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Abstract

Analytical and numerical methods are applied to a pair of coupled
nonidentical phase-only oscillators, where each is driven by the same
independent third oscillator. The presence of numerous bifurcation
curves defines parameter regions with 2, 4, or 6 solutions correspond-
ing to phase locking. In all cases, only one solution is stable. Else-
where, phase locking to the driver does not occur, but the average
frequencies of the drifting oscillators are in the ratio of m : n. These
behaviors are shown analytically to exist in the case of no coupling,
and are identified using numerical integration when coupling is in-
cluded.

©2014 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

Recent experiments in optical laser MEMs have involved models of two coupled oscillators, each of
which is being driven by a common harmonic forcer in the form of light [1]. Various steady states
have been observed, including complete synchronization, in which both oscillators operate at the same
frequency as the forcer, and partial synchronization, in which only one of the oscillators operates at
the forcing frequency. Other possible steady states may exist, for example where the two oscillators
are mutually synchronized but operate at a different frequency (or related frequencies) than that of
the forcer (“relative locking”). Additionally, the oscillators may operate at frequencies unrelated to
each other or to the forcing frequency (“drift”). The question of which of these various steady states is
achieved will depend upon both the frequencies of the individual uncoupled oscillators relative to the
forcing frequency, as well as upon the nature and strength of the forcing and of the coupling between
the two oscillators.

Related studies have been done for other variants of the three coupled oscillator problem. Mende-
lowitz et al. [2] discussed a case with one-way coupling between the oscillators in a loop; this system
resulted in two steady states due to choice of direction around the loop. Baesens et al. [3] studied the
general three–oscillator system (all coupling patterns considered), provided the coupling was not too
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strong, by means of maps of the two–torus.

Cohen et al. [4] modeled segments of neural networks as coupled limit cycle oscillators and discussed
the special case of two coupled phase–only oscillators as described by the following:

θ̇1 = ω1 + α sin(θ2 −θ1), (1)
θ̇2 = ω2 + α sin(θ1 −θ2). (2)

Defining a new variable ψ = θ2 −θ1, being the phase difference between the two oscillators, allows the
state of the system to be consolidated into a single equation:

ψ̇ = ω2 −ω1 −2α sinψ . (3)

This is solved for an equilibrium point (constant ψ) which represents phase locking, i.e. the two
oscillators traveling at the same frequency with some constant separation. This also gives us a constraint
on the parameters which allow for phase locking to occur. If no equilibrium point exists, the oscillators
will drift relative to each other; while they are affected by each other’s phase, the coupling is not strong
enough to compensate for the frequency difference.

sinψ∗ =
ω2 −ω1

2α
, (4)∣∣∣∣ω2 −ω1

2α

∣∣∣∣≤ 1. (5)

Under the constraint, there are two possible equilibria ψ∗ and (π −ψ∗) within the domain, though one
of them is unstable given that

dψ̇
dψ

= −2α cosψ = −2α(−cos(π −ψ∗)).

So if one of them is stable (dψ̇/dψ < 0), the other must be unstable (and vice versa).
Plugging the equilibrium back into the original equations we find the frequency at which the oscil-

lators end up traveling; this is a “compromise” between their respective frequencies.

θ̇1 = ω1 + α(
ω2 −ω1

2α
) =

ω1 + ω2

2
. (6)

Since the coupling strength is the same in each direction, the resultant frequency is an average of the
two frequencies with equal weight; with different coupling strengths this would become a weighted
average.

Keith and Rand [5] added coupling terms of the form α2 sin(θ1−2θ2) to this model and correspond-
ingly found 2:1 locking as well as 1:1 locking.

2 Model

We design our model, as an extension of the two–oscillator model, to include a pair of coupled phase-
only oscillators with a third forcing oscillator, as follows:

θ̇1 = ω1 + α sin(θ2 −θ1)−β sin(θ1 −θ3), (7)
θ̇2 = ω2 + α sin(θ1 −θ2)−β sin(θ2 −θ3), (8)
θ̇3 = ω3. (9)
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This system can be related back to previous work by careful selection of parameters. Note that the
β = 0 case reduces the system to two coupled oscillators without forcing, while α = 0 gives a pair of
uncoupled forced oscillators.

It is now useful to shift to a coordinate system based off of the angle of the forcing oscillator, since
its frequency is constant. Let φ1 = θ1 − θ3 and φ2 = θ2 − θ3, with similar relations Ω1 = ω1 −ω3 and
Ω2 = ω2−ω3 between the frequencies. The forcing oscillator’s equation of motion can thus be dropped.

