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We investigate the collective dynamics and nondegenerate parametric resonance (NPR) of coplanar,
interdigitated arrays of microcantilevers distinguished by their cantilevers having linearly expanding
lengths and thus varying natural frequencies. Within a certain excitation frequency range, the resonators
begin oscillating via NPR across the entire array consisting of 200 single-crystal silicon cantilevers.
Tunable coupling generated from fringing electrostatic fields provides a mechanism to vary the scope of the
NPR. Our experimental results are supported by a reduced-order model that reproduces the leading features
of our data including the NPR band. The potential for tailoring the coupled response of suspended
mechanical structures using NPR presents new possibilities in mass, force, and energy sensing applications,
energy harvesting devices, and optomechanical systems.
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With the emergence of micro and nanoelectromechanical
systems (M/NEMS) in recent decades, M/NEMS resonator
arrays have been increasingly employed in the practical
study of the complex, collective behavior of coupled
oscillator systems. Large arrays of coupled microelectro-
mechanical resonators were first reported in the seminal
work of Buks and Roukes [1], whereby 67 electrostatically
coupled, doubly clamped beams produced rather unantici-
pated responses. Instead of featuring 67 collective vibra-
tional modes, their nonlinear responses exhibited a small
number of asymmetric resonance peaks, which were broad
relative to the expected mode spacing, extended beyond
their predicted band edges, and displayed abrupt pattern
switching behavior. Subsequently, M/NEMS resonator
arrays have been shown to exhibit a host of nontrivial
dynamics due predominantly to their nonlinear nature
including intrinsically localized modes [2–4], multistability
and hysteresis [5], and synchronization [6–8]. The appli-
cability of these M/NEMS resonator arrays also has been
wide ranging and includes signal processing applications
such as radio frequency filtering [9] and frequency con-
version [10], oscillator phase noise reduction through
synchronization for enhanced clocking and frequency sta-
bility [11–14], and ultrasensitive mode-localized sensing
[15–18].Many of these effects and their derived applications
fundamentally depend on the complicated interplay between
various constituents of the array due to coupling mecha-
nisms which are generally mediated elastically [19–21],

optically [22–24], or electrostatically [1,25–27]. Although
theoretical investigations into large degree of freedom
resonator arrays commonly focus on the system’s response
to changes in coupling parameters and natural frequencies
[6,28–30], experimental implementation of such devices
remains challenging because they usually require compli-
cated coupling topologies and complex readout transduction
schemes.Nonetheless, device realization of globally tunable
coupled array systems is relatively straightforward, espe-
cially with electrostatic coupling which does not necessitate
additional piezoelectric or optical device layers.
Customarily, the electrostatic coupling or drive configu-

rations in M/NEMS naturally give rise to parametric
excitation and resonance through time-dependent, non-
linear electrostatic forces which effectively create modu-
lating spring constants. Utilizing electrostatic parametric
resonance in M/NEMS has become ubiquitous principally
due to its capability of producing resonant responses when
excited at frequencies other than at the system’s natural
frequency, along with the ease of implementation. These
systems are routinely described by a generalization of
Mathieu’s equation, namely the nonlinear Hill’s equation. It
is well known that Mathieu’s equation has parametric
instability tongues that exist near frequencies f ¼
2fNM

j =k where fNM
j is a jth natural frequency of the

system, k ¼ 1; 2;…, and the superscript NM denotes a
normal mode [31]. These critical frequency values
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represent fundamental parametric resonance of order k and
have been explored in M/NEMS for reasonably high values
of k despite the fact that higher-order resonances progres-
sively have exponential narrowing of their instability
regions [32,33].
Further possibilities of parametric resonance exist in

multidegree of freedom systems where the possibility of
mutual interaction of eigenmodes exists. Nondegenerate
parametric resonance (NPR), also known as combination
parametric resonance [31], occurs in neighborhoods near
frequency values f ≈ ðfNM

j � fNM
l Þ=k for j; l ¼ 1; 2;…

and k ¼ 1; 2;… where fNM
j and fNM

l correspond to distinct
normal modes of the system. In general, NPR emerges in
systems with time-dependent mode couplings, which result
in frequency mixing and parametric resonant responses at
sums or differences of the system’s natural frequencies.
Although NPR has been well studied theoretically
[31,34,35], actual implementation of NPR in M/NEMS
has been limited [36–41] and has not been observed in large
M/NEMS arrays to the best of our knowledge.
In this Letter, we consider both theoretically and exper-

imentally the complex behavior and NPR of coupled, para-
metrically driven, interdigitated arrays of microcantilevers

with linearly changing cantilever lengths. More specifically,
we describe herein the array-spanning, summed-type NPR
that occurs over a wide frequency band due to the distinctive
spatially confined mode structure and the associated natural
frequency distribution resulting from the geometry of the
device.
As shown in Fig. 1(a), the device is composed of two

