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1 Three Problems

We will use the following three problems in steady state heat conduction to motivate our study
of a variety of math methods:

Problem “A”: Heat conduction in a cube

∇2u = 0 for 0 < x < L, 0 < y < L, 0 < z < L (1)

with the assumption that u = u(x, z,only) (that is, no y dependence)),
and with the boundary conditions:

u = 0 on x = 0, L (2)

u = 0 on z = 0 (3)

u = 1 on z = L (4)

Problem “B”: Heat conduction in a circular cylinder

∇2u = 0 for 0 < r < a, 0 < z < L (5)

with the assumption that u = u(r, z,only) (that is, no θ dependence),
and with the boundary conditions:

u = 0 on r = a (6)

u = 0 on z = 0 (7)

u = 1 on z = L (8)

Problem “C”: Heat conduction in a sphere

∇2u = 0 for 0 < ρ < a (9)

with the assumption that u = u(ρ, φ,only) (that is, no θ dependence),
and with the boundary conditions:

u = 0 on r = a, π/2 ≤ φ ≤ π (10)

u = 1 on r = a, 0 ≤ φ < π/2 (11)

Here φ is the colatitude and θ is the longitude.
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2 The Laplacian ∇2 in three coordinate systems

Rectangular coordinates

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
(12)

Circular cylindrical coordinates

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

∂2u

∂z2
(13)

where
x = r cos θ, y = r sin θ, that is, r2 = x2 + y2 (14)

and where
0 ≤ θ < 2π (15)

Spherical coordinates

∇2u =
1

ρ2

[
∂

∂ρ

(
ρ2∂u

∂ρ

)
+

1

sin φ

∂

∂φ

(
∂u

∂φ
sin φ

)
+

1

sin2 φ

∂2u

∂θ2

]
(16)

where
x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cos θ, that is, ρ2 = x2 + y2 + z2 (17)

and where
0 ≤ θ < 2π, 0 ≤ φ ≤ π (18)
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3 Solution to Problem “A” by Separation of Variables

In this section we solve Problem “A” by separation of variables. This is intended as a review of
work that you have studied in a previous course.

We seek a solution to the PDE (1) (see eq.(12)) in the form

u(x, z) = X(x)Z(z) (19)

Substitution of (19) into (12) gives:

X ′′Z + XZ ′′ = 0 (20)

where primes represent differentiation with respect to the argument, that is, X ′ means dX/dx
whereas Z ′ means dZ/dz. Separating variables, we obtain

Z ′′

Z
= −X ′′

X
= λ (21)

where the two expressions have been set equal to the constant λ because they are functions of the
independent variables x and z, and the only way these can be equal is if they are both constants.
This yields two ODE’s:

X ′′ + λX = 0 and Z ′′ − λZ = 0 (22)

Substituting the ansatz (19) into the boundary conditions (=B.C.) (2) and (3), we find:

X(0) = 0, X(L) = 0 and Z(0) = 0 (23)

The general solution of the X equation in (22) is

X(x) = c1 cos
√

λx + c2 sin
√

λx (24)

where c1 and c2 are arbitrary constants. The first B.C. of (23), X(0) = 0, gives c1=0. The second
B.C. of (23), X(L) = 0, gives

√
λ = nπ/L, for n = 1, 2, 3, · · ·:

λ =
n2π2

L2
, X(x) = c2 sin

nπx

L
, n = 1, 2, 3, · · · (25)

The general solution of the Z equation in (22) can be written in either of the equivalent forms:

Z(z) = c3 cosh
√

λz + c4 sinh
√

λz (26)

or
Z(z) = c5 e

√
λz + c6 e−

√
λz (27)

where λ = n2π2

L2 and where

cosh v =
ev + e−v

2
and sinh v =

ev − e−v

2
(28)
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Choosing the form (26), the third B.C. of (23), Z(0) = 0, gives c3=0.

Substituting the derived results into the assumed form of the solution (19), we have

u(x, z) = X(x)Z(z) = an sin
nπx

L
sinh

nπz

L
, n = 1, 2, 3, · · · (29)

where an=c2 c4 is an arbitrary constant. Since the PDE (1) is linear, we may superimpose
solutions to obtain the form:

u(x, z) =
∞∑

n=1

an sin
nπx

L
sinh

nπz

L
(30)

We still have to satisfy the B.C. (4), u(x,L)=1, which gives (from (30)):

1 =
∞∑

n=1

an sin
nπx

L
sinh nπ (31)

Eq.(31) is a Fourier series. We may obtain the values of the constants an by using the orthogo-
nality of the eigenfunctions sin nπx

L
on the interval 0 < x < L:

∫ L

0
sin

nπx

L
sin

mπx

L
dx = 0 n 6= m (32)

where n and m are integers. Eq.(32) follows from the trig identity:

sin
nπx

L
sin

mπx

L
= −1

2
cos

(n + m)πx

L
+

1

2
cos

(n −m)πx

L
(33)

Substituting (33) into (32), the cosines integrate to sines and vanish at the upper and lower
limits if n 6= m. In the case that n=m, we have

∫ L

0

(
−1

2
cos

(n + m)πx

L
− 1

2
cos

(n −m)πx

L

)
dx =

∫ L

0

(
−1

2
cos

2mπx

L
+

1

2

)
dx =

L

2
(34)

We return now to eq.(31) and use (32) and (34) to obtain the coefficients an. Multiplying (31)
by sin mπx

L
and integrating from 0 to L, we obtain:

∫ L

0
sin

mπx

L
dx = am

L

2
sinh mπ (35)

Changing the index from m to n, this gives

an
L

2
sinh nπ =

∫ L

0
sin

nπx

L
dx =

[
− L

nπ
cos

nπx

L

]L

0
=

{
2L
nπ

for n odd
0 for n even

(36)

whereupon we obtain the following solution u(x, z) from eqs.(30) and (36):

u(x, z) =
∞∑

n=1,3,5,···

4

nπ

sinh nπz
L

sinh nπ
sin

nπx

L
(37)
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4 Solving Problem “B” by Separation of Variables