φ̇1 = Ω1 + α sin(φ2 −φ1)−β sinφ1, (10)
φ̇2 = Ω2 + α sin(φ1 −φ2)−β sinφ2. (11)

A nondimensionalization procedure, scaling time with respect to Ω1, allows for Ω1 = 1 to be assumed
without loss of generality.

We note that the φi now represent phase differences between the paired oscillators and the driver.
Thus, if a φ̇i = 0, the corresponding θi is defined to be locked to the driver. Equilibrium points of
equations (10) and (11) then represent full locking of the system. Partial and total drift are more
difficult to recognize and handle analytically, and will be discussed later.

3 Full Locking

We begin by solving the differential equations for equilibria directly, so as to find the regions of param-
eter space for which the system locks to the driver. The equilibria satisfy the equations:

0 = 1+ α sin(φ2 −φ1)−β sinφ1, (12)
0 = Ω2 + α sin(φ1 −φ2)−β sinφ2. (13)

Trigonometrically expanding equation (12) and solving for cos φ1:

cos φ1 =
α sin φ1 cos φ2 + β sin φ1 −1

α sin φ2
. (14)

We square this equation, rearrange it, and use sin2 θ + cos2 θ = 1 to replace most cosine terms:

α2 (1− sin2 φ1) sin2 φ2

−α2 sin2 φ1(1− sin2 φ2)
+(2α sin φ1 −2αβ sin2 φ1) cos φ2

−β 2 sin2 φ1 + 2β sin φ1 −1 = 0. (15)

Repeating the process by solving for cos φ2, we obtain an equation in terms of only sines:

−[4α2β 2 sin4 φ1 −8α2β sin3 φ1

+(4α2 −2α2β 2 −2α4) sin2 φ1

+4α2β sin φ1 −2α2] sin2 φ2

−α4 sin4 φ2 − (β 4 −2α2β 2 + α4) sin4 φ1

−(4α2β −4β 3) sin3 φ1 − (6β 2 −2α2) sin2 φ1

+4β sin φ1 −1 = 0. (16)

Returning to equations (12) and (13), we add them and solve for sinφ2 in terms of sinφ1:

sin φ2 =
1+ Ω2

β
− sin φ1. (17)
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This is now plugged into equation (16) to eliminate φ2 and obtain an polynomial of degree six in
s = sin φ1, dependent on the various parameters.

−4α2β 6s6 + 8α2β 5Ω2s
5 + 16α2β 5s5 −24α2β 4Ω2s

4 −β 8s4 + 4α2β 6s4 −24α2β 4s4

−4α2β 4Ω2
2s

4 + 8α2β 3Ω2
2s

3 −4α2β 5Ω2s
3 + 24α2β 3Ω2s

3 + 4β 7s3 −12α2β 5s3

+16α2β 3s3 + 2α2β 4Ω2
2s

2 −4α4β 2Ω2
2s

2 −4α2β 2Ω2
2s

2 + 12α2β 4Ω2s
2 −8α4β 2Ω2s

2

−8α2β 2Ω2s
2 −6β 6s2 + 14α2β 4s2 −4α4β 2s2 −4α2β 2s2 + 4α4βΩ3

2s−4α2β 3Ω2
2s

+12α4βΩ2
2s−12α2β 3Ω2s+ 12α4βΩ2s+ 4β 5s−8α2β 3s+ 4α4β s−α4Ω4

2 −4α4Ω3
2

+2α2β 2Ω2
2 −6α4Ω2

2 + 4α2β 2Ω2 −4α4Ω2 −β 4 + 2α2β 2 −α4 = 0. (18)

The roots of this polynomial give values of s = sin φ1 for a given set of parameter values; degree
six implies that there will be up to six roots in s, although a single root in s may correspond to more
than one root in φ1 due to the multivalued nature of sine. To avoid extraneous roots, each should be
confirmed in equations (12) and (13).

In order to distinguish changes in the number of real equilibria, we look for double roots of this
polynomial such that two (or more) of the equilibria are coalescing in a single location. Setting the
polynomial and its derivative in s equal to zero and using Maxima to eliminate s results in a single
equation with 142 terms in α , β , and Ω2 which describes the location of bifurcations.

