
Available online at www.sciencedirect.com

ARTICLE IN PRESS
Communications in Nonlinear Science and Numerical Simulation xxx (2007) xxx–xxx

www.elsevier.com/locate/cnsns
Dynamics of three coupled limit cycle oscillators
with application to artificial intelligence

Lee Mendelowitz, Anael Verdugo, Richard Rand *

Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, United States

Received 31 July 2007; received in revised form 26 August 2007; accepted 26 August 2007
Abstract

We study a system of three limit cycle oscillators which exhibits two stable steady states. The system is modeled by both
phase-only oscillators and by van der Pol oscillators. We obtain and compare the existence, stability and bifurcation of the
steady states in these two models. This work is motivated by application to the design of a machine which can make deci-
sions by identifying a given initial condition with its associated steady state.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of this work is that a dynamical system which has multiple stable steady states can be used as a
decision-making device by basing decisions on the system’s steady-state behavior. That is, given an input sig-
nal (thought of as an initial condition for the dynamical system), a machine must decide to which of several
distinct possible outcomes the input signal corresponds. This is accomplished by allowing the system to come
to steady state and identifying the input signal with the steady state. Thus all initial conditions lying in the
basin of attraction of a given steady state will be identified with that steady state. Such systems have been iden-
tified as being analogous to brain models involving associative memory [1].

This idea is particularly applicable to MEMS/NEMS technology. In a recent paper, Zalalutdinov et al. [2]
treated a system of 400 NEMS oscillators and showed how the steady-state dynamics were affected by changes
in coupling strength and by differences in individual frequencies (mistuning). Simulations of a system of
20 · 20 identical phase-only oscillators with nearest-neighbor coupling has been shown to include a wide vari-
ety of stable steady states, including, in addition to the in-phase mode, spiral wave patterns which appear to be
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centered at an arbitrary point, and more complicated patterns which appear to involve several spiral waves,
each centered at a different point [3]. In an effort to investigate the simplest system of coupled oscillators which
exhibits multiple steady states, Rand and Wong [3] studied a system of four coupled phase-only oscillators and
showed that if some of the coupling coefficients were chosen to be negative (called ‘‘inhibitory’’ coupling in the
biological literature [4]) the system could exhibit a continuum of stable steady states.

In the present paper we study an even simpler system, one consisting of three limit cycle oscillators, which
we show is able to exhibit two stable steady states. We begin by discussing phase-only models of three coupled
oscillators. We focus on a particularly simple system, call it S1, which has the desirable property of exhibiting
two stable steady states. Then we investigate the robustness of this property, that is, we ask for which system
parameters does the model S1 continue to exhibit two stable steady states. Finally we present a more realistic
model consisting of three van der Pol oscillators, call it S2, which is shown to correspond to our phase-only
system S1. We study the model S2 using both perturbation methods and direct numerical integration, and we
show that it also exhibits two stable steady states.

2. Three coupled phase-only oscillators

Following Kuramoto [5] we take the coupling function in a system of coupled phase-only oscillators as a
sine function. Then the most general system of three phase-only oscillators is given by the equations:
Plea
Non
_h1 ¼ x1 þ a21 sinðh2 � h1Þ þ a31 sinðh3 � h1Þ ð1Þ
_h2 ¼ x2 þ a12 sinðh1 � h2Þ þ a32 sinðh3 � h2Þ ð2Þ
_h3 ¼ x3 þ a13 sinðh1 � h3Þ þ a23 sinðh2 � h3Þ ð3Þ
where hi is the phase of oscillator i, xi is the uncoupled frequency of oscillator i, and the coupling coefficient aij

represents the effect of oscillator i on oscillator j. See Fig. 1. This system has been previously studied in [4] in
the case that a21 = a12 = a32 = a23 = a and a31 = a13 = b.

Eqs. (1)–(3) may be simplified by defining the phase differences /1 = h1 � h3 and /2 = h2 � h3, giving the
two equations:
_/1 ¼ X1 � ða13 þ a31Þ sin /1 � a23 sin /2 � a21 sinð/1 � /2Þ ð4Þ
_/2 ¼ X2 � a13 sin /1 � ða23 þ a32Þ sin /2 þ a12 sinð/1 � /2Þ ð5Þ
where X1 = x1 � x3 and X2 = x2 � x3. Note that an equilibrium point in Eqs. (4) and (5) corresponds to a
phase-locked motion in Eqs. (1)–(3). Note also that Eqs. (4) and (5) represent a flow on a torus S · S, that
is, the phase variables /i are defined mod 2p.

