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Abstract: Huygens is believed to have been the first to pose and solve the problem of 
a nonlinear oscillator that performs “isochronous” oscillations, i.e. oscillations whose 
frequency and period are amplitude-independent. The present study shows that 
Huygens’ results can be obtained by establishing the equivalence between the kinetic 
and potential energy of his pendulum and that of a simple harmonic oscillator. 
Moreover, we are able to generalize this approach to apply to two different types of 
single-degree-of-freedom nonlinear oscillators whose equations of motion contain 
either a quadratic or linear term with respect to the generalized velocity. Conditions 
under which such systems have an isochronous centre at the origin are discussed. 
General expressions for the corresponding equation of motion, conservation laws as 
well as solutions for motion and for phase trajectories are also obtained. Several 
examples are given to illustrate the findings. Numerical simulations are carried out to 
verify that these nonlinear oscillators have an amplitude-independent period. 

1. Introduction 

Nonlinear oscillators are in general known to have a frequency/period that depends on their 

amplitude. Huygens is believed to have been the first to pose and solve the problem of a nonlinear 

oscillator that performs oscillations whose frequency/period are amplitude-independent [1], [2], 

which are the so-called isochronous oscillations [3]. It was more than three centuries ago when he 

showed that if a pendulum wraps around a cycloid, it oscillates isochronously [1], [2]. 

Recent investigations of isochronicity have mainly been directed towards two classes of 

nonlinear oscillators, i.e. two types of differential equations of motion: one with a term quadratic in 

the generalized velocity and the second one with a term linear in the generalized velocity. The former 

are governed by  

( ) ( ) .02 =++ xqxxpx   (1) 

This equation was studied by Sabatini [4], who derived a sufficient condition for its solution to be 

oscillatory, i.e. for the origin to be a center: ( ) .0>xxq  Sabatini also proved that when ( )xp  and ( )xq  



are odd and analytic, and ( ) 0>xxq is satisfied for small values of 0≠x , the origin is an isochronous 

center if and only if the following expression is equal to zero in the whole domain 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ,0≡Φ−′Φ−Φ′ xpxqxxqxxxqx  (2) 

where 

( ) ( )( ) ( ) ( ) .,exp 00 dsspxPdssPx xx
∫=∫=Φ  (3a,b) 

Sabatini further gave a characterization of isochronous centres: when ( )xp  and ( )xq  are polynomials 

and the condition ( ) 0>xxq  is satisfied, the origin represents a global isochronous centre if and only 

if both ( )xp  and ( )xq  have an odd degree and ( )xp  has a positive leading coefficient. 

Sabatini [5] also investigated Liénard-type equations, which have a term linear in the generalized 

velocity 

( ) ( ) .0=++ xvxxux   (4) 

He gave necessary and sufficient mathematical conditions for isochronicity in terms of the coefficient 

functions ( )xu  and ( )xv : Let ( )xu , ( )xv  be analytic, ( )xv  odd, ( ) ( ) 000 == vu , ( ) 00 >′v ; then the 

origin O is a center if and only if ( )xu  is odd, and O is an isochronous center if and only if 

( )( ) ( ) ( )( ) .0032
0 ≡′−−∫ xvxvxdsssux  (5) 

He illustrated the existence of this behaviour in the system (4) with 

( ) ( ) ( ) ,,32 3412 ++ +=+= nn xxxvxnxu  (6a,b) 

where n  is a non-negative integer. Iacono and Russo showed that this system can be explicitly solved 

[6]. Necessary and sufficient mathematical conditions for the isochronicity of the differential equation 

(4) have also been provided by Christopher and Devlin [7]. Chandrasekar et al [8] investigated in 

detail the so-called modified Emden equation, which is a Liénard-type nonlinear oscillator (4) with 

( ) ( ) ,
9

, 3
2

1 xkxxvkxxu +== λ  (7a,b) 

and determined the conditions under which it can yield isochronous oscillations. 

The existing theories related to the oscillators modelled by Eqs. (1) and (4) are of a mathematical 

nature, and neither link the equations of motion with mechanical models, nor all provide general 

solutions for their isochronous motion. The study proposed in this paper complements previous work 



by presenting a transformation approach in which the equivalence between the kinetic and potential 

energy of nonlinear oscillators and that of a simple harmonic oscillator, which is known to perform 

isochronous oscillations around the origin, is established. Being the motivation for this study, the 

main results related to Huygens’ pendulum and the basics of the transformation approach are 

presented first in the next section and then, two different classes of single-degree-of-freedom (1DOF) 

nonlinear isochronous oscillators whose equations of motion have the forms (1) or (4) are studied. 