48Ω8
2α4β 4 −360Ω8

2α6β 2 −32Ω8
2α4β 2 −87Ω8

2α8 + 64Ω10
2 α6 + 320Ω9

2α6 −128Ω7
2α4β 4

−1308Ω7
2α6β 2 −112Ω7

2α4β 2 −160Ω7
2α8 + 616Ω8

2α6 + 16Ω8
2α4 + 12Ω6

2α2β 8 + 22Ω6
2α4β 6

−16Ω6
2α2β 6 + 410Ω6

2α6β 4 + 528Ω7
2α6 + 64Ω7

2α4 + 6Ω6
2α4β 4 + 8Ω6

2α2β 4 + 140Ω6
2α8β 2

−1720Ω6
2α6β 2 −224Ω6

2α4β 2 + 256Ω6
2α10 −52Ω5

2α2β 8 + 324Ω5
2α4β 6 + 100Ω5

2α2β 6

+796Ω6
2α8 + 88Ω6

2α6 + 96Ω6
2α4 + 1952Ω5

2α6β 4 + 448Ω5
2α4β 4 −48Ω5

2α2β 4 −1240Ω5
2α8β 2

−996Ω5
2α6β 2 −288Ω5

2α4β 2 + Ω4
2β 12 −34Ω4

2α2β 10 + 1536Ω5
2α10 + 3232Ω5

2α8

−160Ω5
2α6 + 64Ω5

2α4 −2Ω4
2β 10 −189Ω4

2α4β 8 + 54Ω4
2α2β 8 + Ω4

2β 8 −480Ω4
2α6β 6

+94Ω4
2α4β 6 −40Ω4

2α2β 6 + 960Ω4
2α8β 4 + 1526Ω4

2α6β 4 + 404Ω4
2α4β 4 + 8Ω4

2α2β 4

−1024Ω4
2α10β 2 −6284Ω4

2α8β 2 −448Ω4
2α6β 2 −224Ω4

2α4β 2 + 3840Ω4
2α10 + 4726Ω4

2α8

+88Ω4
2α6 + 108Ω3

2α2β 10 −152Ω3
2α4β 8 −208Ω3

2α2β 8 + 16Ω4
2α4 −752Ω3

2α4β 6

+100Ω3
2α2β 6 + 2560Ω3

2α8β 4 + 48Ω3
2α6β 6 −96Ω3

2α6β 4 + 448Ω3
2α4β 4 −4096Ω3

2α10β 2

−9808Ω3
2α8β 2 −996Ω3

2α6β 2 −112Ω3
2α4β 2 + 5120Ω3

2α10 + 3232Ω3
2α8 + 528Ω3

2α6

−2Ω2
2β 14 + 30Ω2

2α2β 12 + 68Ω2
2α4β 10 −56Ω2

2α2β 10 −2Ω2
2β 10 −320Ω2

2α6β 8

−166Ω2
2α4β 8 + 54Ω2

2α2β 8 + 512Ω2
2α8β 6 + 864Ω2

2α6β 6 + 94Ω2
2α4β 6 −16Ω2

2α2β 6

+3200Ω2
2α8β 4 + 1526Ω2

2α6β 4 + 6Ω2
2α4β 4 −6144Ω2

2α10β 2 −6284Ω2
2α8β 2 −1720Ω2

2α6β 2

−56Ω2α2β 12 + 152Ω2α4β 10 −32Ω2
2α4β 2 + 3840Ω2

2α10 + 4Ω2
2β 12 + 796Ω2

2α8

+616Ω2
2α6 + 108Ω2α2β 10 −152Ω2α4β 8 −52Ω2α2β 8 + 1024Ω2α8β 6 + 48Ω2α6β 6

+324Ω2α4β 6 + 2560Ω2α8β 4 + 1952Ω2α6β 4 −128Ω2α4β 4 −832Ω2α6β 8 −4096Ω2α10β 2

−1240Ω2α8β 2 + β 16 −12α2β 14 −1308Ω2α6β 2 + 1536Ω2α10 −160Ω2α8

+320Ω2α6 −2β 14 + 48α4β 12 + 30α2β 12 + β 12 −64α6β 10 + 68α4β 10

−34α2β 10 −320α6β 8 −189α4β 8 + 12α2β 8 + 512α8β 6 −480α6β 6 + 22α4β 6 + 960α8β 4

+410α6β 4 + 48α4β 4 −1024α10β 2 + 140α8β 2 −360α6β 2 + 256α10 −87α8 + 64α6 = 0. (19)

This equation by itself is cumbersome to work with. We begin to interpret its results by choosing
different values of Ω2 and plotting the resulting curves in the βα-plane (see Fig. 1). Each curve is
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Fig. 1 Ω2 = 5 cross-section of surfaces satisfying equation (19). Regions show “L” for locking or “D” for drift,
followed by number of equilibria.
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Fig. 2 Surface of double roots forming the boundary between complete synchronization and the other behaviors.

the location of a double root of the original system, and represents a pair of equilibrium points being
created or destroyed in a fold bifurcation. The combination of bifurcation curves leads to regions of
0–6 equilibria.