Problem “B” has the PDE (see (5) and (13)):

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
= 0 (38)

Following the procedure we used on problem “A”, we seek a solution to the PDE (38) in the
form

u(r, z) = R(r)Z(z) (39)

Substitution of (39) into (38) gives:

R′′Z +
1

r
R′Z + RZ ′′ = 0 (40)

where again primes represent differentiation with respect to the argument. Separating variables,
we obtain

Z ′′

Z
= −

R′′ + 1
r
R′

R
= λ (41)

This yields two ODE’s:

R′′ +
1

r
R′ + λR = 0 and Z ′′ − λZ = 0 (42)

Substituting the ansatz (39) into the B.C. (6) and (7), we find:

R(a) = 0 and Z(0) = 0 (43)

Now if we were to continue to follow the procedure we used on problem “A”, we would solve the
R equation of (42) and use the first B.C. of (43) to find λ, and so on.

However, the R equation has a variable coefficient, namely in the 1
r
R′ term. Thus we must digress

and find out to how to solve such ODE’s before we can continue with the solution of problem
“B”.
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5 Euler’s Differential Equation

The simplest case of a linear variable coefficient second order ODE is Euler’s equation:

ax2 d2y

dx2
+ bx

dy

dx
+ c y = 0 (44)

We look for a solution with the ansatz:
y = xr (45)

Substitution of (45) into (44) gives

ar(r − 1) + br + c = 0 that is, ar2 + (b − a)r + c = 0 (46)

We may use the quadratic formula to obtain (in general) a pair of complex conjugate roots r1

and r2. Thus the general solution may be written

y = c1 xr1 + c2 xr2 (47)

If the roots are both real, then eq.(47) suffices. However in the general case in which r1 and r2

are complex, say r1 = µ + iν, we obtain the form

y = c1 xµ+iν + c2 xµ−iν = xµ(c1x
iν + c2x

−iν) (48)

Using Euler’s formula, eiθ = cos θ + i sin θ, and the identity x = elogx, we obtain the real form

y = xµ(c1e
iν logx + c2e

−iν log x) = xµ(c3 cos(ν log x) + c4 sin(ν log x)) (49)

where c3 and c4 are real arbitrary constants, and where log x stands for natural logarithms.

In the case that the roots are repeated, r1=r2=r, the general solution to (44) is

y = c1 xr + c2 xr log x (50)
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6 Power Series Solutions

So now we know how to solve Euler’s equation. What about linear differential equations with
variable coefficients which are not in the form of Euler’s equation? A natural approach would
be to look for the solution in the form of a power series:

y = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · + cnx

n + · · · (51)

where the coefficients ci are to be found. The method is best illustrated with an example.
Example 1

d2y

dx2
+ x

dy

dx
+ y = 0 (52)

We substitute (51) into (52)

2c2 + 6c3x + 12c4x
2 + · · · + x(c1 + 2c2x + 3c3x

2 + · · ·) + c0 + c1x + c2x
2 + c3x

3 + · · · = 0 (53)

and collect terms:

2c2 + c0 + x(6c3 + 2c1) + x2(12c4 + 3c2) + x3(20c5 + 4c3) · · · (54)

Next we require the coefficient of each power of xn to vanish, giving:

2c2 + c0 = 0 (55)

6c3 + 2c1 = 0 (56)

12c4 + 3c2 = 0 (57)

20c5 + 4c3 = 0 (58)

· · ·

Note that eqs.(55)-(58) can be abbreviated by the single recurrence relation:

(n + 2)(n + 1)cn+2 + (n + 1)cn = 0, n = 0, 1, 2, 3, · · · (59)

which may be written in the form

cn+2 = − cn

n + 2
, n = 0, 1, 2, 3, · · · (60)

The nature of the recurrence relation (60) is that c0 and c1 can be chosen arbitrarily, after which
all the other ci’s will be determined in terms of c0 and c1. This leads to the following expression
for the general solution of eq.(52):

y = c0 f(x) + c1 g(x) (61)

where

f(x) = 1 − x2

2
+

x4

2 · 4 − x6

2 · 4 · 6 +
x8

2 · 4 · 6 · 8 + · · · (62)

g(x) = x − x3

3
+

x5

3 · 5 − x7

3 · 5 · 7 +
x9

3 · 5 · 7 · 9 + · · · (63)
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The method of power series has worked great on Example 1. Let’s try it on Example 2:
Example 2

2x2 d2y

dx2
+ 3x

dy

dx
+ (−1 + x)y = 0 (64)

We substitute (51) into (64)

2(2c2x
2+6c3x

3+12c4x
4+· · ·)+3x(c1+2c2x+3c3x

2+· · ·)+(−1+x)(c0+2c1x+2c2x
2+2c3x

3+· · ·) = 0
(65)

and collect terms:

−c0 = 0 (66)

2c1 + c0 = 0 (67)

9c2 + c1 = 0 (68)

20c3 + c2 = 0 (69)

· · ·

This time eqs.(67)-(69) have the recurrence relation:

cn+1 = − cn

(2n + 1)(n + 2)
, n = 1, 2, 3, · · · (70)

But since eq.(66) requires that c0=0, we find from (70) that all the ci’s must vanish. In other
words, the method of power has failed to produce a solution for Example 2, eq.(64).

This raises two questions:
1. How can we obtain a solution to eq.(64)?, and
2. For which class of equations will the method of power series work?

We answer the first question in the next section by replacing the method of power series by a
more general method called the method of Frobenius. We put off answering the second question
until later.
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7 The Method of Frobenius

The method of Frobenius generalizes the method of power series by seeking a solution in the
form of a “generalized power series”:

y = xr(c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · + cnxn + · · ·) (71)

Note that eq.(71) reduces to the power series (51) if r=0.