opposing, partially interdigitated cantilever arrays with 100
cantilevers apiece. Each array has cantilever lengths
expanding linearly across the device in opposite directions
with a maximum length of Lmax ≈ 500 μm and a minimum
length of Lmin ≈ 350 μm. The width and thickness of the
cantilevers are b ≈ 20 μm and h ≈ 5 μm, respectively.
Additional device parameters include the gap length
between neighboring counter-orientated cantilevers, the
length of the compliant overhang, and the length of the
overlap region. These parameters, respectively, correspond
to g ≈ 5 μm, Lo ≈ 100 μm, and Le ≈ 150 μm. Fabrication
process details can be found in Ref. [42].
In the overlap region, electrostatic coupling is generated

through the asymmetries in the fringing fields between
neighboring cantilevers and serves to produce an electrostatic
restoring force as illustrated in Fig. 1(b). The electrostatic

FIG. 1. (a) Schematic of the interdigitated, variable length microcantilever arrays. The actual device has 200 cantilevers. Electrostatic
coupling between oppositely oriented, nearest-neighbor cantilevers is generated via fringing electrostatic fields in the overlap region
designated by Le. Long-range mechanical coupling is produced in each array’s overhang, which is defined by Lo and delineated by the
dashed lines on array 1 and array 2. (b) Results from finite element (FE) analysis illustrating the fringing electrostatic field between
adjacent cantilevers in the overlap region. This field provides a restoring force between neighboring beams as indicated by the white
arrows. The lengths of the black arrows are proportional to the electric field strength at the given locations. (c) Schematic of the
experimental setup. (d) An optical micrograph (top) of the center of the device being actuated at a drive frequency of fD ≈ 40.5 kHz.
The scale bar is 100 μm. The spatially averaged grayscale pixel values (bottom) are obtained from the end of each cantilever providing a
qualitative estimate of the out-of-plane vibrational amplitude for every cantilever on the device. (e) Modal patterns are developed by
concatenating together the response at each frequency step [26]. The rendered image of a device consisting of 200 oscillating cantilevers
shows explicitly the mapping of the device dynamics at fD ≈ 40.5 kHz to an experimentally obtained modal pattern. For the sake of
clarity of the mapping, the experimental modal pattern was specifically chosen to consist only of the normal modes of the system and to
exhibit no NPR. (f) Normalized amplitudes of various spatially localized modes generated from a full-scale FE modal analysis [43].
Spatial overlap of the opposing arrays’ modes is a necessary condition for NPR excitation in the system.
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force per unit length in the overlap region defined by
Ln − Le ≤ ŷ ≤ Ln, acting on the nth cantilever, Fe

nðŷ; t̂Þ,
can be approximated by Ref. [42] as

Fe
n ¼ ασV̂2

� ŵnþ1−ŵn
h

1þ σj ŵnþ1−ŵn
h j2p −

ŵn−ŵn−1
h

1þ σj ŵn−ŵn−1
h j2p

�
; ð1Þ

where ŵnðŷÞ is the out-of-plane defection of the nth beam
and V̂ðt̂Þ is the time-dependent voltage applied across the
arrays. The remaining terms, α, σ, and p, are geometry-
dependent fitting parameters which were found to be
α ¼ 2.45 × 10−6 N mV−2, σ ¼ 0.133, and p ¼ 1.191. In
order to motivate the possibility of NPR actuation within the
device, further examination of Eq. (1) is necessary. Assuming
V̂ðt̂Þ ¼ V̂ac cosðωDt̂Þ where ωD is the excitation angular
frequency, we find after linearizing Eq. (1) that the electro-
static force per unit length can be approximated by

Fe
n ≈

ασ

h
V̂2
ac

2
ð1þ 2 cosð2ωDt̂ÞÞðŵnþ1 − 2ŵn þ ŵn−1Þ: ð2Þ

Equation (2) represents a coupledMathieu-type term [31] that
produces kth order NPR excitation at critical NPR frequen-
cies f ¼ 2fD ≈ ðfNM

j þ fNM
l Þ=k.

