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This paper investigates the dynamics of a new model of two coupled relaxation oscilla-
tors. The model replaces the usual DDE (differential-delay equation) formulation with a
discrete-time approach with jumps. Existence, bifurcation and stability of in-phase peri-
odic motions is studied. Simple periodic motions, which involve exactly two jumps per
period, are found to have large plateaus in parameter space. These plateaus are sepa-
rated by regions of complicated dynamics, reminiscent of the Devil’s Staircase. Stability
of motions in the in-phase manifold are contrasted with stability of motions in the full
phase space.
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1. Introduction

The dynamics of two coupled limit cycle oscillators has a history going back to the 1980s. Early research in this
area involved systems without delay with both nearly sinusoidal oscillators [3,4,7] as well as relaxation oscillators
[1,8,9,11]. More recent work has included delay in systems of nearly sinusoidal oscillators [12,13] and in relaxation
oscillators [6].

The present work involves delay in a system of two coupled relaxation oscillators, in which the oscillators are modeled as
having jumps. A model with jumps which has been used previously to study relaxation oscillations, is based on the simple
first order differential equation [2,9,10]:
x0 ¼ �bx ð1Þ
together with the jump conditions:
x ¼ �1 jumps to x ¼ �2 ð2Þ
See Fig. 1.
We shall be interested in a system of two such oscillators, coupled by delay coupling:
xðtÞ0 ¼ �bxðtÞ � ayðt � TÞ ð3Þ
yðtÞ0 ¼ �byðtÞ � axðt � TÞ ð4Þ
. All rights reserved.
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Fig. 1. Schematic diagram of model of relaxation oscillator. Single arrows indicate slow segments of the limit cycle while double arrows indicate rapid flow
which is modeled as an instantaneous jump. We omit the region of phase space which lies between x = �1 and x = 1.
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together with the associated jump conditions:
x ¼ �1 jumps to x ¼ �2 ð5Þ
y ¼ �1 jumps to y ¼ �2 ð6Þ
In particular we are interested in the limiting case in which a� b, in which cases (3) and (4) become:
xðtÞ0 ¼ �ayðt � TÞ ð7Þ
yðtÞ0 ¼ �axðt � TÞ ð8Þ
In this work, we shall be interested in replacing the differential equations (7) and (8) by iterative equations obtained by
using finite differences:
xnþ1 � xn

h
¼ �ayn�N ð9Þ

ynþ1 � yn

h
¼ �axn�N ð10Þ
where h is a step size and where the delay T = Nh. That is,
xnþ1 ¼ xn � ahyn�N ð11Þ
ynþ1 ¼ yn � ahxn�N ð12Þ
We interpret the jump conditions (5) and (6) by using the following rules:
if xn > 1 and xnþ1 < 1 then xnþ1 ¼ �2 ð13Þ
if xn < �1 and xnþ1 > �1 then xnþ1 ¼ 2 ð14Þ
if yn > 1 and ynþ1 < 1 then ynþ1 ¼ �2 ð15Þ
if yn < �1 and ynþ1 > �1 then ynþ1 ¼ 2 ð16Þ
For simplicity we choose N = 2 and we take k ¼ ah for convenience:
xnþ1 ¼ xn � kyn�2 ð17Þ
ynþ1 ¼ yn � kxn�2 ð18Þ
Eqs. (17) and (18) exhibit an invariant manifold, which we refer to as the ‘‘IP manifold” and has the form xn ¼ yn. Motions in
the IP manifold are governed by the equation,
fnþ1 ¼ fn � kfn�2 ð19Þ
where fn ¼ xn ¼ yn. Note that the condition xn ¼ yn implies that only three initial conditions (i.c.’s) need to be specified
ðf�2; f�1; f0Þ.

Amongst all possible motions in the IP manifold there may exist periodic motions. If such a periodic motion exists we will
refer to it as the ‘‘IP mode”. If the IP mode has period M, then
fMþj ¼ fj ð20Þ
Since the IP mode is periodic it will involve a jump from �1 to 2. Thus, we can make one of the i.c.’s equal to 2 without any
loss of generality. Therefore, an IP mode lives on the invariant manifold xn � yn and can be generated by an i.c. of the form
ðf�2; f�1;2Þ which involves two independent parameters.