Let’s try this method on Example 2:
Example 2, continued

2x2 d2y

dx2
+ 3x

dy

dx
+ (−1 + x)y = 0 (72)

We substitute (71) into (72) and collect terms:

(2r2 + r − 1)c0x
r + [(2r2 + 5r + 2)c1 + c0]x

r+1 + [(2r2 + 9r + 9)c2 + c1]x
r+2 + · · · = 0 (73)

(2r2 + r − 1)c0 = 0 (74)

(2r2 + 5r + 2)c1 + c0 = 0 (75)

(2r2 + 9r + 9)c2 + c1 = 0 (76)

· · ·
[2r2 + (4n + 1)r + (n2 + n − 1)]cn+1 + cn = 0 (77)

· · ·

Eqs.(75)-(77) have the recurrence relation:

cn+1 = − cn

(2r + 2n − 1)(r + n + 1)
, n = 1, 2, 3, · · · (78)

In addition to (78), we also must satisfy, from (74), the indicial equation:

2r2 + r − 1 = 0 ⇒ r = −1,
1

2
(79)

We consider each of these r-values separately, taking c0=1 for each:
For r=−1 we get:

y = f(x) =
1

x
+ 1 − x

2
+

x2

18
− x3

360
+

x4

12600
− x5

680400
+ · · · (80)

For r=1
2

we get:

y = g(x) =
√

x

(
1 − x

5
+

x2

70
− x3

1890
+

x4

83160
− x5

5405400
+ · · ·

)
(81)

The general solution of Example 2, eq.(72), is thus given by

y = k1 f(x) + k2 g(x) (82)
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where k1 and k2 are arbitrary constants.

Next, let’s try the method of Frobenius on Example 3:
Example 3

x3 d2y

dx2
+ y = 0 (83)

We substitute (71) into (83) and collect terms:

c0x
r + [(r2 − r)c0 + c1]x

r+1 + [(r2 + r)c1 + c2]x
r+2 + [(r2 + 3r + 2)c2 + c3]x

r+3 + · · ·+ = 0 (84)

c0 = 0 (85)

(r2 − r)c0 + c1 = 0 (86)

(r2 + r)c1 + c2 = 0 (87)

(r2 + 3r + 2)c2 + c3 = 0 (88)

· · ·
(r + n)(r + n − 1)cn + cn+1 = 0 (89)

· · ·

Eqs.(86)-(89) have the recurrence relation:

cn+1 = −(r + n)(r + n − 1)cn, n = 1, 2, 3, · · · (90)

But since eq.(85) requires that c0=0, we find from (90) that all the ci’s must vanish. In other
words, the method of Frobenius has failed to produce a solution for Example 3, eq.(83).

Summarizing, we have seen that for some equations the method of power series works (Example
1), whereas for other equations that method fails but the more general method of Frobenius
works (Example 2). Now we have seen an example in which the method of Frobenius fails (Ex-
ample 3).

We need a classification scheme which will tell us which equations we can be guaranteed to solve
using these two methods.
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8 Ordinary Points and Singular Points

Let’s consider the general class of linear second order ODE’s of the form:

A(x) y′′ + B(x) y′ + C(x) y = 0 (91)

in which A(x), B(x) and C(x) have power series expansions about x=0:

A(x) = A0 + A1x + A2x
2 + · · · (92)

B(x) = B0 + B1x + B2x
2 + · · · (93)

C(x) = C0 + C1x + C2x
2 + · · · (94)

This includes the possibility that A(x), B(x) and C(x) are polynomials.

Definition: If A0 6= 0 then x=0 is called an ordinary point. If A0=0 and not both B0 and C0

are zero, then x=0 is called a singular point.

Now suppose that x=0 is a singular point. Then let p(x) be defined by

p(x) = x
B(x)

A(x)
=

B0 + B1x + B2x
2 + · · ·

A1 + A2x + A3x2 + · · · (95)

and let q(x) be defined by

q(x) = x2C(x)

A(x)
= x

C0 + C1x + C2x
2 + · · ·

A1 + A2x + A3x2 + · · · (96)

Definition: Let x=0 be a singular point. If p(x) and q(x) don’t blow up as x approaches zero,
then x=0 is called a regular singular point. A singular point which is not regular is called an
irregular singular point.

These definitions will help us to determine whether the method of power series or the method of
Frobenius will work to solve a given equation of the form (91).

Rule 1: If x=0 is an ordinary point, then two linearly independent solutions can be obtained by
the method of power series expansions about x=0.

Rule 2: If x=0 is a regular singular point, then at least one solution can be obtained by the
method of Frobenius expanded about x=0.

As an example, consider Example 1, eq.(52):

d2y

dx2
+ x

dy

dx
+ y = 0 (97)

In this case A(x)=1 and x = 0 is an ordinary point. According to Rule 1, two independent
solutions can be obtained in the form of power series, see eqs.(62) and (63).
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Consider now Example 2, eq.(72):

2x2 d2y

dx2
+ 3x

dy

dx
+ (−1 + x)y = 0 (98)

In this case A0=0 and C0=−1 so that x=0 is a singular point. The quantities p(x) and q(x) are
given by

p(x) = x
B(x)

A(x)
=

3

2
and q(x) = x2C(x)

A(x)
=

−1 + x

2
(99)

and since neither p(x) nor q(x) blows up as x →0, we see that x=0 is a regular singular point.
Then by Rule 2, at least one solution can be obtained by the method of Frobenius. In fact we
found two such solutions, see eqs.(80) and (81).