An interesting question to ask about the system of Eqs. (4) and (5) is what is the maximum number of equi-
librium points that such a system can exhibit? This question may be addressed by computing the condition on
the parameters such that a bifurcation involving a change in the number of equilibria occurs. This condition
was obtained by using the computer algebra system MACSYMA/MAXIMA, as follows: We begin by trig
expanding the right-hand sides of Eqs. (4) and (5), giving
Fig. 1. Schematic representation of the three phase-only oscillator model.
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Plea
Non
X1 � ða13 þ a31Þu� a23v� a21 u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

� v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p� �

¼ 0 ð6Þ

X2 � a13u� ða23 þ a32Þvþ a12 u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

� v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p� �

¼ 0 ð7Þ
where we have abbreviated u = sin/1 and v = sin/2, whereupon cos /1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

and cos /2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

. Next
we wish to eliminate v from Eqs. (6) and (7). We can derive an expression for v in terms of u by multiplying (6)
by a12/a21 and adding the result to Eq. (7). This yields
v ¼ c1uþ c2 ð8Þ
where c1 and c2 are listed in the appendix. Now Eq. (8) could be substituted into Eq. (6), giving an equation on
u only, but the resulting equation would involve square roots and would thus be awkward to manipulate alge-
braically. Instead, we first solve Eq. (6) for

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

and square both sides, thereby eliminating the termffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

. The resulting equation will still depend on
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

, so we solve it for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

and again square both
sides, yielding a polynomial on u and v, call it
f ðu; vÞ ¼ 0 ð9Þ
which turns out to have 68 terms. Now we may substitute Eq. (8) into the resulting equation, yielding a poly-
nomial equation
f ðu; c1uþ c2Þ � F ðuÞ ¼ 0 ð10Þ
on u alone. This turns out to be a 6th degree polynomial in u which has 739 terms, and which may be written in
the abbreviated form:
F ðuÞ ¼ K6u6 þ K5u5 þ K4u4 þ K3u3 þ K2u2 þ K1uþ K0 ¼ 0 ð11Þ
Each of the terms Ki turns out to be an 8th degree polynomial in the parameters aij and Xi. These are too long
to list even in the appendix, but some additional information about them is given there.

Now we may obtain a condition for a bifurcation in which the number of equilibria to Eqs. (4) and (5)
changes by algebraically eliminating u from the two equations F(u) = 0 and dF/du = 0, where F(u) is the poly-
nomial in Eq. (11). This is accomplished in MACSYMA/MAXIMA by using the command ELIMINATE.
The result is a sum of 246 terms, each of which is a monomial of degree 10 in the Ki, that is, each term is
of the form
AðK0Þi0ðK1Þi1ðK2Þi2ðK3Þi3ðK4Þi4ðK5Þi5ðK6Þi6 ð12Þ
where
P6

j¼0ij ¼ 10 and where A is an integer. For example a typical term is 1700K0K4
1K4K2

5K2
6.

We thus have derived a closed form expression for the desired bifurcation condition. This condition repre-
sents a codimension one manifold in the eight-dimensional parameter space aij, Xi. However, we find that the
expression itself contains so many terms that we are at a loss to be able to use it for the general system of Eqs.
(4) and (5). However, it may be used to find bifurcations for various classes of subsystems which involve fewer
parameters. For example, for the system studied in [4], for which a21 = a12 = a32 = a23 = a, a31 = a13 = b and
X1 = X2 = 0, we obtain b = ±a/2, which agrees with the result given in [4]. Inspection of the flows of Eqs. (4)
and (5) in each of the bifurcation regions shows that there are up to six equilibria for this system, again in
agreement with [4].

An algebraic simplification occurs whenever one or more of the parameters is zero. We are thus led to clas-
sify the system in Fig. 1 according to which coupling parameters are zero. We find that there are seven distinct
cases, omitting trivial repeats due to permuting subscripts. See Fig. 2.

Since the key equation (11) involves u = sin/1, it might be supposed that additional bifurcations occur
when the roots of F(u) pass through u = ±1. Substituting u = ±1 into Eq. (11) gives a condition on the system
parameters which is a squared quantity, and the roots u which lie in the neighborhood of this condition always
satisfy the equation juj < 1. Thus the condition u = ±1 does not represent a bifurcation for Eqs. (4) and (5).

Let us return now to the question as to what is the maximum number of equilibria a system described by
Eqs. (4) and (5) can exhibit. Since Eq. (11) is a 6th degree polynomial in u, it cannot possess more than 6 real
se cite this article in press as: Mendelowitz L et al., Dynamics of three coupled limit cycle oscillators ..., Commun
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Fig. 2. The systems shown in Fig. 1 may be classified according to which coefficients aij are zero. There are seven distinct cases, omitting
trivial repeats due to permuting subscripts.