2. System with no jumps

A motion in the system with no jumps is determined by six i.c.’s denoted by, ðx�2; x�1; x0Þ � ðy�2; y�1; y0Þ. By specifying
these values xn and yn can be iterated forward for any n. Eqs. (17) and (18) without jumps exhibit a fixed point at the origin,



Fig. 2. The stability of the system with no jump conditions is summarized here. The system is six dimensional and thus has six corresponding eigenvalues
which satisfy Eq. (22). The letter S (stable) signifies that an eigenvalue satisfies jkj < 1, while the letter U (unstable) signifies that jkj > 1. For the system to be
stable all eigenvalues must satisfy jkj < 1. If any eigenvalue satisfies jkj > 1 then the system is unstable. The figure shows that the system is unstable for all
values of k.
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xn ¼ yn ¼ 0. To determine the stability of the origin we set xn ¼ Akn; yn ¼ Bkn, which when substituted into Eqs. (17) and (18)
give
k� 1 kk�2

kk�2 k� 1

 !
A

B

� �
¼

0
0

� �
ð21Þ
For a nontrivial solution, we require the determinant to vanish, giving the following conditions:
k3 � k2 � k ¼ 0 or k3 � k2 þ k ¼ 0 ð22Þ
For the transition between stable and unstable, we require the necessary condition jkj ¼ 1, i.e. k ¼ eix:
e3ix � e2ix � k ¼ 0 ð23Þ
which gives
iðsin 3x� sin 2xÞ þ ðcos 3x� cos 2x� kÞ ¼ 0 ð24Þ
That is, we may solve
sin 3x� sin 2x ¼ 0 ð25Þ
for each of its real roots x, and then compute the corresponding value of k from
�k ¼ cos 2x� cos 3x ð26Þ
Eq. (25) becomes,
sin 3x� sin 2x ¼� sin xðsin2 x� 3 cos2 xþ 2 cos xÞ ð27Þ
¼ sin xð�4 cos2 xþ 2 cos xþ 1Þ ¼ 0 ð28Þ
which gives that sin x ¼ 0 or cos x ¼
ffiffi
5
p
�1

4 . Eq. (26) becomes,
�k ¼ cos 2x� cos 3x ¼ �4 cos3 xþ 2 cos2 xþ 3 cos x� 1 ð29Þ
Thus sin x ¼ 0 gives k = 0 and k = ± 2, while cosx ¼
ffiffi
5
p
�1

4 gives k ¼ �
ffiffi
5
p
þ1

2 ¼ �1:618 . . . and k ¼ �
ffiffi
5
p
�1

2 ¼ �0:618 . . .. See
Fig. 2, which displays these critical values of k, each corresponding to a point where the origin potentially changes stability.
The system requires six i.c’s and thus has six corresponding eigenvalues, which satisfy Eq. (22). For the system to be stable all
eigenvalues must satisfy jkj < 1. If any eigenvalue satisfies jkj > 1 then the system is unstable. Thus we see that the origin is
unstable for all values of k in the system with time delay, but no jumps.

3. System with jumps

Based on the jump conditions in Eqs. (13)–(16), we may add jumps to the evolution equation (19) by using the rule:
if f n > 1 and f nþ1 < 1 then f nþ1 ¼ �2 ð30Þ
if f n < �1 and f nþ1 > �1 then f nþ1 ¼ 2 ð31Þ
Numerical simulation of the resulting system shows that the IP manifold can support stable periodic motions. For example,
for k = 0.6 we observe a stable period-10 motion. See Fig. 3.

In the system governed by Eqs. (19), (30) and (31), a periodic motion is determined by specifying i.c.’s of the form
ðf�2; f�1;2Þ. Here the jumps in the system have allowed one of the i.c.’s to be set to 2. In a sense, the jumps work as a
many-to-1 transformation where points of the form ðf�2; f�1; f0Þ get mapped to ðf�2; f�1;2Þ whenever f�1 < �1 and f 0 > �1.
That is, all parameters satisfying f0 > �1 get mapped to f0 ¼ 2 due to the jump. Thus only two i.c.’s need to be specified
for any periodic motion, assuming the motion in question has two jumps.