Next consider Example 3, eq.(83):

x3 d2y

dx2
+ y = 0 (100)

In this case A0=0 and C0=1 so that x=0 is a singular point. The quantities p(x) and q(x) are
given by

p(x) = x
B(x)

A(x)
= 0 and q(x) = x2C(x)

A(x)
=

1

x
(101)

Since q(x) blows up as x →0, we see that x=0 is an irregular singular point and neither Rule 1
nor Rule 2 applies. In fact we saw that the method of Frobenius did not work on Example 3.

You may have noticed that Rule 1 guarantees two linearly independent solutions in the case of
an ordinary point, while Rule 2 only guarantees one solution in the case of a regular singular
point. Nevertheless in the case of Example 2 (which has a regular singular point) we found two
linearly independent solutions. The case where the method of Frobenius only yields one solution
is illustrated by Example 4:
Example 4

x2 d2y

dx2
+ 4x

dy

dx
+ (2 + x) y = 0 (102)

Here x=0 is a regular singular point. We apply the method of Frobenius by substituting the
Frobenius series (71) into eq.(102) and collecting terms:

(r2 + 3r + 2)c0x
r + [(r2 + 5r + 6)c1 + c0]x

r+1 + [(r2 + 7r + 12)c2 + c1]x
r+2 + · · · = 0 (103)

(r2 + 3r + 2)c0 = 0 (104)

(r2 + 5r + 6)c1 + c0 = 0 (105)

(r2 + 7r + 12)c2 + c1 = 0 (106)

· · ·
[r2 + (2n + 5)r + (n2 + 5n + 6)]cn+1 + cn = 0 (107)

· · ·
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Eqs.(105)-(107) have the recurrence relation:

cn+1 = − cn

(r + n + 2)(r + n + 3)
, n = 1, 2, 3, · · · (108)

In addition to (108), we also must satisfy, from (104), the indicial equation:

r2 + 3r + 2 = 0 ⇒ r = −1,−2 (109)

Let us consider each of these r-values separately:
For r=−1 we get:

y = c0

(
1

x
− 1

2
+

x

12
− x2

144
+

x3

2880
− x4

86400
+

x5

3628800
+ · · ·

)
(110)

For r=−2, eq.(105) requires that we take c0=0. Then we obtain the following solution:

y = c1

(
1

x
− 1

2
+

x

12
− x2

144
+

x3

2880
− x4

86400
+

x5

3628800
+ · · ·

)
(111)

Eqs.(110) and (111) are obviously not linearly independent. The method of Frobenius has ob-
tained only one linearly independent solution. This case can be characterized by Rule 3:

Rule 3: If x=0 is a regular singular point, and if the two indicial roots r1 and r2 are not identical
and do not differ by an integer, then the method of Frobenius will yield two linearly independent
solutions.

In the case of Example 2, eq.(72), the indicial equation (79) gave r1=−1 and r2=
1
2
. Since these

r-values do not differ by an integer, Rule 3 guarantees that the method of Frobenius will gener-
ate two linearly independent solutions. See eqs.(80) and (81). However, in the case of Example
4, eq.(102), the indicial roots were r1=−1 and r2=−2, see eq.(109). In this case Rule 3 does
not apply and we have no guarantee that the method of Frobenius will generate two linearly
independent solutions.

A natural question to ask at this point is: How can we find the second linearly independent
solution in cases like that of Example 4, where there is a regular singular point for which the
indicial roots are repeated or differ by an integer? The answer is given by Rule 4:

Rule 4: If x=0 is a regular singular point, and if the two indicial roots r1 and r2 are either
identical or differ by an integer, then one solution can be obtained by the method of Frobenius.
Let us refer to that solution as y = f(x). A second linearly independent solution can be obtained
in the form

y = Cf(x) log x + g(x) (112)

where g(x) is a Frobenius series. The constant C may or may not be equal to zero. If C=0,
then both linearly independent solutions can be obtained in the form of Frobenius series. In the
repeated root case r1=r2, the constant C is not equal to zero.
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In the case of repeated indicial roots, we should not be surprised to find the occurrence of log x
in the solution, since we have seen that in Euler’s equation, eq.(44), which has a regular singular
point at x=0, the presence of a repeated root implies the presence of log x in the solution, see
eq.(50).
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9 Solving Problem “B” by Separation of Variables,

continued

Now that we know how to solve linear variable coefficient ODE’s, let us return to the problem
which motivated our digression, namely the application of separation of variables to problem
“B”. We wrote u(r, z) = R(r)Z(z), see eq.(39), and we found that the unkown function R(r)
had to satisfy the following boundary value problem (see eqs.(42),(43)):

d2R

dr2
+

1

r

dR

dr
+ λR = 0 with the B.C. R = 0 when r = a (113)

To begin with, let’s stretch the r coordinate so as to absorb the separation constant λ and thereby
make it disappear from the ODE. Let

x =
√

λr (114)

and let us change notation from R(r) to y(x):

dR

dr
=

dy

dx

dx

dr
=

dy

dx

d

dr
(
√

λr) =
√

λ
dy

dx
(115)

where we have used the chain rule. Similarly, d2R
dr2 = λ d2y

dx2 . The differential equation in (113)
becomes

d2y

dx2
+

1

x

dy

dx
+ y = 0 (116)

Next let us multiply eq.(116) by x so as to put it in the form of eq.(91):

x
d2y

dx2
+

dy

dx
+ xy = 0 (117)

Now we have to decide upon which method to use to solve eq.(117). Inspection of (117) shows
that x=0 is not an ordinary point (since A0 6= 0, see eq.(92)). In fact x=0 is a regular singular
point. To prove this we compute the quantities p(x) and q(x) defined in eqs.(95),(96):

p(x) = x
B(x)

A(x)
= 1 and q(x) = x2C(x)

A(x)
= x2 (118)

and we note that neither p(x) nor q(x) blows up as x → 0, telling us that x=0 is a regular
singular point. Then by Rule 2 we know that at least one solution of (117) can be obtained by
the method of Frobenius.