4 L. Mendelowitz et al. / Communications in Nonlinear Science and Numerical Simulation xxx (2007) xxx–xxx

ARTICLE IN PRESS
roots. Corresponding to each root u = sin/1, Eq. (8) gives a corresponding value for v = sin/2. Substituting
these two expressions into the right hand side of Eq. (4), we may solve for sin(/1 � /2):
Plea
Non
sinð/1 � /2Þ ¼
X1 � ða13 þ a31Þu� a23v

a21

ð13Þ
Due to the multivaluedness of the arcsine function, the two expressions for u = sin/1 and v = sin/2 yield four
possible values for /1 and /2. We list these below, together with the corresponding value of sin(/1 � /2):
ð/�1;/
�
2Þ sinð/�1 � /�2Þ ð14Þ

ðp� /�1;/
�
2Þ sinð/�1 þ /�2Þ ð15Þ

ð/�1; p� /�2Þ � sinð/�1 þ /�2Þ ð16Þ
ðp� /�1;p� /�2Þ � sinð/�1 � /�2Þ ð17Þ
If we suppose that Eq. (14) satisfies Eq. (13), then the other three values for /1 and /2 will not do so for gen-
eral values of the parameters because sinð/�1 � /�2Þ does not in general equal � sinð/�1 þ /�2Þ or � sinð/�1 � /�2Þ.
Thus in this general case, each root u of the 6th degree polynomial equation (11) provides a single acceptable
equilibrium point ð/�1;/

�
2Þ.

Now consider the special case for which sinð/�1 � /�2Þ ¼ � sinð/�1 � /�2Þ, i.e. for which sin(/1 � /2) = 0.
Here /1 � /2 must equal either 0 or p, which gives that v = sin/2 = ± sin/1 = ±u. Then it turns out that
substituting v = ±u into the polynomial f(u,v) = 0 of Eq. (9) gives a 6th degree polynomial F(u) = 0 which
always has a double root. Thus in this case we would get no more than five roots u, one of which gives both
ð/�1;/

�
2Þ and ðp� /�1; p� /�2Þ, and the other four of which each gives a unique equilibrium ð/�1;/

�
2Þ, for a total

of not more than six equilibria. The other special cases in which sinð/�1 � /�2Þ ¼ � sinð/�1 þ /�2Þ can be handled
similarly.

Thus we have proved that the system of three coupled phase-only oscillators described by Eqs. (4) and (5)
cannot exhibit more than six equilibria.

3. An example with two stable equilibria

In the present paper we study case A (see Fig. 2) where each oscillator is coupled to one other oscillator
with identical inhibitory coupling, that is, a21 = a32 = a13 = 0 and a31 = a12 = a23 = � a, where a > 0. Substi-
tuting the latter into Eqs. (1)–(3) yields
se cite this article in press as: Mendelowitz L et al., Dynamics of three coupled limit cycle oscillators ..., Commun
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Plea
Non
_h1 ¼ x1 � a sinðh3 � h1Þ ð18Þ
_h2 ¼ x2 � a sinðh1 � h2Þ ð19Þ
_h3 ¼ x3 � a sinðh2 � h3Þ ð20Þ
and Eqs. (4) and (5) become
_/1 ¼ X1 þ a sin /1 þ a sin /2 ð21Þ
_/2 ¼ X2 þ a sin /2 � a sinð/1 � /2Þ ð22Þ
Before proceeding with the analysis of this system, we rescale time with s = at and define
W i ¼
Xi

a
¼ xi � x3

a
; i ¼ 1; 2 ð23Þ
which gives the following form of Eqs. (21) and (22):
/01 ¼ W 1 þ sin /1 þ sin /2 ð24Þ
/02 ¼ W 2 þ sin /2 � sinð/1 � /2Þ ð25Þ
We note that the system of Eqs. (24) and (25) is invariant under the two transformations T1, T2:
T 1 : W i ! �W i; /i ! �/i ð26Þ
T 2 : W 1 ! W 2;W 2 ! W 2 � W 1; /1 ! /2;/2 ! /2 � /1 ð27Þ
We may now apply the results of our computer algebra analysis presented in the previous section to Eqs. (24)
and (25) in order to obtain the bifurcation curves in the W1–W2 plane which separate regions containing a
distinct number of equilibria. We obtain
64W 10
2 � 320W 1W 9