In order to experimentally investigate the dynamics of the
arrays, the deviceswere fixed on a stage in a vacuumchamber
(VC) at pressure of≈10−3 Pa as depicted in Fig. 1(c). Theout-
of-plane motion of the cantilevers was observed using an
optical setup consisting of a 1× long working distance
objective (LWDO), a fiber-optic illuminator (FOI), a beam
splitter (BS), a zoom lens (ZL), and a camera (CAM). Each
measurement involved applying a time-varying voltage
undergoing a linearly chirped frequency sweep given by
V̂ðt̂Þ ¼ V̂ac cos½2πðf0t̂� kt̂2=2Þ� to one array while ground-
ing the opposing array. This time-varying voltage was
produced by a function generator (FG) and a high voltage
amplifier (HVA). With f0 being the starting chirp frequency,
the drive signal was either up-chirped or down-chirped over a
range of≈26 to≈56 kHz at a rate of k ≈ 107 Hz=s. Because
the camera has a frame rate of ≈30 s−1, the measurement
technique only gives a qualitative estimate to themagnitudeof
a beam’s deflection time averaged over many oscillation
periods. As Fig. 1(d) highlights, large cantilever deflections
scatter light more readily, leaving their image noticeably
darker relative to nonoscillating cantilevers. The estimated
vibrational amplitude of each cantilever was determined by
the associated grayscale pixel values at the ends of the beams.
Pixel averaging was performed over 20 pixels to reduce the
noise in the measurement, and background subtraction was
performed to reduce errors caused by nonuniform illumina-
tion of the sample. Modal pattern maps were generated by
obtaining the grayscale pixel values from each video frame
and concatenating them together across frequency space, as
Fig. 1(e) exemplifies. These experimental modal patterns

shown in Fig. 1(e) primarily resemble the normal mode
shapes predicted by FE analysis as presented in Fig. 1(f).
While the measurement technique described above is

straightforward and provides qualitative estimates for the
normal mode shapes and relative vibrational amplitudes, a
consequential drawback of its simplicity is that it only gives
the system’s response at a specified drive frequency and
provides no direct measurement of the oscillation frequency
of the individual cantilevers. Experimental verification of
first-order NPR actuation in the arrays requires that the first-
order NPR frequency condition, fD ≈ ðfNM

j þ fNM
l Þ=2, be

satisfied and appropriatelymeasured, which is a challenging
proposition considering our limited frequencymeasurement
capabilities. In order to circumvent this difficulty, the
measured NPR mode shapes were cross-correlated with
the measured normal mode shapes. Assuming that the
normalmodes oscillate at the drive frequency, this procedure
gives an estimate of the frequency response of the NPR
modes. As shown in Figs. 2(a) and 2(b), the down-chirped
response at V̂ac ≈ 40 V produced 15 distinct NPR modes,
which are highlighted in the insets. The normal modes
responsible for these excited NPR modes were determined
by finding the region within the modal pattern map which
gave the maximum two-dimensional cross-correlation with
a given NPR mode in a specified array. The analysis was
performed across the entire frequency space outside of the
NPR band and was subject to the constraint that the
cantilevers remain aligned to themselves. As an example
of the results obtained from the described procedure,
Figs. 2(c)–2(h) show the strong similarity between NPR
mode 8 and the matching normal modes.
With the NPR-generating normal modes identified, can-

tilever-averaged resonance curves were used to find the peak
resonant frequencies of the jth normalmode in array 1,fNM;1

j ,

and the lth normal mode in array 2, fNM;2
l . Additionally, the

peak resonant frequencies of the mth NPR mode for array 1,
fNPR;1
m , and array 2, fNPR;2

m , were found for their respective
cantilever-averaged resonance curves. These frequencies,
fNPR;1
m and fNPR;2

m , are not the oscillation frequency of the
NPRmodes, but the drive frequency at which theNPRmodes
have peak resonance. All peak locations were determined by
fitting a localized quadratic polynomial using the method of
least squares. As shown in Fig. 2(i), the frequency deviation
from the NPR frequency condition was calculated by
Δf ¼ fNM;1

j þ fNM;2
l − 2fD, where we have taken fD ¼

ðfNPR;1
m þ fNPR;2

m Þ=2 to be the drive frequency averaged
about the NPR peak resonances in both of the arrays. The
maximum observed frequency deviation from the ideal NPR
frequency condition for all the modes was less than 15 Hz,
which conclusively demonstrates that themodeswere excited
via the NPR mechanism.
Additional experiments were performed at higher voltages

to explore the effects of the nonlinearities and the expanded
parametric instability regions produced from the stronger
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coupling constant. Figure 3 shows the frequency response at
V̂ac ≈ 56 V and V̂ac ≈ 81 V using a down-chirped drive. At
V̂ac ≈ 56 V, many NPR modes were actuated, especially
along the periphery of the device, as the critical coupling
strength was achieved for parametric instability. As the drive
voltage was increased to ≈81 V, a well-defined NPR band
from ≈34 to ≈ 44 kHz formed and nearly all the cantilevers

were oscillating to some degree. The extent of the NPR
actuation directly depended on the applied voltage, which is
consistent with Eqs. (1) and (2).
To explain the dynamics more rigorously, a reduced-

