
2 1

6
2 2

Along this curve, the determinant of the Jacobian changes sign
at Δ π= ± +1/ 42 . Eq. (33) represents a Hopf bifurcation pro-
vided Δ π< − +1/ 42 or Δ π> +1/ 42 .

This pair of conditions also corresponds to the intersection of
the Hopf bifurcation curve with the saddle-node bifurcation curve,
which occurs tangentially at the locations P and Q:

⎛
⎝⎜

⎞
⎠⎟Δ α

π
( ) =

+ ( )
,

1

4
, 0.7893914

34
P

2

⎛
⎝⎜

⎞
⎠⎟Δ α

π
( ) = −

+ ( )
,

1

4
, 0.2283538

35
Q

2

The Hopf bifurcation for Δ π> +1/ 42 is observed to be su-
percritical, creating a stable limit cycle for values of α α| | < H . For
Δ π< − +1/ 42 , the Hopf bifurcation is subcritical, creating an
unstable limit cycle for values of α α| | > H . These results are sum-
marized in Fig. 2. These and any other limit cycles in the slow flow
( )A B, represent quasiperiodic behavior in the original system x(t).

Fig. 3 shows the saddle-node and Hopf bifurcation curves to-
gether. The curves intersect at four locations: P and Q (the tan-
gencies found above), and points labeled E1 and E2. At points E1
and E2, the Hopf bifurcation occurs simultaneously with a saddle-
node bifurcation. However, these bifurcations take place at sepa-
rate equilibrium locations ( )A B,E E in phase space and do not in-
teract; their simultaneous occurrence in parameter space is a
coincidence.

We will explore the behaviors at points P and Q further.

3.3. Homoclinic bifurcations

Numerical integration of the slow flow equations (21), (22)
shows that the limit cycles born in the Hopf bifurcations in Fig. 2
are destroyed in homoclinic bifurcations, a common scenario in
nonlinear dynamics (see e.g. section 3.3 of [1]). The results of
numerical integration are displayed in Fig. 4, where three curves of
homoclinic bifurcations are shown. The homoclinic bifurcation
along the curve −P G1 absorbs the limit cycle born in the Hopf
curve −P E1. Two additional homoclinic bifurcations occur on the
curves −Q G2.

3.4. Limit cycle folds

Numerical integration of the slow flow equations (21), (22)
reveals another curve of bifurcations, in addition to the saddle-
nodes, Hopfs and homoclinics already discussed. A limit cycle fold
is found for Δ < 0 where a pair of limit cycles (stable and unstable)
⎤
⎦
⎥
⎥

Δ π π

π

− + −

+ − ( )

A A B B

A B B

3 12 9

6 18 8 31

E E E E

E E E

2 2

2



Fig. 9. Representative phase portraits in (A,B) from each region (a–e) of parameter space from Fig. 8. A stable limit cycle exists in regions (a–d), while the unstable limit cycle
exists only in region (c) as marked. Obtained with numerical integration via pplane [7].
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merge and disappear. See Fig. 5, where the limit cycle folds occur
along a curve which starts at point G2 and extends upwards in the
direction of increasing α.

The figure on the right side of Fig. 5 shows a sequence of slow
flow phase plane plots demonstrating the two limit cycle trajec-
tories, for fixed α and increasing Δ in the neighborhood of the
curve of limit cycle folds. The outer stable limit cycle is relatively
unchanged, while the unstable limit cycle, created in the Hopf
bifurcation (Eq. (33)), approaches it via trajectories marked (a–n).

The limit cycle fold curve is observed to approach the Hopf
bifurcation curve which emanates from point Q, asymptotically as
Δ approaches large negative values (away from the resonance
region of parameter space). As a result, the region between these
curves, which exhibits both a stable limit cycle and a stable



Fig. 10. The number of slow flow limit cycles in each of the regions of Fig. 5 is
displayed. There is a stable limit cycle whenever at least one limit cycle exists. This
figure is schematic and is not drawn to scale.
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equilibrium point, rapidly becomes narrow away from the
resonance.
4. Behavior of the slow flow near point P

The Hopf bifurcation branch −P E1 creates a stable limit cycle
for smaller values of α, see Fig. 2. This limit cycle is numerically
observed to be destroyed in a homoclinic bifurcation along −P G1.
The Hopf and homoclinic bifurcations occur at the slow flow
equilibrium points which are created in the saddle-node bifurca-
tion near P.