2 þ 16W 4
1W 8

2 þ 584W 2
1W 8

2 � 399W 8
2 � 64W 5

1W 7
2 � 416W 3

1W7
2 þ 1596W 1W7

2

þ 96W 6
1W 6

2 � 128W 4
1W 6

2 � 934W 2
1W 6

2 þ 840W 6
2 � 64W 7

1W 5
2 þ 496W 5

1W 5
2 � 2784W 3

1W 5
2

� 2520W 1W 5
2 þ 16W 8

1W 4
2 � 128W 6

1W 4
2 þ 4643W 4

1W 4
2 � 772W 2

1W 4
2 � 766W 4

2 � 416W 7
1W 3

2

� 2784W 5
1W 3

2 þ 5744W 3
1W 3

2 þ 1532W 1W 3
2 þ 584W 8

1W 2
2 � 934W 6

1W 2
2 � 772W 4

1W 2
2 � 2298W 2

1W 2
2

þ 288W 2
2 � 320W 9

1W 2 þ 1596W 7
1W 2 � 2520W 5

1W 2 þ 1532W 3
1W 2 � 288W 1W 2 þ 64W 10

1 � 399W 8
1

þ 840W 6
1 � 766W4

1 þ 288W 2
1 � 27 ¼ 0 ð28Þ
A graph of this equation is displayed in Fig. 3. Note that the symmetries in this graph follow from the invari-
ances T1 and T2 of Eqs. (26) and (27). The integers in Fig. 3 represent the number of equilibria found in sys-
tems lying in each region, a result obtained by numerically integrating Eqs. (24) and (25).

For the application to artificial intelligence, we are interested in those systems which have two stable steady
states. These correspond to the systems which lie in the central region of Fig. 3, all of which contain 6 equi-
libria. The origin W1 = W2 = 0 represents the ideal case for which all three oscillators have the same uncou-
pled frequency, x1 = x2 = x3, cf. Eqs. (18)–(20), and for this case we have the following equilibria (/1,/2):
Source ¼ fð0; 0Þg ð29Þ
Saddles ¼ fð0; pÞ; ðp; 0Þ; ðp; pÞg ð30Þ

Sinks ¼ 2p
3
;
4p
3

� �
;

4p
3
;
2p
3

� �� �
ð31Þ
See Fig. 4 which shows a phase portrait for this case.
The nature of the stable steady states (31) may be understood by substituting (31) back into Eqs. (18)–(20)

with x1 = x2 = x3 = x. In the case of the first of (31), h2 is a third of a cycle ahead of h1, which is itself a third
of a cycle ahead of h3. Thus in this case the motion represents a uniform wave moving around the three oscil-
lators of Fig. 1 in a counterclockwise direction. For this case we find that all three oscillators operate with a
common frequency of xþ

ffiffi
3
p

2
a. The opposite is the case for the second of (31), which corresponds to a wave
se cite this article in press as: Mendelowitz L et al., Dynamics of three coupled limit cycle oscillators ..., Commun
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Fig. 3. The bifurcation set (28) for Eqs. (24) and (25). The number of equilibria in each region are shown as integers.

Fig. 4. Phase portrait for Eqs. (24) and (25) with W1 = W2 = 0. The flow has one source, three saddles and two sinks.
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moving around Fig. 1 in a clockwise direction. The common frequency for this case is found to be x�
ffiffi
3
p

2
a.

Such rotating waves have been observed in an experimental study involving time delay [6].
These rotating waves have also been noted in a study involving three identical oscillators [7]. In a real sys-

tem, however, it will be impossible to make the three frequencies xi equal. The extent to which the three oscil-
lators can be detuned and still exhibit the desired property of two stable steady states is given by the frequency-
difference pairs (W1,W2) which lie in the central region of Fig. 3. See Fig. 5 which shows an enlargement of
Fig. 3 in which the shaded region represents the robustness of the two stable steady states. From Fig. 5 we note
that the boundaries of the shaded region are nearly straight lines. See Fig. 6 where a comparison is made
between the boundaries given by the bifurcation Eq. (28) and straight lines through the vertices of the shaded
Please cite this article in press as: Mendelowitz L et al., Dynamics of three coupled limit cycle oscillators ..., Commun
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Fig. 5. Enlargement of Fig. 3 in which the shaded region represents detunings for which the system of Eqs. (18)–(20) exhibits two stable
steady states.