2. On the motivation: Huygens’ pendulum 

Huygens [1], [2] showed that if a pendulum of length L  and mass m  wraps around a cycloid 

( ) ( ),1cos
4

,sin
4

−−=−= θθθ LyLx  (8a,b) 

it performs isochronous oscillations. The corresponding parametric equations of motion of the bob are 

[2] 

( ) ( ).cos3
4

,sin
4

θθθ +−=+=
LYLX  (9a,b) 

Both of these cycloids are shown in Figure 1 for L πθπ ≤≤−=4 and for . 

 

Figure 1.   Huygens’ pendulum. 

By using Eqs. (9a,b), the corresponding kinetic energy 2/)( 22 YXmT  +=  is found to be 

.)
2

cos
2

(
2
1 22θ

θ LmT =  (10) 



Its potential energy mgYV =  has the form 

).cos3(
4

θ+−=
LmgV  (11) 

On the other hand, a simple pendulum (SP) of the same length and the same mass has a constant 

period if it performs small oscillations. Its kinetic energy is of the form 

,)(
2
1 2

SP ϕLmT =  (12) 

and the potential energy is 

).
2

1(
2

SP
ϕ

−−= mgLV  (13) 

The equality between two expressions for the kinetic energy (10) and (12) yields 

.
2

cos
2
1 θ
θϕ  =  (14) 

This is satisfied for 

.
2

sin θϕ =  (15) 

By using Eq. (15), the expression for the potential energy V  (11) becomes 

),
2

1()
2

sin
2
11(

2
2 ϕθ

−−=−−= mgLmgLV  (16) 

i.e. it transforms to the potential energy of the simple pendulum (13). This implies that by using a 

certain coordinate transformation (given by Eq. (15) herein), the kinetic and potential energy of 

Huygens’ pendulum become equal to that of a simple pendulum.  

The question that naturally arises is if this type of transformation can be established between a 

wider class of 1DOF nonlinear oscillators and a simple harmonic oscillator so that these nonlinear 

oscillators are isochronous. To answer this question, two classes of dynamical systems are considered 

subsequently. 

3. Transformation approach I 

Let us consider 1DOF oscillators whose kinetic energy has a quadratic form in the 

generalized velocity 



( ) ,~
2
1),( 2xxTxxT  =  (17) 

where ( )xT~  is a position-dependent coefficient of the kinetic energy, which can stem from the 

geometry of motion or displacement-dependent mass, and )(xV  is the potential energy that is 

required to be positive definite and to yield the amplitude-independent frequency. 

Lagrange's equation corresponding to this conservative system is:  

,0~~2

~
2 =

′
+

′
+

T
Vx

T
Tx   (18) 

where dxTdT /~~
=′ . Now, putting the requirement of the equivalence between the kinetic and 

potential energy of the oscillator under consideration and that of a simple harmonic oscillator (SHO) 

whose generalized coordinate is labelled by X 

,
2

,
2

2

SHO

2

SHO
XVXT ==


 (19a,b) 

we conclude that the following should be satisfied 

( ) .
2

,)(~ 2XxVxxTX ==   (20a,b) 

Equation (20a) gives 

,)(~
0 dssTX x
∫=  (21) 

and Eq. (20b) with Eq. (21) defines the potential energy, so that the equation of motion (18) becomes 

.0)(~
~

1
~2

~
0

2 =



∫+

′
+ dssT

T
x

T
Tx x  (22) 

This equation contains a term that is quadratic in x , and can be related to Eq. (1), where 

( ) ( )TTxp ~2/~′=  and ( ) TdssTxq x ~/)(~
0 



∫= . Now, Sabatiniti’s results [4] for the isochronicity of 

its solution can be used to determine the form of )(~ xT . First, it is easy to show that the condition 

given by Eq. (2) is satisfied. Then, the form of )(~ xT  should be such that ( )xp  and ( )xq  are odd and 

analytic. As )(~ xT can be mass in classical mechanical systems, given its properties, one concludes 

that ( )xp  and ( )xq  are odd if )(~ xT  is even (note that for the origin to be a center it is required that 



( ) 0>xxq , i.e. 0~/)(~
0 >



∫ TdssTx x ). 

Since the solution for motion of the SHO has a general form ( )α+tAcos , Eq. (21) also defines 

how x changes with time 

( ),cos)(~
0 α+=∫= tAdssTX x  (23) 

where A  and α  can be found from the initial conditions ( )0x  and ( )0x . So, not only does this 

approach yield mechanical and mathematical models of isochronous oscillators, but it also enables 

one to find their isochronous motion. In addition, as these systems are conservative, the energy-

conservation law hVT =+ , where h  is the corresponding initial energy level, can be used to define 

isochronous motion in the phase plane as follows 

( )
.~

)(~2
2

02

xT

dssTh
x

x




−

=
∫

  (24) 

The following example demonstrates some potential benefits of these theoretical findings. A few 

more examples of 1DOF isochronous oscillators belonging to this class can be found in [9] and [10]. 