The question arises as to which values of k correspond to a periodic motion of a given period M in the IP manifold. We
offer the following analytical approach to this question. Since 2 is a ‘‘jump to” point we can always start a periodic motion
with that i.c. For example, in a period-10 IP mode, as shown in Fig. 3, we may without loss of generality choose,
f0 ¼ 2 ð32Þ



Fig. 3. Period-10 IP mode with k = 0.6.
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The next point, f1, satisfies Eq. (19) with n = 0:
f1 ¼ f0 � kf�2 ð33Þ
Since the IP mode has been hypothesized to have period M = 10, then by Eq. (20) we have f10�2 ¼ f�2, i.e. f�2 ¼ f8 and,
f1 ¼ f0 � kf8 ð34Þ
Similarly we have for f2; . . . ; f9:
f2 ¼ f1 � kf9 ð35Þ
f3 ¼ f2 � kf0 ¼ x2 � 2k ð36Þ
f4 ¼ f3 � kf1 ð37Þ
f5 ¼ f4 � kf2 ¼ �2 ð38Þ
f6 ¼ �2� kf3 ¼ �f1 ð39Þ
f7 ¼ f6 � kf4 ¼ �f2 ð40Þ
f8 ¼ f7 þ 2k ¼ �f3 ð41Þ
f9 ¼ f8 � kf6 ¼ �f4 ð42Þ
Here we have used the fact observed in Fig. 3 that the IP mode is ‘‘antisymmetric” with fnþ5 ¼ �fn. In particular, this gives
that the second jump occurs at f5. Solving Eqs. (32)–(42) for f0 . . . f5 gives the following results:
f0 ¼ 2 ð43Þ

f1 ¼
2

1� k
ð44Þ

f2 ¼
2ðk2 � k� 1Þ

k� 1
ð45Þ

f3 ¼
2

1� k
ð46Þ

f4 ¼ 2 ð47Þ

f5 ¼
2ðk3 � k2 � 2kþ 1Þ

1� k
ð48Þ
For the IP mode to exist, the following six inequalities must be satisfied:
f0 . . . f4 > 1; f 5 ¼ f4 � kf2 < 1 ð49Þ
A detailed analysis of these inequalities (omitted here for brevity) shows that all six will be satisfied if and only if
k 2 ½1� 1ffiffi

2
p ;1Þ. Thus a period-10 IP mode only exists in this range of k.

If we follow the same process for periodic motions of period 3–9 we find that there is no k that satisfies our restrictions
(given that only two jumps occur).
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In the case of a period-11 IP mode, the jump to �2 may occur at either f5 or f 6. Tentatively assuming that the jump occurs
at f6, we have
f0 ¼ 2 ð50Þ
f1 ¼ f0 � kf9 ð51Þ
f2 ¼ f1 � kf10 ð52Þ
f3 ¼ f2 � 2k ð53Þ
f4 ¼ f3 � kf1 ð54Þ
f5 ¼ f4 � kf2 ð55Þ
f6 ¼ f5 � kf3 ¼ �2 ð56Þ
f7 ¼ �2� kf4 ð57Þ
f8 ¼ f7 þ 2f 5 ð58Þ
f9 ¼ f8 þ 2k ð59Þ
f10 ¼ f9 � kf7 ð60Þ
This gives,
f0 ¼ 2 ð61Þ