order (RO) model was developed using the Galerkin
decomposition under the direction of Euler-Bernoulli beam
theory [26,43]. Full details of the RO model are described
in the Supplemental Material [44]. Numerical solutions
were generated by solving the RO model’s system of
equations describing the dynamics of each individual beam
using Runge-Kutta methods. As shown in Fig. 4(a), the
simulated modal patterns qualitatively display many of the
observed experimental features. Additional analysis on
the spatial and temporal dynamics of the arrays using the
RO model and spectral analysis further confirmed NPR
actuation within our system. Power spectral densities using
Welch’s method were calculated for each frequency step in
the numerical solution and concatenated together to form
spectrograms. Whereas cantilevers near the center of the
arrays were principally driven by fundamental parametric
resonance within the NPR band, cantilevers near the
periphery of the arrays were excited strictly by NPR
within the NPR band and followed the relation fD ≈
ðfNM

j þ fNM
l Þ=2 for the jth and lth modes as indicated

by the responses of beams 10 and 11 in Figs. 4(b)–4(d). A
similar analysis was performed on other adjacent beams
within the arrays, and this provided further confirmation
that the excitation of the beams outside of the spatially
confined normal modes in the NPR band was principally
due to the NPR mechanism.
In this Letter, we have demonstrated NPR excitation in

large arrays of coupled, interdigitated MEMS canti-
levers. The distinctive device topology produced spatially

FIG. 3. The down-chirped frequency response at V̂ac ≈ 56 V
for (a) array 1 and (b) array 2 showing the emergence of a NPR
band spanning across all cantilever numbers (C.N.). The insets
highlight 22 NPR modes. Nonlinearities start to influence the
dynamics significantly at V̂ac ≈ 81 V as presented in (c) and
(d) for array 1 and array 2, respectively. All plots are normalized
independently and use the same normalized amplitude (N.A.)
colormap.

FIG. 2. The frequency response and NPR excitation of (a) array 1 and (b) array 2 driven at V̂ac ≈ 40 V, which is marginally above the
NPR threshold voltage. The 15 observed NPR modes are featured within the dotted rectangles and are replotted in their respective insets.
As an example of the results obtained from the normal mode matching algorithm, we have (c) NPR mode 8 and (d) the maximally
correlated normal mode, both from array 1, showing almost indistinguishable mode structures. (e) Modal shapes produced by summing
over frequency space using array 1’s NPRmode 8 and its maximally correlated normal mode, further indicating nearly identical features.
(f) NPR mode 8, (g) the maximally correlated normal mode, and (h) the modal shapes, all from array 2, illustrating strong similarity
between the two modes. (i) The frequency deviation, Δf, from the NPR frequency condition conclusively demonstrates that the 15
modes outlined above are excited via the NPR mechanism. The error bars correspond to 95% confidence intervals. All plots involving
normalized amplitudes are normalized independently.
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confined mode structures with mode-to-mode coupling
between opposing arrays, which permitted efficient NPR
actuation within the NPR frequency band. Exploiting NPR
in future engineered M/NEMS could facilitate device
operation at a multitude of frequencies, possibly enabling
bandwidth expansion through frequency conversion and
greater tunability of M/NEMS devices for applications such
as resonance-based sensing. Furthermore, these arrays
could potentially be utilized as a nondegenerate parametric
amplifier by applying a small signal at fNM

j to one array
while pumping at fD ≈ ðfNM

j þ fNM
l Þ=2 on the opposing

array leading to signal amplification and phase noise
reduction [45]. The high sensitivity of these coupled arrays
to environmental perturbations will likely open new and
interesting sensing scenarios based on NPR-actuated col-
lective pattern recognition rather than on the frequency
monitoring of individual elements.
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FORMULATION

Cantilever Array Model

The cantilever array model developed herein assumes that the vibrational motion of the

nth individual cantilever is governed by Euler-Bernoulli theory. The rotational and axial

inertia of each beam is presumed insignificant relative to the its transverse inertia [1]. The

model does, however, incorporate geometric nonlinearities that are the result of large beam

deflections [2]. These geometric nonlinearities are the only on-site nonlinearity and will

produce a Duffing-type nonlinear term in the subsequently derived reduced order (RO)

model equations. Additionally, in accordance with the design and layout of the array, the

cantilever array model has a nearest-neighbor coupling term due to the fringing electrostatic

fields produced by the applied voltage. In order to effectively account for this coupling,

a simplified model of the fringing fields with a closed-form approximate expression for the

generated electrostatic force is employed. The approximate expression for the electrostatic

force per unit length is given by [3, 4]

F e
n = ασV̂ 2

(
ŵn+1−ŵn

h

1 + σ| ŵn+1−ŵn

h
|2p
−

ŵn−ŵn−1

h

1 + σ| ŵn−ŵn−1

h
|2p

)
H(ŷn − ŷen), (S.1)

where ŵn(ŷn) is the out-of-plane defection of the nth beam, ŷn is the coordinate along the

nth beam’s longitudinal axis, ŷen = Ln − Le defines the start of the overlap region for the

nth beam, h is the thickness of the beam, and V̂ (t̂) is the time dependent voltage. The

remaining terms in Eq. (S.1) are geometry dependent fitting parameters and have to be

calculated numerically. For the given device geometry, we find α = 2.45 × 10−6 N · mV −2,

σ = 0.133, and p = 1.191. Furthermore, since the electrostatic interaction force occurs

only in the overlap region defined by Le, the electrostatic coupling force is weighted by the

Heaviside step function, H(ŷn − ŷen). Additional details of the fringing field model can be

found in [3, 4].