Numerical analysis of the original differential equations with AUTO continuation software [6] both
confirms the quantities of equilibria and calculates the eigenvalues of each point. Through these results,
we find that only one equilibrium point (and therefore locking behavior) is stable; it occurs for any
region where equilibria exist, i.e. for large enough forcing strength β .

The leftmost curve, where the first two equilibria are created, is of most interest since it is the
boundary between drift and total locking. Figure 2 shows only this surface in three dimensions.

3.1 Asymptotics

Asymptotic expansions of equation (19) may be useful for very large or very small α , in applications
where the entire equation would be cumbersome. For these purposes, we assume that Ω2 ≥ Ω1 = 1; if
this is not true, the two oscillators’ labels can switch such that this analysis is applicable.
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Fig. 3 Approximations for large α: dashed line accurate to O(α−4), bold dashed line to O(α−8). Ω2 = 5.

3.1.1 Large α Approximation

For large α the curve appears to approach a constant value β . We divide by the highest power, α10,
in equation (19), then take the limit as α goes to infinity to find that the equation approaches:

256 (Ω2 + 1)4 (Ω2 −2β + 1) (Ω2 + 2β + 1) = 0. (20)

The middle portion can equal zero for Ω2 ≥ 1, leading to the asymptotic value of β :

β =
1+ Ω2

2
. (21)

We perturb off of this value by writing β as:

β =
1+ Ω2

2
+

k1

α
+

k2

α2 + · · · (22)

The ki for odd i are found to be zero, leaving an expression for β with only even terms.

β =
1
2
(Ω2 + 1)+

1
64α2 (Ω2 −1)2(Ω2 + 1) (23)

+
7

4096α4 (Ω2 −1)4(Ω2 + 1)

+
(25Ω2

2 −82Ω2 + 25)
131072α6 (Ω2 −1)4(Ω2 + 1)+ · · ·

We note that there is a common factor of (Ω2 + 1)/2 present in all terms, which acts as an overall
scaling factor for the expression. Figure 3 compares this approximation out to 3 and 5 terms in 1/α2

with the original numerical result.

3.1.2 Small α Approximation

In the α = 0 case, the algebraic equations to be solved, eqs. (12) and (13), become uncoupled:

0 = 1−β sinφ1, (24)
0 = Ω2 −β sin φ2. (25)
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Fig. 4 Approximations for small α: dashed line accurate to O(α4), bold dashed line to O(α7). Ω2 = 5.

In order for both to have real solutions, β ≥ 1 and β ≥ Ω2 must both be satisfied. Thus, under our
assumption that Ω2 ≥ 1, equilibria (and therefore locking behavior) will exist for β ≥ Ω2.

We perturb off of β = Ω2 for small α in equation (19):

β = Ω2 + μ1α + μ2α2 + · · · (26)

This leads to two different branches, differentiated by the sign of the μ1 term, due to the intersection
of the drift/lock boundary with another bifurcation curve at α = 0. Choosing the drift/lock boundary
by taking the negative μ1 such that β decreases for positive α :

β = Ω2 −
√

Ω2
2 −1

Ω2
α +

(2Ω2 + 1)
2Ω3

2

α2

+
(Ω4

2 + 2Ω3
2 −Ω2

2 −2Ω2 −1)

2Ω5
2

√
Ω2

2 −1
α3

+
(4Ω6

2 −12Ω4
2 −12Ω3

2 −Ω2
2 + 12Ω2 + 5)

8(Ω2 −1)Ω7
2(Ω2 + 1)

α4 . . . (27)

Figure 4 shows this approximation out to 5 and 8 terms in α .

3.1.3 Patched Solution: A Practical Approximation

We approximate the lock/drift boundary curve by two lines for different ranges of α based on their
intersection. Our two approximations, taken to be linear:

β =
1
2
(Ω2 + 1)+O(α−2) (28)

β = Ω2 −
√

Ω2
2 −1

Ω2
α +O(α2) (29)
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Fig. 5 Linear piecewise approximation for the drift/lock boundary. Ω2 = 5.