f1 ¼ �
2k7 þ 2k4 þ 6k2 � 2k� 2

k7 þ 5k3 � 4k2 þ 1
ð62Þ

f2 ¼ �
2k6 þ 2k5 � 4k4 þ 12k3 þ 6k2 � 4k� 2

k7 þ 5k3 � 4k2 þ 1
ð63Þ

f3 ¼ �
2k8 þ 2k6 þ 2k5 þ 6k4 þ 4k3 þ 6k2 � 2k� 2

k7 þ 5k3 � 4k2 þ 1
ð64Þ

f4 ¼ �
2k6 þ 6k4 � 2k3 þ 8k2 � 2

k7 þ 5k3 � 4k2 þ 1
ð65Þ

f5 ¼
2k7 � 4k5 þ 6k4 þ 8k3 � 12k2 � 2kþ 2

k7 þ 5k3 � 4k2 þ 1
ð66Þ

f6 ¼
2k9 þ 4k7 þ 2k6 þ 2k5 þ 10k4 þ 14k3 � 14k2 � 4kþ 2

k7 þ 5k3 � 4k2 þ 1
¼ �2 ð67Þ

f7 ¼
6k5 � 2k4 � 2k3 þ 8k2 � 2k� 2

k7 þ 5k3 � 4k2 þ 1
ð68Þ

f8 ¼ �
2k8 � 4k6 þ 10k4 � 10k3 � 10k2 þ 4kþ 2

k7 þ 5k3 � 4k2 þ 1
ð69Þ

f9 ¼
4k6 þ 2k3 þ 10k2 � 2k� 2

k7 þ 5k3 � 4k2 þ 1
ð70Þ

f10 ¼ �
2k6 � 2k5 � 2k4 þ 6k3 � 12k2 þ 2

k7 þ 5k3 � 4k2 þ 1
ð71Þ
Requiring that f0 . . . f5 > 1; f 6 ¼ f5 � kf3 < 1 and f 11 ¼ f10 � kf8 > �1 gives that the parameter k must be in the interval
(0.2397,0.2628) for the system to exhibit a period-11 motion. Examination of Eqs. (19) and (30) shows that it is invariant
with respect to the transformation f ! �f . Thus the IP mode with a jump at f5 can obtained from the IP mode with jump
at f6 by a flip ðf ! �f Þ and a translation. Therefore the acceptable values of k are the same for both IP modes. The critical
values of periodic motions up to period-20 can be found in Fig. 4.

As can be seen in Fig. 4, there are intervals of k where motions of a certain period exist. The size of the intervals for even
number periods is significantly larger than those for odd number periods. IP modes with periods less than 10 do not exist. As
the period increases the corresponding range of k becomes smaller.

Furthermore, there appear to be gaps between the parameter ranges of subsequent periods. Upon closer inspection of the
parameter range between a period-10 motion and a period-11, we find that there exists periodic motions in this range with
periods larger than 10 or 11. In fact, the IP modes in this parameter range are a combination of period-10 and period-11 mo-
tions. We will use the following notation to represent a typical periodic motion in this region:
ð10m1 ;11n1 ;10m2 ;11n2 ;10m3 ;11n3 ; . . .Þ ð72Þ
where 10m1 represents m1 period-10 segments and 11n1 represents n1 period-11 segments. For example, if we take k ¼ 0:28
we find that the IP mode consists of a (101,111) motion, i.e. a period-10 motion followed by a period-11 to give a full period
of 21. As another example, for k ¼ 0:2620, we have a (101,117) motion, i.e. a period-10 followed by seven period-11 motions.



Fig. 4. The ranges of k for which IP modes of different periods exist.
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If we consider the number of period-10 segments to the total number of segments, we see that the ratio increases as the
value of k moves from the range of a period-11 to the range of a period-10. In essence, we have a Devil’s Staircase. As k moves
in the range between period-10 and period-11, the ratio of period-10 segments to the total number of segments will evi-
dently go through every rational number less than 1. Table 1 gives the ratio and period for sample values of k. Similar behav-
ior can be observed in the values of k between other subsequent period ranges.
4. Stability of the in phase mode

We wish to distinguish between two types of stabilities for the IP mode.

Type 1: Only i.c.’s of the form xn � yn are considered. All motions remain in the IP manifold.
Type 2: General i.c.’s are considered. Motions which begin off the IP manifold will not in general lie on it.
Table 1
The corresponding period and ratio of period-10 IP modes to total number of IP mode segments for values of k in the region between period-11 and period-10 IP
modes. Results obtained by numerical simulation of Eqs. (19), (30) and (31).

k Period segments Ratio

0.2628 101,119 1/10
0.2629–0.2631 101,116 1/7
0.2632 101,115 1/6
0.2633–0.2650 101,114 1/5
0.2651–0.2652 101,113 1/4
0.2653–0.2771 101,112 1/3
0.2772–0.2777 101,112, 101,111,101, 111 3/7
0.2778 101,111,101, 111,101,111, 101,111,101, 112 5/11
0.2779–0.2843 101,111 1/2
0.2844–0.2845 102,111, 101,111,101, 111,101,111 5/9
0.2846–0.2882 102,111,101,111 3/5
0.2883–0.2903 111,102 2/3
0.2904–0.2914 103,111, 102,111 5/7
0.2915–0.2921 103,111 3/4
0.2922–0.2923 101,111, 103,111,103 7/9
0.29250–0.2926 111,104 4/5
0.2927 111,104,111, 105 9/11
0.2928 111,105 5/6
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We note that Type 2 stability implies Type 1 stability, since Type 1 is a special case of Type 2. In the case that we have Type 2
instability and Type 1 stability we say that the IP manifold is unstable, while the IP mode is stable in the IP manifold.