Therefore, with these assumptions, the equation of motion of the nth beam (n = 1, 2, . . . , 200)

is given by

ρA
∂2ŵn

∂t̂2
+ ĉo

∂ŵn

∂t̂
+ EI

∂4ŵn

∂ŷ4n
+ EI

∂

∂ŷn

[
∂ŵn

∂ŷn

∂

∂ŷn

(
∂ŵn

∂ŷn

∂2ŵn

∂ŷ2n

)]
−

ασV̂ 2

(
ŵn+1−ŵn

h

1 + σ | ŵn+1−ŵn

h
|2p
−

ŵn−ŵn−1

h

1 + σ| ŵn−ŵn−1

h
|2p

)
H(ŷn − ŷen) = ρA

∂2ẑB

∂t̂2
. (S.2)
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Here A = bh and I = bh3/12 are the area and the second moment of area of the rectangular

cross-section of the beam of width b and thickness h, and ĉo is the coefficient on-site linear

viscous damping, which is inversely related to the quality factor of the beam, Q. The

material parameters are E = 169 GPa and ρ = 2300 kg/m3, which are the Young’s modulus

and the density of silicon, respectively. The right side of Eq. (S.2) describes a uniformly

distributed force acting on the beam through a forced excitation of the substrate which

experimentally could be realized using piezoelectric actuation. This force is specified by

using the out-of-plane spatial coordinate ẑB.

In order to solve Eq. (S.2), appropriate boundary conditions must considered at the free

and clamped ends of each of the beams. At the free end of the beams where ŷn = Ln,

the boundary conditions are given by EI(∂2ŵn/∂
2ŷn) = 0 and EI(∂3ŵn/∂

3ŷn) = 0. At the

clamped end of the beams where ŷn = 0, the situation is not as straightforward since the

clamping is nonideal due to the overhang. The nonideal clamping of the overhang decreases

the natural frequencies of the eigenmodes relative to ideal clamping and produces long range

mechanical coupling between the cantilevers which was not considered in Eq. (S.2) [1].

At this point in model development, the on-site terms will assume ideal clamping to the

overhang and the mechanical coupling will be directly implemented into the RO model with

the mechanical coupling matrix determined by finite element (FE) analysis [5].

To proceed, Eq. (S.2) is nondimensionalized resulting in the expression given by

∂2wn

∂t2
+co

∂wn

∂t
+ω2

n

∂4wn

∂y4
+ε̃ω3

n

∂

∂y

[
∂wn

∂y

∂

∂y

(
∂wn

∂y

∂2wn

∂y2

)]
−

β̃V 2

(
(wn+1 − wn)

1 + σ |wn+1 − wn|2p
− (wn − wn−1)

1 + σ |wn − wn−1|2p

)
H(y − yen) = −∂

2zB
∂t2

. (S.3)

The nondimensional parameters used in Eq. (S.3) are shown in Table S.I. Here, V0 is the

reference voltage taken to be the unit voltage, and L0 is the reference length taken to be

Lmax.

Reduced Order Model

In order to reduce the computational complexity of the problem while retaining the lead-

ing dynamical phenomena of the cantilever array system, a RO model based on the Galerkin

decomposition will be formulated using the eigenmodes of an ideally clamped cantilever as
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TABLE S.I. Nondimensional parameters used in Eq. (S.3).

Quantity Description

y = ŷn/Ln Coordinate along the nth beam

t = t̂
√
EI/(ρAL4

0) Time

wn(y, t) = ŵn(ŷ, t̂)/h Deflection of the nth beam

g = ĝ/h Distance between the beams

co = ĉo
√
L4
0/(EIρA) OS damping parameter

ε̃ = (h/L0)
2 Aspect ratio parameter

ωn = (L0/Ln)2 Length ratio parameter

β̃ = ασL4
maxV

2
0 /(EIh) Voltage parameter

basis functions. While a brute-force full-scale FE analysis with the included nonlinear elec-

trostatic forces would be optimal, extensive computational resources are necessary in order

to appropriately address the large degree of freedom system along with all of its nonlinear-

ities. Accordingly, taking the more pedestrian approach, the out-of-plane deflection of the

nth beam can be approximated by a single degree of freedom expression given by

wn(y, t) ≈ qn(t)φ1(y), (S.4)

where qn(t) serves as a generalized coordinate and φ1(y) is the fundamental eigenmode of a

linear, undamped, ideally clamped cantilever given by the expression [6]

φ1(y) = C1

[
sin(λ1y)− sinh(λ1y)− (sin(λ1) + sinh(λ1))(cos(λ1y)− cosh(λ1y))

cos(λ1) + cosh(λ1)

]
. (S.5)

Here, λ1 = 1.875 is the fundamental eigenvalue of an ideally clamped cantilever. The

normalization constant C1 = 0.367 is chosen such that max
0≤y≤1

φ1(y) = 1. The eigenmode

given by Eq. (S.5) is the solution to the eigenvalue problem related to Eq. (S.3) with

co = 0, ε̃ = 0, β̃ = 0, and ∂2zB/∂t
2 = 0.