We proceed with the method of Frobenius by substituting a Frobenius series (71) into eq.(117)
and collecting terms. We find:

r2c0x
r−1 +(r2 +2r+1)c1x

r +[(r2 +4r+4)c2 +c0]x
r+1 +[(r2 +6r+9)c3 +c1]x

r+2 + · · · = 0 (119)

r2c0 = 0 (120)

(r2 + 2r + 1)c1 = 0 (121)
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(r2 + 4r + 4)c2 + c0 = 0 (122)

(r2 + 6r + 9)c3 + c1 = 0 (123)

· · ·
(r + n + 2)2cn+2 + cn = 0 (124)

· · ·

Eqs.(122)-(124) have the recurrence relation:

cn+2 = − cn

(r + n + 2)2
, n = 0, 1, 2, 3, · · · (125)

The indicial equation for this system is obtained from eq.(120):

r2 = 0 ⇒ r = 0, 0 (repeated root) (126)

So we are in the case of a regular singular point with a repeated indicial root. Rule 4 applies
to this situation and tells us that the method of Frobenius will be able to generate only one
solution, and that a second linearly independent solution will involve a log x term, see eq.(112).

Note that once r=0 is chosen to satisfy eq.(120), we find from eq.(121) that c1=0. This implies,
from the recurrence relation (125) that all the codd coefficients must vanish. Thus we obtain the
following solution:

y = c0

(
1 − x2

4
+

x4

64
− x6

2304
+

x8

147456
− x10

14745600
+ · · ·

)
(127)

The function so generated is very famous and is known as a “Bessel function of order zero of the
first kind”. It is usually represented by the symbol J0 and can be written in the following form:

J0(x) =
∞∑

n=0

(−1)nx2n

22n(n!)2
(128)

We present without derivation the following expression for J0(x) which is valid for large values
of x:

J0(x) ∼
√

2

πx
cos

(
x − π

4

)
as x → ∞ (129)

From Rule 4, a second linearly independent solution will take the form:

y = CJ0(x) log x + g(x) (130)

where g(x) can be written as a power series. Let us abbreviate this second linearly independent
solution by the symbol Y0.

Thus we have obtained the following expression for the general solution to eq.(117):

y = k1J0(x) + k2Y0(x) (131)
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Recall that we defined x in order to simplify the form of the R differential equation in (113). Now
we return to the original independent variable r by setting x=

√
λr (see eq.(114)). The general

solution to the R differential equation in (113), R′′ + R′/r + λR = 0 can be written:

R(r) = k1J0(
√

λr) + k2Y0(
√

λr) (132)

The next step is to apply the B.C. associated with this equation:

R = 0 when r = a (133)

Before applying the B.C. (133), we note that the presence of the log term in Y0 will produce
infinite temperatures at r=0, and hence the Y0 part of the solution must be removed by choosing
k2=0 in (132). The B.C. (133) then requires that

R(a) = k1J0(
√

λa) = 0 (134)

There is an infinite sequence of λ values, {λi}, each of which satisfies eq.(134). These may be
found by utilizing tables of the zeros of J0(x). We shall represent the nth zero of J0(x) by Γn.
The first five zeros of J0(x) are:

Γ1 = 2.4048, Γ2 = 5.5201, Γ3 = 8.6537, Γ4 = 11.7915, Γ5 = 14.9309, · · · (135)

The corresponding values of λ are of the form λn=Γ2
n/a2:

λ1 =
5.7831

a2
, λ2 =

30.4715

a2
, λ3 =

74.8865

a2
, λ4 =

139.039

a2
, λ5 =

222.932

a2
, · · · (136)

And the corresponding R-eigenfunctions are:

Rn(r) = J0(
√

λnr) = J0

(
Γn

r

a

)
(137)

Returning to the separation of variables solution of problem “B”, we must also solve the Z-
equation (see eqs.(42),(43)):

Z ′′ − λZ = 0 with the B.C. Z = 0 when z = 0 (138)

As in the separation of variables solution of problem “A”, the general solution of the Z equation
(138) can be written in the form:

Z(z) = c3 cosh
√

λz + c4 sinh
√

λz (139)

The B.C. Z(0) = 0 gives c3=0.

Substituting the derived results into the assumed form of the solution u(r, z) = R(r)Z(z), we
have

u(r, z) = R(r)Z(z) = anJ0

(
Γn

r

a

)
sinh

Γnz

a
, n = 1, 2, 3, · · · (140)
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where an is an arbitrary constant. Since the PDE (38) is linear, we may superimpose solutions
to obtain the form:

u(r, z) =
∞∑

n=1

anJ0

(
Γn

r

a

)
sinh

Γnz

a
(141)

We still have to satisfy the B.C. (8), u(r, L)=1, which gives (from (141)):

1 =
∞∑

n=1

anJ0

(
Γn

r

a

)
sinh

ΓnL

a
(142)

Our task now is to find the constants an. When we were faced with this same task in solving
problem “A”, we had a Fourier series (see eq.(31)). We obtained the values of the constants
an by using the orthogonality of the eigenfunctions sin nπx

L
. In the case of problem “B” we will

similarly use the orthogonality of the eigenfunctions J0

(
Γn

r
a

)
.
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10 Orthogonality

In order to complete our treatment of problem “B”, we need to use orthogonality of the associated
eigenfunctions. In the case of problem “A”, the orthogonal eigenfunctions X(x) satisfied the
following boundary value problem (see eqs.(22) and (23)):

X ′′ + λX = 0 with the B.C. X(0) = 0, X(L) = 0 (143)

In order to prove orthogonality, we solved this problem to get

Xn(x) = sinλnx = sin
nπx

L
(144)

and then we used the properties of trig functions to prove that

∫ L

0
sin

nπx

L
sin

mπx

L
dx = 0 n 6= m (145)

See eqs.(32)-(34).

