
1 23

Nonlinear Dynamics
An International Journal of Nonlinear
Dynamics and Chaos in Engineering
Systems
 
ISSN 0924-090X
Volume 82
Combined 1-2
 
Nonlinear Dyn (2015) 82:481-488
DOI 10.1007/s11071-015-2169-z

Dynamics of a delay limit cycle oscillator
with self-feedback

Lauren Lazarus, Matthew Davidow &
Richard Rand



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Nonlinear Dyn (2015) 82:481–488
DOI 10.1007/s11071-015-2169-z

ORIGINAL PAPER

Dynamics of a delay limit cycle oscillator with self-feedback

Lauren Lazarus · Matthew Davidow ·
Richard Rand

Received: 21 October 2014 / Accepted: 15 May 2015 / Published online: 28 May 2015
© Springer Science+Business Media Dordrecht 2015

Abstract This paper concerns the dynamics of the
following nonlinear differential-delay equation: ẋ =
−x(t −T )− x3+αx in which T is the delay and α is a
coefficient of self-feedback. Using numerical integra-
tion, continuation programs and bifurcation theory, we
show that this system exhibits a wide range of dynami-
cal phenomena, including Hopf and pitchfork bifurca-
tions, limit cycle folds and relaxation oscillations.

Keywords Differential-delay equation ·Limit cycle ·
Hopf bifurcation

1 Introduction

Limit cycle oscillators have been of great interest to
researchers in nonlinear dynamics ever since the time
of Rayleigh [1] and van der Pol [2].

Recent interest in dynamical systems with delay has
produced a new type of oscillator which has the form
of a differential-delay equation (DDE):
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ẋ = −x(t − T ) − x3 (1)

As we shall see, this system exhibits a Hopf bifurca-
tion at T = π/2 in which a limit cycle is born [5,6].We
shall refer to Eq. (1) as a “delay limit cycle oscillator.”

Additionally, recent studies have been made of van
der Pol oscillators with delayed self-feedback [3,4].

In this paper, we consider Eq. (1) with a self-
feedback term:

ẋ = −x(t − T ) − x3 + αx (2)

Equation (2) may be described as a delay limit cycle
oscillator with self-feedback.

2 Equilibria and their stability

Equilibria in Eq. (2) are given by the equation

0 = −x − x3 + αx (3)

For α < 1, only x = 0 is a solution. For α ≥ 1, an
additional pair of solutions x = ±√

α − 1 exist such
that there are three constant solutions. These solutions
emerge from the x = 0 solution in a pitchfork bifurca-
tion at α = 1.

In order to determine the stability of the equilibrium
at x = 0, we investigate the linearized DDE:

ẋ = −x(t − T ) + αx (4)

Setting x = Aeλ t , we obtain the characteristic equa-
tion:

λ = −e−λ T + α (5)
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Fig. 1 Locations of equilibria as a function of α, independent
of T

In the zero-delay (T = 0) case, we are left with
λ = α − 1; therefore, x = 0 is stable for α < 1 and
becomes unstable for α > 1 where the other equilibria
(the arms of the pitchfork) exist.

For nonzero delay (T > 0), we anticipate the exis-
tence of a Hopf bifurcation and the creation of a limit
cycle, based on the known behavior for α = 0.We look
for pure imaginary eigenvalues by substituting λ = iω
into the characteristic Eq. (5) and separating the real
and imaginary terms into separate equations:

ω = sin(ωT ) (6)

0 = − cos(ωT ) + α (7)

By manipulating these, we obtain:

sin2(ωT ) + cos2(ωT ) = ω2 + α2 = 1 (8)

TH = arccosα

ω
= arccosα√

1 − α2
(9)

So for a given α, there exists a delay TH where a
Hopf bifurcation occurs at x = 0. In this case, the Hopf
bifurcations only exist for −1 < α < 1, since real
ω and finite TH cannot exist otherwise. Note that for
α = 0 [which corresponds to the uncoupled oscillator
of Eq. (1)], the Hopf occurs at TH = π/2. Figure 2
shows the stability of the x = 0 equilibrium point in
α − T space.