Applying the Galerkin methodology by inserting Eq. (S.4) into Eq. (S.3) and integrating

over the beam length produces a system of coupled, nonlinear ordinary differential equations.

However, these equations still lack the mechanical coupling due to the compliant overhang

and must be amended by adding a term involving a linear coupling matrix. This coupling

matrix will have a considerable number of off-diagonal coefficients being nonzero since the
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mechanical coupling in the device is nonlocal. Moreover, by only adding a linear coupling

matrix, it has been explicitly assumed that the overhang inertia and any nonlinear elastic

coupling is negligible in the model. Thus, the governing equations for the model become

mq̈n + comq̇n + koω
2
nqn + ε̃ω3

nk
nl
o q

3
n −

∑
s

knsqs−

β̃V 2

 1∫
yen

(qn+1 − qn)φ2
1

1 + σ |(qn+1 − qn)φ1|2p
dy −

1∫
yen

(qn − qn−1)φ2
1

1 + σ |(qn − qn−1)φ1|2p
dy

 = −z̈Ba, (S.6)

where

ko =

1∫
0

(φ′′1)2 dy, knlo = 2

1∫
0

(φ′1)
2(φ′′1)2 dy, m =

1∫
0

φ2
1 dy, a =

1∫
0

φ1 dy. (S.7)

Here, q̇n and q̈n are the first and second time derivatives of qn. Similarly, φ′1 and φ′′1 corre-

spond to the first and second spatial derivatives of the given basis function. Using the basis

given in Eq. (S.5), the integrals in Eq. (S.7) can be numerically evaluated and are found to

be ko = 3.091, knlo = 2.527, m = 0.25, and a = 0.391. The coefficients ko and knlo are related

to the linear and nonlinear on-site bending stiffness of the cantilever, and m is related to the

mass of the cantilever. Additionally, using these coefficients, we find that the nondimensional

fundamental frequency of the ideally clamped cantilever is
√
ko/m = ω0 = λ21 = 3.516.

The integrals involving the calculation of electrostatic force in Eq. (S.6) cannot be eval-

uated in closed form. Numerical evaluation of Eq. (S.6) requires that these integrals be

computed at each time step which greatly increases the total simulation time. Thus, we

assume that φ1(y) ≈ 1 in the denominator of the Eq. (S.6) integrands. This enables the

integrals to be put in algebraic form which markedly simplifies the simulation. Therefore,

we have

mq̈n + comq̇n + koω
2
nqn + ε̃ω3

nk
nl
o q

3
n −

∑
s

knsqs−

β̃V 2me
n

(
qn+1 − qn

1 + σ |qn+1 − qn|2p
− qn − qn−1

1 + σ |qn − qn−1|2p

)
= −z̈Ba, (S.8)

where me
n is defined by

me
n =

1∫
yen

φ2
1 dy. (S.9)
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TABLE S.II. Non-dimensional quantities used in Eq. (S.10).

Quantity Description

τ = tω0 Time

un = qn 2p
√
σ Deflection of the nth mass

uB = zB 2p
√
σ Deflection of the base

µn = me
n/m Mass ratio

ε = ε̃knlo /(ko
p
√
σ) Nonlinear OS stiffness parameter

β = β̃/ω2
0 Voltage parameter

γ = a/m Base acceleration parameter

Here, the non-dimensional boundary location defining the overlap region, yen, is given by

yen = (Ln − Le)/Ln. Dividing Eq. (S.8) by m along with rescaling time by τ = tω0 and the

deflections by qn = un/ 2p
√
σ and zB = uB/ 2p

√
σ gives

ün +Q−1u̇n + ω2
nun + εω3

nu
3
n −

∑
s

knsus−

βµnV
2

(
un+1 − un

1 + |un+1 − un|2p
− un − un−1

1 + |un − un−1|2p

)
= −γüB, (S.10)

where the over-dot is redefined as the partial derivative with respect to τ . Table S.II gives

the non-dimensional parameters used in Eq. (S.10).

Finite Element Model

Proper evaluation of the kns stiffness coefficients found in Eq. (S.10) requires a full-scale

three-dimensional finite element (FE) analysis [5]. The FE model was implemented using

two distinct meshes. The overhang mesh was composed of two-dimensional 8-node shell

elements with quadratic interpolating functions in each orthogonal direction. The beam

mesh was formulated using 2-node multi degree of freedom elements with a rectangular

cross-section and constant mass representation. The number of degrees of freedom for each

beam element varied depending on the length of the beam.