Ignoring nonlinear terms and finding the intersection (β ∗,α∗) for a given Ω2,

β ∗ = Ω2 −
√

Ω2
2 −1

Ω2
α∗ =

1
2
(Ω2 + 1) (30)

α∗ =
Ω2(Ω2 −1)

2
√

Ω2
2 −1

=

√
β ∗ −1(2β ∗ −1)

2
√

β ∗ (31)

Then we can consider the combined linear approximation to be the piecewise function for β with
eq. (29) for α ≤ α∗ and eq. (28) for α ≥ α∗. See Fig. 5.

4 The Drift Region

Within the region of no equilibrium points, we can study different forms of drift: full drift, m:n rel-
ative locking between the φi while drifting with respect to the driver, or partial synchronization with
one oscillator locked to the driver (while the other drifts). To distinguish between these, we start by
separately considering the cases β = 0 and α = 0. See Fig. 6.

4.1 No Driver β = 0

We begin with the system with no driver, β = 0 (as addressed by Cohen et al. [4], see introduction):

ψ̇ =
d
dt

(φ2 −φ1) = Ω2 −Ω1 −2α sinψ

and observe that φ1 and φ2 experience 1:1 phase locking for

α ≥ |Ω2 −1|/2

but there is no locking to θ3. Thus, corroborating intuition, stronger coupling (larger values of α)
results in 1 : 1 locking. We would anticipate that this behavior would extend (for nonzero β ) into the
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α=0 (no coupling)

Fig. 6 Locations of interest for analytical approaches to the drift region.

large−α realm of parameter space, before the driver is strong enough to cause phase locking.

4.2 No Coupling α = 0

Next, we consider the α = 0 case, since the two φi differential equations become uncoupled and can
thus be individually integrated. By separation of variables, we find:

dt =
dφ1

1−β sinφ1
=

dφ2

Ω2 −β sinφ2
, (32)

which can be integrated to find:

t(φi)+Ci = 2Qi tan−1 [Qi(
Ωi sin φi

cosφi + 1
−β )], (33)

where

Qi = 1/
√

Ω2
i −β 2. (34)

If we consider a full cycle of φi, that is, the domain φ0 ≤ φi ≤ 2π +φ0, the argument of the arctangent
covers its entire domain of (−∞, ∞) exactly once, so the entire range π of arctangent is covered exactly
once. Thus the Δti corresponding to this Δφi is:

Δti = 2πQi = 2π/
√

Ω2
i −β 2. (35)

Given a known Ω2 and choosing particular values of β , it should be possible to find a Δt which is
an integer multiple of each of the two oscillators’ periods. That is, Δt = n2Δt1 = n1Δt2 such that in that
time, φ1 travels 2πn2 and φ2 travels 2πn1. Thus the oscillators would have motion with the ratio n1 : n2

between their average frequencies.

Δt1
Δt2

=
n1

n2
=

√
Ω2

2 −β 2√
Ω2

1 −β 2
. (36)
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By solving for β , we can then pick integers ni and find the location on α = 0 where that type of
orbit occurs.

β 2 =
Ω2

1n
2
1 −Ω2

2n
2
2

n2
1 −n2

2

. (37)

Note that this is not solvable for n1 = n2 = 1 unless the oscillators are the same and identically influenced
by the driver (Ω1 = Ω2); this behavior is instead found on β = 0 as seen above.

Each ratio n1 : n2 will have a corresponding βn2/n1
for α = 0; some example values are found in Tab.

1. It is reasonable to think that for small values of α near the βn2/n1
, the n1 : n2 behavior might persist

although we are no longer able to study the oscillators separately.

Table 1 Example n1 : n2 locations on α = 0 for Ω2 = 1.1

n1 n2 βn2/n1

1 1 does not exist
2 1 0.9644
3 1 0.9868
3 2 0.9121
1 0 ≥ Ω1 = 1

4.3 Numerical

Based on the α = 0 and β = 0 cases, we expect to find regions of n1 : n2 relative locking continuing
into the rest of the drift region. Through analysis of numerically computed solutions, we focused on
cases of N : 1 behaviors, though our method should be applicable to more general cases with minor
adjustments.

After allowing the system to reach a steady state, we integrate for a Δφ1 = 2π and find the cor-
responding Δφ2. If this Δφ2 is an integer multiple of 2π, the point in parameter space is classified
appropriately as N : 1; otherwise, it likely follows some other n1 : n2 ratio and is not shown. Alternately,
if φ1 is constant such that a corresponding Δφ2 would be arbitrary, the point is classified as 1 : 0 or as
an equilibrium.