Next, we consider the stability of the equilibria
located along the arms of the pitchfork at

Fig. 2 Stability diagram for the equilibrium at x = 0. Regions
aremarked for the equilibria being stable (S) or unstable (U). The
curved line is given by Hopf Eq. (9). The instability for α > 1 is
due to a pitchfork bifurcation

Fig. 3 Stability diagram for the equilibria at x = ±√
α − 1.

Regions aremarked for the equilibria being nonexistent, unstable
(U) or stable (S). The curved line is given by Hopf Eq. (13)

x = ±√
α − 1 (10)

We begin by setting x = ±√
α − 1+ z which gives

the following nonlinear DDE:

ż = −z(t − T ) + (3 − 2α)z ∓ 3
√

α − 1z2 − z3 (11)

Stability is determined by linearizing this equation
about z = 0:

ż = −z(t − T ) + (3 − 2α)z (12)

Note that this is the same as Eq. (4) with α replaced by
3 − 2α. Thus, we use Eq. (9) to find the critical delay
for Hopf bifurcation as:

123

Author's personal copy



Dynamics of a delay limit cycle oscillator with self-feedback 483

TH = arccos(3 − 2α)
√
1 − (3 − 2α)2

(13)

Figure 3 shows the existence and stability of the
equilibria located at x = ±√

α − 1.

3 Limit cycles

Wehave seen in the foregoing that Eq. (2) exhibits vari-
ous Hopf bifurcations, each generically yielding a limit
cycle. We are concerned about the following questions
regarding these limit cycles:

(a) Are they stable, i.e., are the Hopf bifurcations
supercritical?

(b) What happens to the limit cycles after they are born
in the Hopfs?

The question of the stability of the limit cycles may
be answered by applying the multiple scales perturba-
tionmethod to the nonlinear DDEs (2) and (11). In fact,
this has already been accomplished in [7] for a general
DDE of the form:

du

dt
= γ u + βud + a1u

2 + a2uud + a3u
2
d + b1u

3

+ b2u
2ud + b3uu

2
d + b4u

3
d , (14)

where u = u(t) and ud = u(t − T ). The results of
that reference are given in Appendix. When applied to
Eq. (2), we find that the amplitude A of the limit cycle
is given by the expression:

A2 = −4(α2 − 1)2

3(α
√
1 − α2 arccosα + α2 − 1)

μ, (15)

where μ is the detuning off of the critical delay,

T = TH + μ, (16)

and where the approximate form of the limit cycle is
x = A cosωt . Here, TH andω are given by Eqs. (8) and
(9). A plot of the coefficient of μ in Eq. (15) is given
in Fig. 4 for −1 < α < 1. Note that this coefficient
is nonnegative over this parameter range (cf. Fig. 2),
which means that the limit cycle occurs for positive μ,
i.e., for T > TH, i.e., when the equilibrium at x = 0 is
unstable. Since the Hopf occurs in a two-dimensional
center manifold, this shows that the Hopf is supercrit-
ical and the limit cycle is stable.

Fig. 4 Coefficient of μ in Eq. (15) is plotted for −1 < α < 1.
Its nonnegative value shows that the limit cycle is stable, see text

A similar analysis may be performed for limit cycles
born from equilibria located on the arms of the pitch-
fork bifurcation. In this case, we use Eq. (11) and find
that the limit cycle is unstable and that the Hopf is sub-
critical.

These results have been confirmed by compari-
son with numerical integration of Eq. (2) using the
MATLAB function DDE23 and the continuation soft-
ware DDE-BIFTOOL [8–10]. Figure 5 shows a limit
cycle obtained using DDE23 for delay T = 4 and
α = −0.75. For these parameters, Eq. (9) gives TH =
3.6570 and Eq. (15) gives a limit cycle amplitude of
A = 0.2312. Also, Eq. (8) gives ω = 0.6614, which
gives a period of 2π/ω = 9.4993. Note that these com-
puted values agree with the values obtained by numer-
ical simulation in Fig. 5.