Fig. 6. Comparison of the boundaries of the shaded region in Fig. 5, given by the bifurcation equation (28), with the straight lines listed in
Eqs. (32)–(34).
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region. Thus a person designing a device based on this system could use the straight lines instead of the bifur-
cation equation (28) to determine possible detunings. The equations of the six straight lines are
Plea
Non
4W 1 � 8W 2 ¼ �3 ð32Þ
8W 1 � 4W 2 ¼ �3 ð33Þ
4W 1 þ 4W 2 ¼ �3 ð34Þ
A natural question which arises when considering the two-dimensional example system of Eqs. (24) and (25)
is: Are Hopf bifurcations possible for this system? The answer is no, as we show as follows. The linearization
of Eqs. (24) and (25) about an equilibrium point (/1,/2) gives the Jacobian matrix J:
se cite this article in press as: Mendelowitz L et al., Dynamics of three coupled limit cycle oscillators ..., Commun
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Fig. 7. Diagram proving that Eqs. (24) and (25) cannot exhibit a Hopf bifurcation. Solid line represents trace(J) = 0. Dashed lines
represent determinant (J) = 0. The regions inside the closed dashed curves represent determinant (J) > 0. There are no points (/1,/2) for
which both trace (J) = 0 and determinant (J) > 0.
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Plea
Non
J ¼
cos /1 cos /2

� cosð/2 � /1Þ cosð/2 � /1Þ þ cos /2

� �
ð35Þ
The condition for a Hopf bifurcation in which a limit cycle is generically born is well known to be [10,12]:
traceðJÞ ¼ cosð/2 � /1Þ þ cos /2 þ cos /1 ¼ 0 ð36Þ
determinantðJÞ ¼ ðcos /2 þ cos /1Þ cosð/2 � /1Þ þ cos /1 cos /2 > 0 ð37Þ
Fig. 7 displays a plot of these two conditions, demonstrating that there are no points (/1,/2) for which both
conditions hold.
4. Three coupled van der Pol oscillators

Although phase-only oscillator models embody the essential features governing the dynamics of coupled
oscillators, they omit reference to the vibration amplitudes which are present in more realistic models of oscil-
lators. Thus we are led to ask whether the kind of behavior which we have seen in the preceding section, i.e., a
system of three oscillators which exhibits two stable steady states, also holds when phase-only oscillators are
replaced by more realistic oscillator models. For this purpose we choose van der Pol oscillators because they
are a common paradigm for limit cycle oscillators.

Consider the following system of three coupled van der Pol oscillators:
€xþ x2
1x� �ð1� x2Þ _x ¼ �2�a_z ð38Þ

€y þ x2
2y � �ð1� y2Þ _y ¼ �2�a _x ð39Þ

€zþ x2
3z� �ð1� z2Þ_z ¼ �2�a _y ð40Þ
We investigate the dynamics of this system in two ways. Firstly, we use perturbations, valid for small �, in the
case that the three frequencies xi are equal, to derive a slow flow which we show is analogous to our ideal
phase-only model of Eqs. (24) and (25). Then secondly, we use numerical integration, in the case that the three
frequencies are not equal, to show that this model exhibits two stable steady states.

Thus assuming that x1 = x2 = x3 = x, we use the two variable expansion method (also known as multiple
scales) to obtain a slow flow. (See [8–11] for examples of this method.) Working to O(�), we set n = t, g = �t,
se cite this article in press as: Mendelowitz L et al., Dynamics of three coupled limit cycle oscillators ..., Commun
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and expand x = x0 + �x1, y = y0 + �y1, and z = z0 + �z1. Substituting the latter into (38)–(40), expanding, col-
lecting � like terms, and neglecting O(�2) terms gives
Plea
Non
o2x0

on2
þ x2x0 ¼ 0;

o2y0

on2
þ x2y0 ¼ 0;

o2z0

on2
þ x2z0 ¼ 0 ð41Þ

o2x1

on2
þ x2x1 ¼ �2

o2x0

onog
þ ð1� x2

0Þ
ox0

on
� 2a

oz0

on
ð42Þ

o2y1

on2
þ x2y1 ¼ �2

o2y0

onog
þ ð1� y2

0Þ
oy0

on
� 2a

ox0

on
ð43Þ

o2z1

on2
þ x2z1 ¼ �2

o2z0

onog
þ ð1� z2

0Þ
oz0

on
� 2a

oy0

on
ð44Þ
Taking the general solutions to Eq. (41) in the form
x0 ¼ R1ðgÞ cosðxn� w1ðgÞÞ; y0 ¼ R2ðgÞ cosðxn� w2ðgÞÞ; z0 ¼ R3ðgÞ cosðxn� w3ðgÞÞ ð45Þ
and substituting them into (42)–(44), then removing resonant terms, we obtain the following slow flow:
w01 ¼ �a
R3