The eigenvectors and eigenfrequencies of the array were directly determined from the

FE solutions. From the generated eigenvectors and their associated nodal displacements,

sub-sets ψ̃(k) were assembled such that ψ̃(k) describes the free-end displacement of the
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cantilevers for the kth eigenvector where k = 1, 2, . . . 100. Since the numerically derived FE

eigenvectors are not exactly orthogonal, Gram-Schmidt orthogonalization was performed

before modal matrix construction. The modal matrix given by

Ψ̃ =
[
ψ̃(1), ψ̃(2), . . . , ψ̃(100)

]
(S.11)

was normalized by employing the orthogonality with respect to the unit mass matrix giving

Ψ =
Ψ̃√
Ψ̃T Ψ̃

. (S.12)

From the normalized modal matrix, the kns coefficients were extracted using the stiffness

matrix orthogonality relation,

Ψ
T

KΨ = Λ, (S.13)

where Λ =
[
λ(k)δkm

]
is a diagonal matrix with λ(k) = λ

(k)
FE/λ

(1)
FE being the normalized FE

eigenvalues which range from 1.00 to approximately 2.22. Explicitly, the stiffness matrix

which contains both onsite and intersite terms can be written in terms of the normalized

eigenvectors and eigenvalues as

K =
(
Ψ

T )−1

ΛΨ
−1

. (S.14)

The symmetric stiffness matrix generated from the FE analysis has the form

K =



1.21516 0 −0.00064 0 −0.00017 0 . . .

0 4.92888 0 −0.00258 0 −0.00052 . . .

−0.00064 0 1.12156 0 −0.03095 0 . . .

0 −0.00258 0 4.27827 0 −0.15835 . . .

−0.00017 0 −0.03095 0 1.11243 0 . . .

0 −0.00052 0 −0.15835 0 4.08203 . . .
...

...
...

...
...

...
. . .


. (S.15)

MODAL OVERLAP AND NPR BAND FORMATION

The eigenfrequencies and eigenmodes determined from the FE analysis can be used to

demonstrate why NPR exists only in a specific frequency band in addition to its concavity.

Obviously, a necessary condition for NPR development is that the modes have to spatially
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overlap to enable coupling between the modes. Due to the localized nature of the modes in

the device, only certain modes will interact with one another. In order to give a quantitative

estimate of the degree of coupling between modes, overlap summations were calculated using

the absolute value of the normalized amplitudes of the jth and lth eigenmodes derived from

FE analysis for j, l = 1, 2, . . . 100. More specifically, the overlap summation for the jth and

lth normalized eigenmodes is given by

ζ(j),(l) =
100∑
n=1

|ψ(j)
n ||ψ

(l)
101−n|. (S.16)

These overlaps generally exist in neighborhoods such that l ≈ 100− j due to the geometry

of the device. A second necessary condition for NPR is that fD ≈ (fNM
j + fNM

l )/2. As

shown in Fig. S.1(b), these two necessary conditions for NPR exist solely within a band

from fNM
j + fNM

l ≈ 66 kHz to fNM
j + fNM

l ≈ 80 kHz which corresponds to drive frequencies

from ≈ 33 kHz to ≈ 40 kHz. This result matches the simulation results and coincides closely

with the experimental results. Moreover, due to the shape of eigenfrequency distribution,

FIG. S.1. (a) Eigenfrequencies calculated using FE analysis. (b) Normalized modal overlap between

modes on opposing arrays illustrating where NPR could be generated for a given frequency. The

contour lines correspond to the sum of eigenfrequencies fNM
j +fNM

l for the jth mode number from

Array 1 and the lth mode number from Array 2. The contour frequency values are in kHz. NPR will

arise in regions of significant modal overlap with the necessary condition of fD ≈ (fNM
j + fNM

l )/2.

Due to the specific curvature of the contours, modes excited near the periphery of the device have

modal overlap at larger summed eigenfrequency values which gives the characteristic concave-up

profile to the NPR band.
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the NPR bandwidth is spatially nonuniform with shifts to higher frequencies near the edge

of the device creating a concave-up NPR band. This is explicitly shown in Fig. S.1.

SPECTROGRAM CALCULATIONS

Eq. (S.10) was solved numerically using Runge-Kutta methods with 500 frequency steps.

For each frequency step, a temporal discretization of 80× 103 time steps was appropriated

to effectively average out any transient behavior due to initial conditions. The deflection

time series of individual beams was used to compute the power spectral density (PSD)

using Welch’s method [7] with a Hann window at each frequency step. Each PSD was

then compiled together to produce the spectrograms. Using the PSDs, the peak frequency

response for the jth beam was determined at each frequency step. To reduce noise, a 9 point

moving average filter was applied to the peak frequency response curve, and the samples

were appropriately shifted by 4 samples to account for the filter delay.