The DDE-BIFTOOL software shows that the limit
cycles born in a Hopf from the equilibrium at x = 0 die
in a limit cycle fold. Figure 6 displays two BIFTOOL
plots of limit cycle amplitude (×2) versus α for T =
1.1 and T = 3.5. The collection of all such curves is a
surface in α − T -amplitude space and is displayed in
Fig. 7. Note that although the locus of limit cycle fold
points cannot be found analytically, an approximation
for it may be obtained from the DDE-BIFTOOL curves
and is shown in Fig. 7. When projected down onto the
α − T plane, it represents the boundary beyond which
there are no stable limit cycles.

As noted above, the Hopf bifurcations off the equi-
libria located on the arms of the pitchfork are subcrit-
ical, i.e., the resulting limit cycle is unstable. This is
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Fig. 5 Limit cycle obtained using DDE23 for delay T = 4 and
α = −0.75. The theoretical values of amplitude and period,
namely A = 0.2312 and period = 0.6614 (see text), agree well
with those seen in the simulation

Fig. 6 BIFTOOL plots of limit cycle amplitude (×2) versus α.
The smaller curve is for T = 1.1, and the larger one is for
T = 3.5.Note that the limit cycles are born in a Hopf bifurcation
and die in a limit cycle fold, i.e., by merging with an unstable
limit cycle in a saddle-node bifurcation of cycles

illustrated in Fig. 8 which is a BIFTOOL computation
showing the Hopf bifurcation at α = 1.5 for varying
delay T . Eq. (13) gives the critical value TH = π/2.

4 Large delay

Numerical simulation of Eq. (2) shows that for large
values of delay, the limit cycles take the form of an
approximate square wave, see Fig. 9.

The following features have been observed in
numerical simulations (cf. Fig. 9):

Fig. 7 A surface of limit cycles. Each limit cycle is born in a
Hopf and dies in a limit cycle fold. The locus of limit cycle fold
points is shown as a space curve and is also shown projected
down onto the α − T plane

Fig. 8 BIFTOOL plot showing Hopf off the equilibrium at x =√
α − 1 = 0.7071 for α = 1.5, for varying delay T . Note that

Eq. (13) gives the critical value TH = π/2

1. The period of the square wave is approximately
equal to twice the delay, 2T .

2. The amplitude of the square wave is approximately
equal to

√
1 + α.

3. The large delay square wave is not found in simu-
lations for which α > 3.

In this section, we offer analytic explanations for these
observations.

Since Eq. (2) is invariant under the transformation
x �→ −x , we may refer to the value at the upper edge
of the square wave as x = A > 0, in which case the
value at the lower edge is x = −A. Then, at a point
x(t) on the lower edge, x(t − T ) refers to a point on
the upper edge, x(t − T ) = A, and Eq. (2) becomes

0 = −A − (−A)3 + α(−A) (17)
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Fig. 9 Limit cycle obtained using DDE23 for delay T = 100
and α = −0.75. Note the approximate form of a square wave, in
contrast to the nearly sinusoidal wave shape for smaller values
of delay, cf. Fig. 5

which gives the nontrivial solution

A = √
α + 1 (18)

Note that if α < −1, this solution cannot exist, no
matter what the delay T is.

During a jump down, x(t − T ) again takes on the
value

√
α + 1, so that (2) becomes

dx

dt
= −√

α + 1 − x3 + αx (19)

Equation (19) has equilibria at

x = −√
α + 1, x =

√
α + 1 ± √

α − 3

2
(20)

For α < 3, there is only one real root, x = −A =
−√

α + 1.
During the jump down, the variable x starts at√
α + 1, which acts like an initial condition for the

jump according to Eq. (19). The motion continues in
x toward the equilibrium at x = −√

α + 1, which is
approached for large time t . Note that the other two
equilibria in Eq. (20) lie between x = −√

α + 1 and
x = √

α + 1 in the case that α > 3. Their presence
prevents x from approaching x = −√

α + 1 and thus
disrupts the jump, which explains why no square wave
limit cycles are observed for α > 3.