3.1.  Example I.1 

Let us assume that the coefficient T~  changes with the displacement as follows 

( ) .sin1~ 2 xxT +=  (25) 

The integral in Eq. (21) can be expressed in terms of the incomplete elliptic integral of the second 

kind ( )mxE , with the elliptic modulus m indicated below: 

( ).1sin1 2
0 −=+= ∫ xEdssX x  (26) 

The potential energy (20b) is 

( ) ( )
.

2
12 −

=
xE

xV  (27) 

The equation of motion has the form 

( ) ( ) .01
sin1

1
sin12
2sin

2
2

2
=−

+
+

+
+ xE

x
x

x
xx    (28) 



Equations (23) and (24) respectively give the solution for motion and phase trajectories: 

( ) ( ) ( )
.

sin1

12
,cos1

2

2
2

x

xEh
xtAxE

+

−−
=+=− α   (29a,b) 

In Figure 2a, time responses obtained numerically from Eq. (28) are plotted as black solid lines for 

( ) 2;1;5.00 =x  and ( ) ,00 =x  while the corresponding analytical solutions given by Eq. (29a) are 

shown in red dots. These solutions match and confirm that the motion is isochronous.  

 

Figure 2. Numerically obtained results from Eq. (28) (black solid line), Eq. (30) (blue dashed line) 

and the corresponding analytical solution Eq. (29a,b) (red dots) for ( ) 2;1;5.0;1.00 =x  and ( ) 00 =x : 

a) time responses; b) phase trajectories. 

In addition, Figure 2b shows phase trajectories obtained numerically from Eq. (28) and those based 

on the expression (29b). These solutions also coincide with each other.  

Recognising the functional coefficient ( )xp  and ( )xq  from Eq. (1) in Eq. (28), one can develop them 

into series to obtain 

.0
5
2

3
1

15
32

3
5 53253 =++−+






 ++−+  xxxxxxxx   (30) 

Given the approximation performed, one can expect that for the case of small oscillations, the 

corresponding time response will also have a constant period as Eq. (28). This is confirmed in Figure 

2a, where the numerical solution of Eq. (30) with ( )xp  and ( )xq  truncated to quintic polynomials is 

shown as a blue dashed line, having the same constant period as other time responses obtained from 

Eq. (28). 



4. Transformation approach II 

So far we have considered 1DOF oscillators whose kinetic energy has a pure quadratic form in 

generalized velocities. However, it is known that the structure of the kinetic energy of holonomic 

dynamical systems is such that their kinetic energy can be represented as a sum [11] 

),,(),,(),,(),,( 012 xtTxxtTxxtTxxtT ++=   (31) 

where  ),,(2 xxtT   is a quadratic form of the generalized velocity, ),,(1 xxtT   is a linear form of the 

generalized velocity, while ),(0 xtT  does not depend on the generalized velocity. Motivated by this 

fact, we consider now systems whose kinetic energy has the form 

( )[ ] ( )( )[ ] .exp
2
1 2

0
2 ττ dxfxfxxT t∫⋅⋅+=   (32) 

Note that it is easy to verify that Eq. (32) includes all three characteristic terms of the kinetic energy

2T , 1T  and 0T . The equivalence between the kinetic energy (32) and the one of the simple harmonic 

oscillator (19a) leads to 

( )[ ] ( )( )[ ].exp 0 ττ dxfxfxxX t
∫⋅⋅+=   (33) 

Equation (33) is satisfied for 

( )( )[ ].exp 0 ττ dxfxX t∫⋅=  (34) 

Based on the analogy with the potential energy of the simple harmonic oscillator (19b), the potential 

energy of the oscillators under consideration is 

( ) ( )( )[ ] .exp
2
1

2
2

0
2

2
ττ dxfxXxV t

∫⋅==  (35) 

For the kinetic energy (32) and the potential energy (35), Lagrange's equation of motion is 

( ) ( ) .012 2 =++′++ xfxfxfx   (36) 

This equation belongs to a class of Liénard-type equations (4), where ( ) fxfxu ′+= 2  and 

( ) 21 fxv += . The conditions for this equation to have an isochronous solution are listed in the 



paragraph after Eq. (4). They imply that f should be such that ( ) fxfxu ′+= 2  and ( ) ( )xfxv 21+=  

are analytic, ( ) ( )xfxv 21+=  is odd, ( ) ( ) 000 == vu , ( ) 00 >′v , as well as that Eq. (5) is satisfied.  