R1

sinðw3 � w1Þ ð46Þ

w02 ¼ �a
R1

R2

sinðw1 � w2Þ ð47Þ

w03 ¼ �a
R2

R3

sinðw2 � w3Þ ð48Þ

R01 ¼
R1

2
� R3

1

8
� aR3 cosðw3 � w1Þ ð49Þ

R02 ¼
R2

2
� R3

2

8
� aR1 cosðw1 � w2Þ ð50Þ

R03 ¼
R3

2
� R3

3

8
� aR2 cosðw2 � w3Þ ð51Þ
where primes represent differentiation with respect to slow time g. Letting /1 = w1 � w3 and /2 = w2 � w3, we
may reduce the six-dimensional system (46)–(51) to the following five-dimensional system:
/01 ¼ a
R3

R1

sin /1 þ a
R2

R3

sin /2 ð52Þ

/02 ¼ a
R2

R3

sin /2 � a
R1

R2

sinð/1 � /2Þ ð53Þ

R01 ¼
R1

2
� R3

1

8
� aR3 cos /1 ð54Þ

R02 ¼
R2

2
� R3

2

8
� aR1 cosð/1 � /2Þ ð55Þ

R03 ¼
R3

2
� R3

3

8
� aR2 cos /2 ð56Þ
where these equations are defined on the space S · S · R+ · R+ · R+, that is, the /i are taken mod 2p and the
Rj are non-negative. Note the similarity between the phase equations (52) and (53) and the phase-only model
given by Eqs. (21) and (22). We see that if a is neglected in the three Ri equations (54)–(56), then we obtain
R1 = R2 = R3 = 2. When this is substituted into the phase equations (52) and (53), we recover the phase-only
equations (21) and (22), which we have shown exhibit two stable steady states. But what if we don’t neglect a
in the three Ri equations? Does this system still exhibit two stable steady states?

To find out, we search for steady states, ð/�1;/
�
2;R

�
1;R

�
2;R

�
3Þ, by setting /0i ¼ R0i ¼ 0 in (52)–(56) and solving

for /�i and R�i . We find the following equilibrium points:
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Plea
Non
/�1 ¼ /�2 ¼ 0; R�1 ¼ R�2 ¼ R�3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

ð57Þ

/�1 ¼ 0; /�2 ¼ p; R�1 ¼ R�3 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

; R�2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

ð58Þ

/�1 ¼ p; /�2 ¼ 0; R�1 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

; R�2 ¼ R�3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

ð59Þ

/�1 ¼ p; /�2 ¼ p; R�1 ¼ R�2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

; R�3 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

ð60Þ

/�1 ¼
2p
3
; /�2 ¼

4p
3
; R�1 ¼ R�2 ¼ R�3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

ð61Þ

/�1 ¼
4p
3
; /�2 ¼

2p
3
; R�1 ¼ R�2 ¼ R�3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

ð62Þ
Since the equilibria (58)–(60) corresponding to negative values of Ri are not physically relevant, we discount
them. Also the equilibrium (57) does not exist for a > 1/2. So for 0 < a < 1/2 we are left with three steady states
0; 0; 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

; 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p

; 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a
p� �

ð63Þ

2p
3
;
4p
3
; 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

; 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

; 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p� �

ð64Þ

4p
3
;
2p
3
; 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

; 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

; 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p� �

ð65Þ
We may determine the stability of these equilibria by computing the eigenvalues of the Jacobian matrix of Eqs.
(52)–(56). It turns out that (63) is unstable for 0 < a < 1/2 and that both (64) and (65) are stable for a > 0.
Details are given in the appendix.

Since the five-dimensional slow flow of Eqs. (52)–(56) has two stable equilibria, it is of interest to know
what dynamical entity serves as the separatrix or basin boundary separating the basins of attraction of the
two stable equilibria. In order to find out, we numerically integrated the rectangular coordinate form of
the six-dimensional slow flow of Eqs. (46)–(51), defined by the polar coordinate transformation:
ai ¼ Ri cos wi; bi ¼ Ri sin wi; i ¼ 1; 2; 3 ð66Þ