The foregoing argument assumes that the equilib-
rium at x = −√

α + 1 is stable. To investigate the
stability of the equilibrium at x = −√

α + 1, we set

x = −√
α + 1 + y (21)

Substituting (21) into (19), we obtain

dy

dt
= −y3 + 3

√
α + 1y2 − (2α + 3)y (22)

Linearizing (22) for small y shows that x = −√
α + 1

is stable for α > −3/2. Since the square wave solution
ceases to exist when α < −1, the restriction of α >

−3/2 is not relevant.

5 Discussion

In the foregoing sections, we have shown that the delay
limit cycle oscillator with self-feedback, Eq. (2), sup-
ports a variety of dynamical phenomena, including
Hopf and pitchfork bifurcations, limit cycle folds and
relaxation oscillations. Numerical explorations using
DDE-BIFTOOL have revealed that Eq. (2) exhibits
many additional bifurcations, see, for example, Fig. 10.

We also note that due to the multivalued nature of
arccosine, there are an infinite number of Hopf bifur-
cation curves in parameter space. Referring to Eqs. (9)
and (13), these Hopf bifurcation curves can be gener-
alized to:

TH = (2πn + arccosα)√
1 − α2

(23)

Fig. 10 Numerical simulation of Eq. (2) using DDE-BIFTOOL.
Note that the left portion of the continuation curve is similar to
those shown in Figs.6 and 7. However, the additional bifurcations
shownhavenot been identified.Theperiodicmotions represented
by the rest of the branch could not be found using DDE23 and
are evidently unstable
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Fig. 11 DDE-BIFTOOL plots of the limit cycles created by the
first two Hopf bifurcations at x = 0, found for α = 0.5 and
increasing T

TH = (2πn + arccos(3 − 2α))
√
1 − (3 − 2α)2

(24)

for integer n, where the n = 0 case represents the bifur-
cations already discussed. We use the principal value
of arccos in this definition to be consistent with the
original equations.

These additional bifurcations do not change the
overall stability of the equilibria. The related peri-
odic motions appear to be unstable and have not been
observed in the results of DDE23 simulation. We can
use numerical continuation in DDE-BIFTOOL to trace
them for varying delay T ; for instance, Fig. 11 shows
results for the motions created by the n = 0 and n = 1
Hopf bifurcations off of x = 0.

For large delay T , we found that square waves of
higher frequency also existed. The periods of these
higher-order square waves are given by 2T

2n−1 , where
n is an integer and n = 1 corresponds to the base
square wave previously analyzed. See, for example,
Fig. 12, which shows a higher-order square wave for
which T = 100, α = −0.75 and n = 2.

Note that the amplitude of this square wave is the
same as that of the base square wave, namely A =√

α + 1 = √−0.75 + 1 = 1/2. Note also that both
the n = 2 higher-order square wave of Fig. 12 and the
base square wave of Fig. 9 coexist, each of them corre-
sponding to different initial conditions. In fact, higher-
order square waves corresponding to larger values of
n also coexist. An open question is what is the maxi-
mum value of n for which higher-order square waves
exist? (The problem is that as n increases, the period

Fig. 12 A higher-order square wave for T = 100, α = −0.75
and n = 2. Compare with the base square wave (n = 1) in Fig. 9

2T
2n−1 gets smaller, and the assumption that the period
is large compared to the jump time is no longer valid.)

Each edge of the squarewave has length equal to half
the period, T

2n−1 . An analysis similar to that presented
above in the section on large delay, for the base case,
can be repeated here.

6 Conclusions

In this work, we have shown that the diverse nature of
the observed dynamics of the delay limit cycle oscilla-
tor with self-feedback, Eq. (2), depends on the values
of the parameters T and α. This may be illustrated by
reference to various regions of the α − T parameter
plane. See Fig. 13, where the five regions I, II, II, IV
and V are bounded by curves a, b, c, d.

Curve a is given by the Hopf condition Eq. (9), so that
a stable limit cycle is born as we cross from region I to
region II.
Curve b is simply α = 1, and as we pass from region II
to region III, a new pair of equilibrium points are born
in a pitchfork bifurcation, see Fig. 1.
Curve c is given by the Hopf condition Eq. (13), so that
an unstable limit cycle is born in a subcritical Hopf as
we cross from region III to IV.
Curve d is a limit cycle fold, see Fig. 7. As we cross
from region IV to region V, a stable limit cycle disap-
pears in a fold. Thus, region V contains only the three
equilibrium points, namely the origin (unstable) and
the arms of the pitchfork (stable).
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Fig. 13 Regions of α − T parameter space and the bifurcation
curves which bound them

Finally, the pitchfork equilibria disappear as we cross
from region V to region I .