In the in-phase manifold we have that xn ¼ yn ¼ fn, where (Eqs. (19), (30) and (31))
fnþ1 ¼ fn � kfn�2 ð73Þ
if f n > 1 and f nþ1 < 1 then f nþ1 ¼ �2 ð74Þ
if f n < �1 and f nþ1 > �1 then f nþ1 ¼ 2 ð75Þ
For Type 2 stability we consider general i.c.’s of the form ðx�2; x�1;2Þ � ðy�2; y�1;2Þ. Type 2 stability will tell us if a devi-
ation off the IP manifold will result in motion that will move towards the IP manifold or away from it. Since Type 2 stability
involves four i.c.’s, we may choose two of the i.c.’s to lie in the IP manifold and the other two to lie off the IP manifold. The
two i.c.’s which lie in the IP manifold will determine Type 1 stability. Thus a Type 2 stability analysis will include a Type 1
stability analysis.

To determine Type 2 stability we add four deviations to the i.c.’s of our system in the IP mode. Since we fix x0 and y0 at 2,
we need only to specify x�1; x�2; y�1 and y�2.

Let us consider a deviation, ð�1; �2; �3; �4Þ, off the IP mode at values of k that correspond to a period-10 motion. Thus we
have the following i.c.’s (cf. Eqs. (43)–(48)):
x�2 ¼
�2

1� k
þ �3 ð76Þ

x�1 ¼ �2þ �4 ð77Þ
x0 ¼ 2 ð78Þ

y�2 ¼
�2

1� k
þ �1 ð79Þ

y�1 ¼ �2þ �2 ð80Þ
y0 ¼ 2 ð81Þ
We assume that the deviations are small enough such that the jumps occur at the same time for x and y. Using Eqs. (17) and
(18) and the jump conditions found in (13)–(16) we may use Eqs. (76)–(81) to generate values for x1; y1; x2; y2; . . . ; x10; y10.
Assuming the jump to �2 occurs at x5 and y5, this results in
x8 ¼ �
�1k4 þ ð�2�4 � 2�3 � �1Þk3 þ ð2�4 þ 2�3Þk2 � 2

k� 1
ð82Þ

x9 ¼ ð��2 � 2�1Þk3 þ ð2�4 þ 2�3Þk2 � 2 ð83Þ
x10 ¼ 2 ð84Þ

y8 ¼ �
�3k4 þ ð��3 � 2�2 � 2�1Þk3 þ ð2�2 þ 2�1Þk2 � 2

k� 1
ð85Þ

y9 ¼ ð��4 � 2�3Þk3 þ ð2�2 þ 2�1Þk2 � 2 ð86Þ
y10 ¼ 2 ð87Þ
Taking the difference between Eqs. (82)–(87) and these same equations with �i ¼ 0, we obtain the following dynamic on the
deviations:
e0 ¼

�k3 0 2k2 2k2

�2k3 �k3 2k2 2k2

2k2 2k2 �k3 0
2k2 2k2 �2k3 �k3

2
66664

3
77775e ð88Þ
where e0 ¼ �01 �02 �03 �04½ �. The eigenvalues for the above matrix are,
k1;2 ¼ �k3 � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� k
p

k2 þ 2k2 ð89Þ

k3;4 ¼ �k3 � 2k2
ffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
� 2k2 ð90Þ
where k1;2 corresponds to Type 1 stability. (Type 2 stability is associated with all four eigenvalues.)
For stability we require that all eigenvalues jkj < 1. This turns out to give the following conditions for stability:
For deviations normal to IP manifold, stability requires
k 6

ffiffiffiffiffiffi
59
p

þ 3
ffiffiffi
3
p� �2

3 � 22
2
3

2
1
3
ffiffiffi
3
p ffiffiffiffiffiffi

59
p

þ 3
ffiffiffi
3
p� �1

3
	 0:4534 ð91Þ



Fig. 5. Stability of the M = 10 IP mode. The letter S (stable) signifies that an eigenvalue satisfies jkj < 1, while the letter U (unstable) signifies that jkj > 1. For
the system to be Type 2 stable all eigenvalues must satisfy jkj < 1. If any eigenvalue satisfies jkj > 1 then the system is Type 2 unstable. In each set of four
letters, the top two letters correspond to deviations parallel to the IP manifold and thus to Type 1 stability. For k < 0.4534 the period-10 IP mode is Type 2
stable, whereas for 0.4534 < k < 0.61803 it is Type 2 unstable but Type 1 stable. For k > 0:61803 it is both Type 2 and Type 1 unstable.
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For deviations parallel to IP manifold, stability requires
k 6