The Hopf and homoclinic bifurcation curves starting at P con-
tinue towards the saddle-node bifurcation curve which intersects
points E1 and G1. The homoclinic bifurcation curve ends at point
G1, while the Hopf curve continues through point E1 into the
neighboring region.

The resulting bifurcation diagram near points P, G1, and E1 is
shown in Fig. 6. Phase portraits of the slow flow corresponding to
the regions labeled (a–d) are displayed in Fig. 7.
5. Behavior of the slow flow near point Q

In Fig. 8 we explore the behavior of the slow flow in the regions
around points Q, E2, and G2. To the left of Fig. 8, away from the
resonance, there exists a stable limit cycle L1 which corresponds to
quasiperiodic motion in the original system equation (4). This
quasiperiodicity is a result of motions involving both the unforced
limit cycle frequency and the forcing frequency.

The region QE G2 2 contains two limit cycles, one of which is L1.
The second limit cycle L2 is a small unstable limit cycle which is
created at the Hopf bifurcation branch −Q E2, see Fig. 2. The limit
cycle L2 is numerically observed to be destroyed in a homoclinic
bifurcation Hom2 along −Q G2. Limit cycle L1 is destroyed in a
second homoclinic bifurcation Hom1 which also intersects points
Q and G2.

Limit cycle L1 is destroyed in an infinite-period bifurcation as
we cross the saddle-node bifurcation curve to the right of point Q
in Fig. 8.

The Hopf and homoclinic bifurcation curves starting at Q con-
tinue towards the saddle-node bifurcation curve which intersects
points E2 and G2. The Hopf bifurcation curve continues through
point E2 into the neighboring region. The homoclinic curves Hom1
and Hom2, representing the destruction of the limit cycles, meet at
point G2 and are replaced by a limit cycle fold.

Phase portraits of the slow flow corresponding to the regions of
Fig. 8 labeled (a–e) are displayed in Fig. 9.
6. Conclusions

In this paper we have studied the effect of applying a periodic
forcing function to a delay limit cycle oscillator (DLCO):

α ω( ) = − ( − ) − ϵ ( ) + ϵ ( )
dx
dt

t x t T x t tcos 36
3

From Eq. (20) we see that an equilibrium point in the slow flow
corresponds to a periodic motion at the same frequency ω Δ= + ϵ1
as the forcing function. By contrast, a limit cycle in the slow flow
corresponds to a quasiperiodic motion in Eq. (36), a motion which
may be thought of as having frequencies coming from both the
original limit cycle and the forcing function.

Fig. 10 shows the number of slow flow limit cycles in each of
the regions of Fig. 5. It may be noted that in regions of at least one
limit cycle, a stable limit cycle exists. This indicates that entrain-
ment can only be guaranteed in regions of zero limit cycles (with a
stable equilibrium point).

For large enough α, a stable equilibrium point exists in the
absence of stable limit cycles, indicating that the forcing function
entrains the DLCO when it is strong enough. In contrast, for small
α or correspondingly large detuning, the system exhibits a limit
cycle as its only stable behavior, indicating that Eq. (36) exhibits
quasiperiodic motion.

However, the nature of the transition between quasiperiodic
behavior and entrainment does depend on the direction of the
detuning Δ, as may be seen in particular from the distinctions
between points P and Q. We note that there exist transition re-
gions where multiple stable behaviors coexist, such that entrain-
ment is dependent on the history of the system.

It may also be noted that the behavior for Eq. (36) near the
degenerate point P, as shown in Fig. 6, is directly comparable to
the forced van der Pol oscillator. (See [9, p. 71], or [1, p. 42b].) This
comparison marks a similarity between the behaviors of the DLCO
and the forced van der Pol oscillator. No such similarity exists for
the behavior near point Q.
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