In summary, we may list the stable dynamical struc-
tures which appear in the five regions as follows:
Region I contains a stable equilibrium at the origin.
Regions II and III contain a stable limit cycle (which
was born in a Hopf off the origin).
Region IV contains both a stable limit cycle and a pair
of stable equilibria (the arms of the pitchfork).
Region V contains a pair of stable equilibria (the arms
of the pitchfork).

It is to be noted that the foregoing summaryhas omit-
ted unstable motions (see Fig. 10) as well as motions
occurring for large delay (see Figs. 9,12).

Equation (1), the basic delay limit cycle oscillator
uponwhich this work is based [5,6], is perhaps the sim-
plest example of a systemwhich oscillates due to delay
and nonlinearity. We look forward to further investiga-
tions based on this system.

Appendix: Hopf bifurcation formula for first-order
DDEs

In this Appendix, we review the Hopf bifurcation
formula, first derived in [7], for first-order constant-
coefficient differential-delay equations of the form of
Eq. (14). The amplitude A of the approximate solution
u = A cosωt is given by the expression:

A2 = μP/Q, (25)

where

P = 4β3(4γ − 5β)(β − γ )(γ + β)2 (26)
Q = 5b2THβ6 + 15b4THβ6 + 15b1β

5 + 5b3β
5 − 4a21THβ5

−3a22THβ5 − 22a23THβ5 − 7a1a2THβ5 − 14a1a3THβ5

−7a2a3THβ5 − 15γ b1THβ5 + γ b2THβ5 − 15γ b3THβ5

+3γ b4THβ5 − 18a21β
4 − a22β

4 − 4a23β
4 − 9a1a2β

4

−18a1a3β
4 − 9a2a3β

4 + 3γ b1β
4 − 15γ b2β

4 + γ b3β
4

−15γ b4β
4 + 18γ a21THβ4 + 7γ a22THβ4 + 12γ a23THβ4

+19γ a1a2THβ4 + 30γ a1a3THβ4 + 37γ a2a3THβ4

−3γ 2b1THβ4 + 6γ 2b2THβ4 − 3γ 2b3THβ4

−12γ 2b4THβ4

+12γ a21β
3 + 11γ a22β

3 + 26γ a23β
3 + 33γ a1a2β

3

+30γ a1a3β
3 + 19γ a2a3β

3 − 12γ 2b1β
3 − 3γ 2b2β

3

+6γ 2b3β
3 − 3γ 2b4β

3 − 8γ 2a21THβ3 − 12γ 2a22THβ3

+4γ 2a23THβ3 − 26γ 2a1a2THβ3 − 16γ 2a1a3THβ3

−20γ 2a2a3THβ3 + 12γ 3b1THβ3 + 2γ 3b2THβ3

+12γ 3b3THβ3 − 14γ 2a22β
2 − 8γ 2a23β

2 − 18γ 2a1a2β
2

−12γ 2a1a3β
2 − 32γ 2a2a3β

2 + 12γ 3b2β
2 + 2γ 3b3β

2

+12γ 3b4β
2 + 8γ 3a22THβ2 + 8γ 3a1a2THβ2

−4γ 3a2a3THβ2 − 8γ 4b2THβ2 + 4γ 3a22β

−8γ 3a23β + 8γ 3a2a3β − 8γ 4b3β + 8γ 4a2a3, (27)

where ω and TH are the values of frequency and delay
associated with the Hopf and where μ = T − TH.

In the case of the delay limit cycle oscillator with
self-feedback, Eq. (2), we have for the Hopf at u =
x = 0:

γ = α

β = −1

a1 = a2 = a3 = 0

b1 = −1

b2 = b3 = b4 = 0

andwe have TH given byEq. (9).When these parameter
values are substituted into the above expressions for P
and Q, we obtain Eq. (15).
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