The reason for using the ai–bi equations instead of the Ri–wi equations is that, as we show below, the separ-
atrix consists of a periodic motion which periodically visits each of the regions R1 = 0, R2 = 0, and R3 = 0, all
of which are singularities in the wi (Eqs. (46)–(48)).
da1

dg
¼ �a3a�

a1b2
1

8
� a3

1

8
þ a1

2
ð67Þ

db1

dg
¼ �b3a�

b3
1

8
� a2

1b1

8
þ b1

2
ð68Þ

da2

dg
¼ �a1a�

a2b2
2

8
� a3

2

8
þ a2

2
ð69Þ

db2

dg
¼ �b1a�

b3
2

8
� a2

2b2

8
þ b2

2
ð70Þ

da3

dg
¼ �a2a�

a3b2
3

8
� a3

3

8
þ a3

2
ð71Þ

db3

dg
¼ �b2a�

b3
3

8
� a2

3b3

8
þ b3

2
ð72Þ
By trial and error we find that the initial condition a1 = 2, b1 = 0.001, a2 = 2, b2 = 0.001, a3 = 0.001, b3 = 0,
nearly lies on the stable manifold of an unstable periodic motion in the case that a = 1. See Fig. 8, which, using
Eq. (66), shows the time history of R1, R2 and R3 for this initial condition. After spending some time near the
unstable periodic motion, the trajectory approaches one of the equilibria equations 64 and 65 for which
R1 ¼ R2 ¼ R3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

¼ 2
ffiffiffi
2
p
� 2:82.
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Fig. 8. Numerical integration of slow flow of Eqs. (67)–(72) for initial conditions a1 = 2, b1 = 0.001, a2 = 2, b2 = 0.001, a3 = 0.001, b3 = 0.
The trajectory comes close to an unstable periodic motion which is the basin boundary between the two stable steady states (64) and (65),
but eventually approaches a stable equilibrium. Solid line = R1, dashed line = R2, and dotted line = R3.

L. Mendelowitz et al. / Communications in Nonlinear Science and Numerical Simulation xxx (2007) xxx–xxx 11

ARTICLE IN PRESS
We have shown that the five-dimensional slow flow of Eqs. (52)–(56) corresponding to x1 = x2 = x3 = x,
exhibits two stable equilibria. We now consider the stability of these equilibria when the three uncoupled fre-
quencies xi are not equal. We set xi = x + �di for i = 1,2,3, and we define Dj = dj � d3 for j = 1,2. Then Eqs.
(52) and (53) become
Fig. 9.
the loc

Plea
Non
/01 ¼ �D1 þ a
R3

R1

sin /1 þ a
R2

R3

sin /2 ð73Þ

/02 ¼ �D2 þ a
R2

R3

sin /2 � a
R1

R2

sinð/1 � /2Þ ð74Þ
while Eqs. (54)–(56) are unchanged. We used the bifurcation program AUTO to determine for which detuning
parameters (D1,D2) the equilibria equations (64) and (65) are stable, respectively. The results are that both
equilibria lose their stability in supercritical Hopf bifurcations, see Fig. 9. Each of the oval-shaped curves
Shaded region represents systems in which both of the equilibria (64) and (65) are stable. Each of the oval-shaped curves represents
us of supercritical Hopfs for one of these equilibria.
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in Fig. 9 represents the locus of Hopfs for one of the equilibria. The shaded region in Fig. 9 represents the
range of detuning parameters for which the system (52)–(56) exhibits two stable equilibria. In the neighbor-
hood of the outside of the shaded region, at least one, and at some points both, of the equilibria have given
birth to stable limit cycles. In view of Eq. (45), such limit cycles correspond to quasiperiodic motions in the
original system of three van der Pol oscillators (38)–(40).

As a check on the foregoing results obtained by perturbation methods, we offer the following results
obtained by numerical integration of the system of three van der Pol oscillators (38)–(40). Figs. 10 and 11
show two different steady-state behaviors of Eqs. (38)–(40) for parameters � = 0.1, a = 1, x1 = x2 = x3 = 1.
Both motions have the same amplitude, which is predicted to be 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

¼ 2:828, versus the actual amplitude
from the data of Figs. 10 and 11, which is 2.824. Fig. 10 shows the clockwise mode which, as discussed earlier
in this paper, is predicted to have a frequency of x�

ffiffi
3
p

2
�a ¼ 1� 0:0866 ¼ 0:9134, i.e., a period of about 6.879.
Fig. 10. Results of numerical integration of three van der Pol oscillators, Eqs. (38)–(40) for initial displacements x(0) = 3, y(0) = 1,
z(0) = 2, with zero initial velocities. Time on horizontal axis omits t from 0 to 1000 to achieve steady state. Solid line = x, dot–dashed
line = y, dashed line = z. Note that maxima occur in the order x, y, z, which represents a clockwise wave around Fig. 1.