After determining f that satisfies all these conditions, one can go back to Eqs. (33) and (34), as their 

combination, together with ( )α+= tAX cos , leads to 

( ) ( ),tan α+−=+ txf
x
x  (37) 

If solvable analytically, this equation gives the solution for motion x(t). 

It should be noted that that these systems are characterized by the energy-like conservation law which 

stems from .2/2/ 22 constXX =+ , and has the form: 

( )[ ]( ) ( )( )[ ] .exp
2
1 2

0
22 constdxfxxfxx t =⋅+⋅+ ∫ ττ  (38) 

4.1. Example II.1 

It is easy to show that all the conditions for Eq. (36) to exhibit isochronous oscillations around the 

origin are satisfied if one takes the function ( )xf  as an odd polynomial function of the form 

( ) ,
5232

3212 ++

+
+

+
= nn x

n
x

n
xf ηµ  (39) 

where n  is a non-negative integer, and µ, η are certain constants. The corresponding equation of 

motion is  

( )
( ) ( )( ) ( )

.0
525232

2
32

74
2

2
5434

2

2
3212 =

+
+

++
+

+
++++ +++++ nnnnn x

n
x

nn
x

n
xxxxx ηµηµηµ   (40) 

This equation was solved numerically for different initial conditions and these solutions are plotted in 

Figure 3. The time histories presented in this figure confirm that the period of vibration is 

independent of the amplitude. 

For 0=η  and 32 += nµ , Eq. (40) simplifies to Sabatini’s example given by Eq. (6), whose 

exact solution and some related investigations can be found in [6]. 

It is also interesting to point out that for 



( ) ,
22

2nx
n

xf
+

=
µ  (41) 

the corresponding equation of motion takes the form 

( )
,0

12
14

2

2
2 =

+
+++ +nn x

n
xxxx µµ   (42) 

and the condition (5) is satisfied. However, although the restoring force is odd, the coefficient in front 

of x  is not odd, and this condition required by Sabatini’s isochronicity conditions is not satisfied.  

 

Figure 3. Numerically obtained time responses from Eq. (40) for n=1, µ=η=0.1, ( ) 5.1;1;5.00 =x  and 

( ) 00 =x . 

Using Eq. (37), one obtains  

( ),tan
22

2 αµ
+−=

+
+ tx

nx
x n

 (43) 

and its solution for positive values of n is 

( )
( )

,
cos

cos1

1
2

2
2

Cdtt
t

n
nx

n

n
n

+∫ +

++
=

α
α

µ
 (44) 

where C1

For n=0, Eq. (42) simplifies to the equation of motion of a linear damped oscillator 

 is an arbitrary constant. 

( ) .01 2 =+++ xxx µµ   (45) 



The conservation law (38) turns now into the known conservation law for this oscillator [11]:  

.,
22

1 2
2

constexxx t =⋅












+



 ⋅+ µµ
  (46) 

while Eq. (45), gives ( ) .cos tetAx µα −⋅+=  It is well-known that a linear under-damped oscillator 

has a constant period, which depends on the natural frequency and the damping coefficient, and is 

usually called a quasi-period. However, its amplitude is not constant, but it decays in time. So, this 

oscillator has the property of damped isochronicity. Similarly, the oscillator modelled by Eq. (42) can 

have the same characteristic of damped isochronicity – a constant period and a decaying amplitude. 

Time histories obtained numerically from Eq. (42) and based on the analytical result (44) for n=1 are 

shown in Figure 4 and confirm this finding.  

 

Figure 4. Numerically obtained time responses from Eq. (42) for n=1, µ=0.1, ( ) 5.1;1;5.00 =x  and 

( ) 00 =x  (black solid line), and the analytical solution plotted based on Eq. (44) (red dots). 

5. Conclusions 

This study has been concerned with nonlinear oscillators that have isochronous orbits around the 

origin. Their mechanical and mathematical models have been proposed based on the transformation 

approach in which the equivalence between their kinetic and potential energy and that of a simple 

harmonic oscillator is established. Two types of dynamical systems have been considered. The first 

type corresponds to conservative dynamical systems whose equations of motion contain a term 

quadratic in the generalized velocity. General expressions for the corresponding isochronous solutions 

and phase trajectories are derived. The second type is characterized by the equations of motion with a 



term linear in the generalized velocity. The corresponding energy-conservation law has been derived 

and the property of isochronicity and damped isochronicity has been demonstrated. 
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