Unfortunately, we can’t use a comparable method to prove the orthogonality of Bessel functions.
Instead we will use a different method called Sturm-Liouville theory. We demonstrate the method
by using it on eq.(143). Let Xn(x) satisfy the eqs:

X ′′
n + λnXn = 0 with the B.C. Xn(0) = 0, Xn(L) = 0 (146)

and let Xm(x) satisfy the eqs:

X ′′
m + λmXm = 0 with the B.C. Xm(0) = 0, Xm(L) = 0 (147)

We want to prove that ∫ L

0
XmXndx = 0 for n 6= m (148)

We multiply (146) by Xm and (147) by Xn, and subtract, giving

XmX ′′
n − XnX ′′

m + (λn − λm)XnXm = 0 (149)

Next we integrate (149) from 0 to L:

∫ L

0
(XmX ′′

n −XnX ′′
m) dx + (λn − λm)

∫ L

0
XnXm dx = 0 (150)

The idea now is to get the first term to vanish by using integration by parts and the B.C. in
(143). Consider the first part of the first term:

∫ L

0
XmX ′′

n dx = [XmX ′
n]

L

0
−
∫ L

0
X ′

mX ′
n dx (151)

The integrated terms vanish due to the B.C. Xm(0)=Xm(L)=0. Thus

∫ L

0
XmX ′′

n dx = −
∫ L

0
X ′

mX ′
n dx (152)
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Similarly, ∫ L

0
XnX ′′

m dx = −
∫ L

0
X ′

nX ′
m dx (153)

Therefore eq.(150) becomes

(λn − λm)
∫ L

0
XnXm dx = 0 ⇒

∫ L

0
XnXm dx = 0 if n 6= m (154)

We have thus proven the orthogonality of the eigenfunctions Xn(x) without constructing Xn(x).
This method is quite different from the method we used in eqs.(32)-(34), where we solved for
Xn(x) = sin nπx

L
and used various trig identities.

Now in the case of problem “B”, the eigenfunctions Rn(r) satisfy the boundary value problem
(113):

d2Rn

dr2
+

1

r

dRn

dr
+ λnRn = 0 with the B.C. Rn = 0 when r = a (155)

Based on the procedure given above in eqs.(146)-(154), it would seem like the right way to
proceed with eq.(155) would be to multiply by Rm, subtract the same equation with m and n
interchanged, and integrate by parts to eliminate the terms which are not part of the orthogo-
nality condition. Try it: it doesn’t work!

The correct procedure is to multiply eq.(155) by r and write it in the form:

d

dr

(
r
dRn

dr

)
+ λnrRn = 0 (156)

Now we proceed as before, multiplying (156) by Rm and subtracting the same equation with m
and n interchanged, giving:

Rm
d

dr

(
r
dRn

dr

)
− Rn

d

dr

(
r
dRm

dr

)
+ (λn − λm)rRnRm = 0 (157)

Now we integrate (157) from 0 to a:

∫ a

0

(
Rm

d

dr

(
r
dRn

dr

)
− Rn

d

dr

(
r
dRm

dr

))
dr + (λn − λm)

∫ a

0
rRnRmdr = 0 (158)

As before, the idea is to get the first term to vanish by using integration by parts and the B.C.
in (155). Consider the first part of the first term:

∫ a

0
Rm

d

dr

(
r
dRn

dr

)
dr =

[
rRm

dRn

dr

]a

0

−
∫ a

0
r
dRn

dr

dRm

dr
dr (159)

The integrated terms vanish at the upper limit because Rm=0 at r=a. At the lower limit, the
presence of the factor r kills the term, assuming that R and dR/dr remain bounded as r → 0.
So we have ∫ a

0
Rm

d

dr

(
r
dRn

dr

)
dr = −

∫ a

0
r
dRn

dr

dRm

dr
dr (160)
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Similarly, we find that

∫ a

0
Rn

d

dr

(
r
dRm

dr

)
dr = −

∫ a

0
r
dRm

dr

dRn

dr
dr (161)

so that eq.(158) becomes

(λn − λm)
∫ a

0
rRnRmdr = 0 ⇒

∫ a

0
rRnRmdr = 0 if n 6= m (162)

Since we showed in eq.(137)

Rn(r) = J0(
√

λnr) = J0

(
Γn

r

a

)
(163)

we have the following orthogonality condition for Bessel functions:

∫ a

0
rJ0

(
Γn

r

a

)
J0

(
Γm

r

a

)
dr = 0 if n 6= m (164)

where as a reminder we note that Γn is the nth zero of J0(x), see eq.(135).
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11 Sturm-Liouville Theory

In this section we present some results which generalize the orthogonality results in the previous
section. A linear second order ODE is said to be in Sturm-Liouville form if it can be written as
follows:

d

dx

[
p(x)

dy

dx

]
+ (q(x) + λw(x))y = 0 (165)

We suppose that this equation is defined on an interval a ≤ x ≤ b and that B.C. on y(x) are
given at the endpoints x=a and x=b.

[In the case of problem “B”, eq.(156) is in Sturm-Liouville form with R(r) corresponding to y(x),
and where p(x)=x, q(x)=0, and w(x)=x. The interval 0 ≤ r ≤ a corresponds to a ≤ x ≤ b.]

Let {λn} be a set of eigenvalues satisfying the ODE (165) and the B.C., and let {yn(x)} be the
corresponding eigenfunctions. The orthogonality condition for this system is

∫ b

a
w(x)yn(x)ym(x)dx = 0 if n 6= m (166)

Here w(x) is called the weight function.

In order for eq.(166) to hold, the following terms must vanish:

[p(x)(ym(x)y′
n(x)− yn(x)y′

m(x))]
b
a = 0 (167)

A variety of B.C. will satisfy eq.(167), including y(x) vanishing at both endpoints x=a and x=b.
As we have seen in the case of problem “B”, another way to satisfy (167) is if p(x)=0 at one
endpoint and y(x)=0 at the other endpoint.