HYSTERESIS

The observed modal patterns were highly dependent on the voltage sweep direction which

is a consequence of the nonlinearities in the cantilever array. For example, Fig. S.2 shows

that the device response appeared generally stronger, broader, and more pronounced for the

down-chirped drive relative to the up-chirped drive, thus demonstrating that the array has

a dominant softening nonlinearity at high voltages. The source of the softening nonlinearity

is the electrostatic coupling resulting from the functional form of Eq. (S.1). Previous exper-

imental studies of similar devices have shown that the electrostatic nonlinearity is softening

[3, 4] whereas the onsite and intersite elastic nonlinearity is hardening [1], thus suggesting

that the electrostatic nonlinearity principally governs the nonlinear dynamics of the arrays

at large drive voltages. Additionally, as a consequence of the softening nonlinearity in the

system, only the down-chirped modal patterns exhibit full NPR band development whereby

the cantilevers oscillate via NPR across the whole array. The down-chirped NPR band has

a slight concave up profile illustrating that the NPR typically initiates near the perimeter

of the device. The concave up band profile is the result of the specific distribution of the

eigenfrequencies along with the spatial locations of the modes as previously discussed. The
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FIG. S.2. Up-chirped frequency response measurements at V̂ac ≈ 68 V showing the response of

(a) both arrays, (b) Array 1, and (c) Array 2. Down-chirped frequency response measurements at

V̂ac ≈ 68 V showing the response of (d) both arrays, (e) Array 1, and (f) Array 2. Hysteresis due to

the softening nonlinearity is readily apparent as the down-chirped response is generally stronger,

exhibits broader resonant peaks, and generates significantly more NPR compared to the up-chirped

response. All plots are normalized independently and follow the same normalized amplitude (N.A.)

colormap.

up-swept modal patterns also display interesting features including large amplitude bands

which are broad compared to mode spacing, but the response appears to have minimal NPR

and generally follows the eigenmode shapes predicted by FE analysis.

To demonstrate the softening nonlinearity more explicitly, we performed further exper-

iments at a significantly higher frequency resolution by performing frequency sweeps at a

rate of ≈ 10 Hz/s. Figure S.3 shows the down-chirped frequency response from ≈ 30 kHz to

≈ 29.2 kHz at a drive voltage of V̂ac ≈ 68 V. Each of the 9 modes depicted clearly illustrate

an asymmetric resonance peak with abrupt jumps on the lower frequency side. This is fur-

ther evidence of the softening nonlinearity resulting from the electrostatic coupling within

the device.
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FIG. S.3. (a) The down-chirped frequency response at V̂ac ≈ 68 V showing the softening nonlinear

behavior of 9 modes. (b) The cantilever-averaged frequency response curve giving 9 asymmetric

resonance peaks. All resonance peaks exhibit a jump phenomenon on the side of lower frequency,

which is indicative of a softening nonlinearity. Both plots are normalized independently.

DEVICE RESPONSE WITH PIEZOELECTRIC DRIVE

To further confirm that NPR was driven by the electrostatic coupling, the arrays were

also excited strictly by a piezoelectric transducer (PZT) as shown in FIG. S.4. The PZT har-

monically accelerates the device in a spatially uniform manner providing a forced excitation

to the cantilevers. PZT provides no parametric excitation.

The device was mounted on the PZT using vacuum grease in-between the substrate and

PZT. The PZT response was driven using an arbitrary function generator since drive voltages

no higher than ≈ 4.1 V were used. In order to try to generate NPR band formation, the

cantilevers were driven up to the point of cantilever breakage as shown in Fig. S.4(b). Due

to the removal of the softening nonlinearity provided by the electrostatic coupling, the up-

chirped response was more intense relative to the down-chirped response. A very limited

number of cantilevers responded outside of the normal mode shapes in narrow frequency

bands for the up-chirped response whereas the down-chirped response showed essentially no

deviations from the normal modes.
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FIG. S.4. Frequency response measurements using a PZT at (a) V ≈ 2.7 V and up-chirped drive,

(b) V ≈ 4.1 V and up-chirped drive, (c) V ≈ 2.7 V and down-chirped drive, and (d) V ≈ 4.1 V

and down-chirped drive. Only responses of Array 1 are shown for clarity. The insets show both

responses of Arrays 1 and 2 in a single plot. The inset in (b) shows the breakage of 4 cantilevers

near cantilever 50 as indicted by the vertical lines. Micrographs showing the region of cantilever

breakage at (e) fD ≈ 26 kHz, (f) fD ≈ 33.8 kHz and one frame prior to breakage, (g) fD ≈ 33.8 kHz

and one frame after breakage, and (h) fD ≈ 56 kHz. All measurements were taken in vacuum at

≈ 10−3 Pa.
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