Fig. 11. Results of numerical integration of three van der Pol oscillators, Eqs. (38)–(40) for initial displacements x(0) = 3, y(0) = 2,
z(0) = 1, with zero initial velocities. Time on horizontal axis omits t from 0 to 1000 to achieve steady state. Solid line = x, dot–dashed
line = y, dashed line = z. Note that maxima occur in the order x, z, y, which represents a counterclockwise wave around Fig. 1.
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The actual period, from the data of Fig. 10, is 6.870. Fig. 11 shows the counterclockwise mode, which is pre-
dicted to have a frequency of xþ

ffiffi
3
p

2
�a ¼ 1:0866, i.e., a period of about 5.782. The actual period, from the data

of Fig. 11, is 5.775.
5. Conclusions

The goal of this work has been to investigate a system of three coupled limit cycle oscillators which exhibits
two stable steady states. Each steady state represents a wave moving around the trio of oscillators in opposite
directions. We investigated the existence, stability and bifurcation of such motions in a system of phase-only
oscillators. This led us to a more realistic system of three van der Pol oscillators which was studied by using
perturbation methods and confirmed by using numerical integration.

The ideal system of three identical oscillators was investigated for robustness in both phase-only and van
der Pol models. In the case of phase-only oscillators, Fig. 5 shows the extent to which the frequencies of the
individual oscillators can be detuned, and the system still function to have two stable steady states. Fig. 9
shows the comparable information when the system is taken as three van der Pol oscillators. Note the simi-
larity of the shape of the stable regions in Figs. 5 and 9. In both cases, the greatest detuning stability occurs
when two of the oscillators have the same frequencies, i.e. when W1 = W2 (Fig. 5) or D1 = D2 (Fig. 9). A basic
difference between these cases is that stability is lost in Fig. 5 when one of the stable states disappears in a
saddle-node bifurcation, whereas stability is lost in Fig. 9 when one of the stable states undergoes a supercrit-
ical Hopf bifurcation in which a stable limit cycle is born in the slow flow (which corresponds to a stable qua-
siperiodic motion in the original van der Pol oscillators).

Our motivation for studying this problem is to provide the theory for the design and construction of a
machine which can be used to make decisions, a first step towards artificial intelligence. In particular we expect
to see such applications in the area of MEMS.
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Appendix

For convenience in this section, the coefficients aij are written in the form aij. The coefficients in Eq. (8) are
Plea
Non
c1 ¼ �
a12a31 þ a13a21 þ a12a13

a21a32 þ a21a23 þ a12a23

ð75Þ

c2 ¼
a21X2 þ a12X1

a21a32 þ a21a23 þ a12a23

ð76Þ
The coefficients Ki in Eq. (11) are all sums of terms of the form:
Aða12Þi1ða13Þi2ða21Þi3ða23Þi4ða31Þi5ða32Þi6ðX1Þi7ðX2Þi8 ð77Þ
where
P8

j¼1ij ¼ 8 and where A is an integer. For example, K0 consists of 38 terms, one of which is 8a12a21a
232X2

1X
2
2. The number of monomials in each Ki is as follows: K0 has 38, K1 has 76, K2 has 165, K3 has 200, K4

has 183, K5 has 50, and K6 has 27, for a total of 739 terms.
The stability of the equilibria (63)–(65) are determined by computing the eigenvalues of the Jacobian matrix

of Eqs. (52)–(56). In the case of (63), the real parts of the eigenvalues turn out to be
3a
2
;
3a
2
;
7a
2
� 1;

7a
2
� 1; 2a� 1

� �
ð78Þ
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Since 3a
2
> 0 for a > 0, we see that (63) is unstable for a > 0. In the case of equilibria 64 and 65, the situation is

more complicated. Both of these equilibria turn out to have the same eigenvalues, one of which is k = �a � 1,
which is stable for a > 0, and four others which satisfy the following characteristic equation:
Plea
Non
4k4 þ ð20aþ 8Þk3 þ ð46a2 þ 26aþ 4Þk2 þ ð66a3 þ 36a2 þ 6aÞkþ 57a4 þ 24a3 þ 3a2 ¼ 0 ð79Þ

To prove stability of this equation for a > 0, we set k = Re + iIm and obtain two real equations by requiring
real and imaginary parts to vanish. Then we use the MACSYMA/MAXIMA command ELIMINATE to
eliminate Im and we obtain a single real equation on Re which turns out to be a polynomial of degree 16 hav-
ing 143 terms, all coefficients of which are, however, non-negative for a > 0. Thus by Descartes’ rule of signs,
there are no positive roots Re, and stability follows.
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