A related question is given a second order ODE which is not in Sturm-Liouville form:

A(x)y′′ + B(x)y′ + C(x)y + λD(x)y = 0 (168)

How can it be put into Sturm-Liouville form?

Recall that this was the situation in problem “B”, where the original R-equation, (155), had to
be multiplied by r to get it into the Sturm-Liouville form (156).

The procedure is to first calculate the following expression for p(x):

p(x) = e
∫

(B(x)/A(x))dx (169)

Then multiply eq.(168) by p(x)/A(x). The result may then be written in the Sturm-Liouville
form (165), where

q(x) =
p(x)C(x)

A(x)
(170)
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w(x) =
p(x)D(x)

A(x)
(171)

For example, in the case of eq.(155), which we may write in the form:

y′′ +
1

x
y′ + λy = 0 (172)

we have

A(x) = 1, B(x) =
1

x
, C(x) = 0, D(x) = 1 (173)

Then eqs.(169)-(171) give

p(x) = e
∫

(B(x)/A(x))dx = e
∫

(1/x)dx = elogx = x (174)

q(x) =
p(x)C(x)

A(x)
= 0 (175)

w(x) =
p(x)D(x)

A(x)
= x (176)

which is to say that if eq.(172) is multiplied by p(x)/A(x)=x, it can be written in the Sturm-
Liouville form:

d

dx

(
x

dy

dx

)
+ λxy = 0 (177)
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12 Solving Problem “B” by Separation of Variables,

concluded

Now that we know about the orthogonality of Bessel functions, let’s return to solving problem
“B” by separation of variables. We previously obtained the following expression for u(r, z) (see
eq.(141):

u(r, z) =
∞∑

n=1

anJ0

(
Γn

r

a

)
sinh

Γnz

a
(178)

We still have to satisfy the B.C. (8), u(r, L)=1, which gives (from (178)):

1 =
∞∑

n=1

anJ0

(
Γn

r

a

)
sinh

ΓnL

a
(179)

Now we can use the orthogonality result (164)

∫ a

0
rJ0

(
Γn

r

a

)
J0

(
Γm

r

a

)
dr = 0 if n 6= m (180)

We multiply (179) by rJ0

(
Γm

r
a

)
and integrate from 0 to a. The orthogonality condition (180)

zaps everything on the RHS of the resulting equation except for the n=m term:

∫ a

0
rJ0

(
Γm

r

a

)
dr = am sinh

ΓmL

a

∫ a

0
r
[
J0

(
Γm

r

a

)]2
dr (181)

Solving (181) for am, we obtain:

am =
I1(m)

I2(m) sinh ΓmL
a

(182)

where we have used the notation I1 and I2 to abbreviate the following integrals:

I1(m) =
∫ a

0
rJ0

(
Γm

r

a

)
dr and I2(m) =

∫ a

0
r
[
J0

(
Γm

r

a

)]2
dr (183)

Using this notation, the expression (178) for u(r, z) becomes:

u(r, z) =
∞∑

n=1

I1(n)

I2(n)
J0

(
Γn

r

a

)
sinh Γnz

a

sinh ΓnL
a

(184)

Now it turns out that the integrals I1 and I2 can be evaluated in terms of a tabulated function
J1(x), which is the notation for a Bessel function of order 1 of the first kind. Skipping all the
details, the result is:

I1(n)

I2(n)
=

2

Γn

1

J1(Γn)
(185)

Using (185) in (184), we obtain the final solution of problem “B”:

u(r, z) =
∞∑

n=1

2

Γn

J0

(
Γn

r
a

)

J1(Γn)

sinh Γnz
a

sinh ΓnL
a

(186)
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13 Solving Problem “C” by Separation of Variables

Problem “C” has the PDE (see (9) and (16)):

∇2u =
1

ρ2

[

∂

∂ρ

(

ρ2 ∂u

∂ρ

)

+
1

sinφ

∂

∂φ

(

∂u

∂φ
sinφ

)]

= 0 (187)

Following the procedure we used on problems “A” and “B”, we seek a solution to the PDE (187)
in the form

u(ρ, φ) = R(ρ)Φ(φ) (188)

Substitution of (188) into (187) gives:

1

ρ2

[

(ρ2R′)′Φ +
1

sinφ
(Φ′ sinφ)′R

]

= 0 (189)

where primes represent differentiation with respect to the argument. Separating variables, we
obtain

ρ2R′′ + 2ρR′

R
= − 1

sinφ

Φ′′ sinφ + Φ′ cos φ

Φ
= λ (190)

This yields two ODE’s:

ρ2R′′ + 2ρR′ − λR = 0 and Φ′′ + Φ′ cotφ + λΦ = 0 (191)

Let’s begin with the Φ-equation. This equation can be simplified by changing the independent
variable from the colatitude φ to x=cosφ. In order to accomplish this step, we will use the chain
rule, and we will write Φ(φ) as y(x) instead of Φ(x) to avoid confusion. We have

dΦ

dφ
=

dy

dx

dx

dφ
= − sinφ

dy

dx
(192)

d2Φ

dφ2
=

d

dφ

(

− sinφ
dy

dx

)

= − cos φ
dy

dx
+ sin2 φ

d2y

dx2
= −x

dy

dx
+ (1 − x2)

d2y

dx2
(193)

Using eqs.(192) and (193), the Φ-equation of (191) becomes:

−x
dy

dx
+ (1 − x2)

d2y

dx2
+ cotφ

(

− sinφ
dy

dx

)

+ λy = 0 (194)

Eq.(194) can be simplified by using cotφ sinφ=cos φ=x, giving:

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ λy = 0 (195)