The results for 0.91 ≤ β ≤ 1.1, along with the drift/lock boundary curve from above, are shown in
Fig. 7. (Note that Figs. 1-5 were calculated for Ω2 = 5, whereas Figs. 7 and 8 are for Ω2 = 1.1.) Some
additional tongues were found numerically that also do not appear in the figure, as the higher N : 1
tongues are increasingly narrow. We also observe that beyond the edge of Fig. 7, the boundary of the
1 : 1 relative locking region extends to α = 0.05 for β = 0, as expected from our prior calculation.

As anticipated, we find that the tongues of N : 1 relative locking emerge from the analytically
calculated values on the β axis. These tongues stretch across the βα-plane and terminate when they
reach the drift/lock bifurcation curve. Figure 8 zooms in on the region of termination; note that the
tongues still have nontrivial width when they reach the bifurcation curve.

Figure 9 shows a schematic description of the termination of the tongues at the drift/lock bifurcation
curve. Each N : 1 region disappears in the saddle-node bifurcation in which a pair of equilibria is born
(one stable, one unstable), located on the other side of the bifurcation curve. Each N : 1 region in the
sequence is separated from the next by a region which is filled with other n1 : n2 tongues.

As N increases, a limit is reached which corresponds to 1 : 0 locking (i.e. ∞ : 1). Within this region,
φ1 is locked to the driver, but φ2 is not, representing partial synchronization to the driver (rather
than relative locking between the oscillators). The curve bounding this region intersects the β axis at
β = Ω1 = 1.
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Fig. 7 Ω2 = 1.1; numerical N : 1 findings and drift/lock bifurcation curve.
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Fig. 8 Numerical N : 1 findings and drift/lock boundary zoomed in. Ω2 = 1.1.

5 Conclusion

This work has approached a system of three coupled oscillators which represent a coupled pair under
the same periodic external forcing. We investigated the existence of full locking behaviors between
the oscillators, and presented two approximations for the boundary between drift and locking based on
relative frequencies and coupling strengths. We also studied the various classifications of drift behavior,
and their locations in parameter space, including various m:n resonances of the driven pair. In the latter
case, the behavior of one oscillator relative to the other is periodic, but the observed behavior of the
three-oscillator system is quasiperiodic due to drift relative to the driver.

This project was motivated by the consideration of a pair of coupled oscillators exposed to an
environmental forcing. Further work may include the application of this analysis to more realistic
models, such as the van der Pol oscillator, or an expanded set of parameters which could represent
nonidentical coupling and driving strengths. Other appropriate considerations would involve the effect
of the delay in this problem, or separate environmental drivers, which would both characterize nontrivial
distance between the coupled pair of oscillators.
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Fig. 9 Behaviors at the drift/lock boundary curve; not to scale.

Acknowledgements

The authors wish to thank Professor Michal Lipson and graduate students Mian Zhang and Shreyas
Shah for calling our attention to this problem, which has application to their research.

References

[1] Zhang, M., Wiederhecker, G.S., Manipatruni, S., Barnard, A., McEuen, P., and Lipson, M. (2012), Synchro-
nization of Micromechanical Oscillators Using Light, Physical Review Letters, 109 (23), 233906.

[2] Mendelowitz, L., Verdugo, A., and Rand, R. (2009), Dynamics of three coupled limit cycle oscillators with
application to artificial intelligence, Communications in Nonlinear Science and Numerical Simulation, 14 (1),
270–283.

[3] Baesens, C., Guckenheimer, J., Kim, S., MacKay, R.S. (1991), Three coupled oscillators: mode–locking,
global bifurcations and toroidal chaos, Physica D, 49 (3), 387–475.

[4] Cohen, A.H., Holmes, P.J., and Rand, R.H. (1982), The Nature of the Coupling Between Segmental Oscillators
of the Lamprey Spinal Generator for Locomotion: A Mathematical Model, Journal of Mathematical Biology,
13 (3), 345-369.

[5] Keith, W. L. and Rand, R. H. (1984), 1:1 and 2:1 phase entrainment in a system of two coupled limit cycle
oscillators, J. Math. Biology, 20 (2), 133–152.

[6] Doedel, E., Champneys, A., Fairgrieve, T., Kuznetsov, Y., Sandstede, B., Wang, X. (1998), AUTO 97:
Continuation and Bifurcation Software for Ordinary Differential Equations.