Note that x=0 is an ordinary point of eq.(195). By Rule 1, we can use the method of power
series expansions about x=0 to obtain two linearly independent solutions. (See the section on
“Ordinary Points and Singular Points”.) We look for a solution in the form of a power series:

y = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · + cnx

n + · · · (196)
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Substituting (196) into (195) and collecting terms gives

c0 λ + 2 c2 + (c1 (λ − 2) + 6 c3) x + (c2 (λ − 6) + 12 c4) x2 + (c3 (λ − 12) + 20 c5) x3 + · · · (197)

Requiring the coefficient of each power of xn to vanish gives:

c0 λ + 2 c2 = 0 (198)

c1 (λ − 2) + 6 c3 = 0 (199)

c2 (λ − 6) + 12 c4 = 0 (200)

c3 (λ − 12) + 20 c5 = 0 (201)

· · ·

which gives the following recurrence relation:

cn+2 =

(
n(n + 1) − λ

(n + 2)(n + 1)

)
cn (202)

Here c0 and c1 can be chosen arbitrarily, giving rise to two linearly independent solutions f(x)
and g(x):

y = c0 f(x) + c1 g(x) (203)

where

f(x) = 1 − λx2

2
+

λ(λ − 6)x4

24
+ · · · (204)

g(x) = x − (λ − 2) x3

6
+

(λ − 12) (λ − 2) x5

120
+ · · · (205)

It turns out that these two series diverge at x=±1, that is, at cos φ=±1, that is, at φ=0 and
φ=π. Physically this represents unbounded temperatures along the polar axis of the sphere. No
choice of the arbitrary constants c0 and c1 will eliminate this problem, as it did in the case of
the cylinder, compare with eqs.(132),(134). However, if λ is taken equal to n(n + 1), for n an
integer, then one of the two infinite series will terminate, that is, will become a polynomial, and
the convergence problem will disappear.

We therefore take λ=n(n + 1), n=0, 1, 2, 3, · · · and we obtain a sequence of polynomial solutions
called Legendre polynomials, y = Pn(x):

P0(x) = 1 (206)

P1(x) = x = cos φ (207)

P2(x) =
1

2
(3x2 − 1) =

1

2
(3 cos2 φ − 1) (208)

P3(x) =
1

2
(5x3 − 3x) =

1

2
(5 cos3 φ − 3 cos φ) (209)

· · ·

Rodrigues’s formula gives an expression for Pn(x):

Pn(x) =
1

n!2n

dn

dxn
(x2 − 1)n (210)
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Let us turn now to the R(ρ)-equation in (191):

ρ2R′′ + 2ρR′ − λR = 0, λ = n(n + 1) (211)

This is an Euler equation, so we look for a solution in the form R(ρ) = ρr (see eq.(45)). Substi-
tution into (211) gives:

r(r − 1) + 2r − n(n + 1) = 0 ⇒ r = n and r = −(n + 1) (212)

Thus eq.(211) has the general solution:

R(ρ) = k1ρ
n + k2

1

ρn+1
(213)

For bounded temperatures at the sphere’s center, ρ=0, we require that k2=0:

R(ρ) = k1ρ
n (214)

Substituting the derived results into the assumed form of the solution (188), we have

u(ρ, φ) = R(ρ)Φ(φ) = bnPn(cos φ)ρn, n = 0, 1, 2, 3, · · · (215)

where bn is an arbitrary constant. Since the PDE (187) is linear, we may superimpose solutions
to obtain the form:

u(ρ, φ) =
∞∑

n=0

bnPn(cos φ)ρn (216)

Our task now is to choose the constants bn so as to satisfy the B.C. on the outside of the sphere,
ρ = a, see eqs.(10),(11):

u(a, φ) =
∞∑

n=0

bna
nPn(cos φ) =

{
1 for 0 ≤ φ < π/2
0 for π/2 ≤ φ ≤ π

(217)

or, switching to x=cos φ,

u(a, x) =
∞∑

n=0

bna
nPn(x) =

{
1 for 0 ≤ x ≤ 1
0 for −1 ≤ x < 0

(218)

As in the case of problems “A” and “B”, we need to use orthogonality of the eigenfunctions to
find the bn coefficients.

We can write Legendre’s equation (195) in Sturm-Liouville form (165) as follows:

d

dx

[
(1 − x2)

dy

dx

]
+ λy = 0 (219)

Comparison of (219) with the Sturm-Liouville form (165) gives the weight function w(x)=1, from
which we obtain the following orthogonality condition:

∫ 1

−1
Pn(x)Pm(x)dx = 0 if n 6= m (220)
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We multiply eq.(217) by Pm(x) and integrate from x=−1 to x=1. The orthogonality condition
(220) eliminates all terms in the infinite series except for the n=m term:

bmam
∫ 1

−1
[Pm(x)]2dx =

∫ 1

0
Pm(x)dx (221)

Solving (221) for bm, we obtain:

bm =
I3(m)

amI4(m)
(222)

where we have used the notation I3 and I4 to abbreviate the following integrals:

I3(m) =
∫ 1

0
Pm(x)dx and I4(m) =

∫ 1

−1
[Pm(x)]2dx (223)

Using this notation, the expression (216) for u(ρ, φ) becomes:

u(ρ, φ) =
∞∑

n=0

I3(n)

I4(n)
Pn(cos φ)

(
ρ

a

)n

(224)

Now it turns out that the integrals I3 and I4 can be evaluated in closed form. Here are the
results, without derivation:

I4(n) =
∫ 1

−1
[Pn(x)]2dx =

2

2n + 1
(225)

I3(n) =
∫ 1

0
Pn(x)dx =





1 if n=0
1/2 if n=1
0 if n=2,4,6,· · ·

(−1)
n−1

2 (n−2)!!
(n+1)!!

if n=3,5,7,· · ·

(226)

where

k!! =

{
k(k − 2)(k − 4) · · · 6 · 4 · 2 for k even
k(k − 2)(k − 4) · · · 5 · 3 · 1 for k odd

(227)