ffiffiffi
5
p
� 1

2
	 0:61803 ð92Þ
See Fig. 5.
Likewise, we can consider a deviation off a period-11 motion. Thus we have the following i.c.’s (cf. Eqs. (61)–(71)):
x�2 ¼
2k6 þ 6k4 � 2k3 þ 8k2 � 2

k7 þ 5k3 � 4k2 þ 1
þ �3 ð93Þ

x�1 ¼ �
2k7 � 4k5 þ 6k4 þ 8k3 � 12k2 � 2kþ 2

k7 þ 5k3 � 4k2 þ 1
þ �4 ð94Þ

x0 ¼ 2 ð95Þ

y�2 ¼
2k6 þ 6k4 � 2k3 þ 8k2 � 2

k7 þ 5k3 � 4k2 þ 1
þ �1 ð96Þ

y�1 ¼ �
2k7 � 4k5 þ 6k4 þ 8k3 � 12k2 � 2kþ 2

k7 þ 5k3 � 4k2 þ 1
þ �2 ð97Þ

y0 ¼ 2 ð98Þ
After 11 iterations (one period),
x9 ¼
ð�2 þ 2�1Þk10 þ ð�2�4 � 2�3Þk9 þ ð5�2 þ 10�1 � 2Þk6 þ ð�10�4 � 10�3 � 4�2 � 8�1Þk5

k7 þ 5k3 � 4k2 þ 1

þ ð8�4 þ 8�3 � 6Þk4 þ ð�2 þ 2�1 þ 2Þk3 þ ð�2�4 � 2�3 � 8Þk2 þ 2

k7 þ 5k3 � 4k2 þ 1
ð99Þ

x10 ¼
�3k11 þ ð�3�2 � 4�1Þk10 þ ð2�4 þ 2�3Þk9 þ ð5�3 � 2Þk7 þ ð�4�3 � 15�2 � 20�1Þk6

k7 þ 5k3 � 4k2 þ 1

þ ð10�4 þ 10�3 þ 12�2 þ 16�1 þ 4Þk5 þ ð�8�4 � 7�3 � 6Þk4 þ ð�3�2 � 4�1 � 8Þk3

k7 þ 5k3 � 4k2 þ 1

þ ð2�4 þ 2�3 þ 12Þk2 þ 2k� 2

k7 þ 5k3 � 4k2 þ 1
ð100Þ

x11 ¼ 2 ð101Þ

y9 ¼
ð�4 þ 2�3Þk10 þ ð�2�2 � 2�1Þk9 þ ð5�4 þ 10�3 � 2Þk6 þ ð�4�4 � 8�3 � 10�2 � 10�1Þk5

k7 þ 5k3 � 4k2 þ 1

þ ð8�2 þ 8�1 � 6Þk4 þ ð�4 þ 2�3 þ 2Þk3 þ ð�2�2 � 2�1 � 8Þk2 þ 2

k7 þ 5k3 � 4k2 þ 1
ð102Þ

y10 ¼
�1k11 þ ð�3�4 � 4�3Þk10 þ ð2�2 þ 2�1Þk9 þ ð5�1 � 2Þk7 þ ð�15�4 � 20�3 � 4�1Þk6

k7 þ 5k3 � 4k2 þ 1

þ ð12�4 þ 16�3 þ 10�2 þ 10�1 þ 4Þk5 þ ð�8�2 � 7�1 � 6Þk4 þ ð�3�4 � 4�3 � 8Þk3

k7 þ 5k3 � 4k2 þ 1

þ ð2�2 þ 2�1 þ 12Þk2 þ 2k� 2

k7 þ 5k3 � 4k2 þ 1
ð103Þ
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y11 ¼ 2 ð104Þ
Again, taking the difference between Eqs. (99)–(104) and these same equations with �i ¼ 0, we obtain
e0 ¼

�2k3 �k3 2k2 2k2

�4k3 �3k3 k4 þ 2k2 2k2

2k2 2k2 �2k3 �k3

k4 þ 2k2 2k2 �4k3 �3k3

2
66664

3
77775e ð105Þ
with eigenvalues,
k1;2 ¼
�5k3 � 4k2 � k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k3 þ 25k2 þ 40kþ 16

p
2

ð106Þ

k3;4 ¼
�5k3 þ 4k2 � k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4k3 þ 25k2 � 40kþ 16

p
2

ð107Þ
Requiring that all eigenvalues jkj < 1 demands that the following conditions be satisfied for stability:
k < 1:66173 and k < 0:4067328 ð108Þ
In order for a period-11 IP mode to exist we saw that 0.2397 < k <0.2628 (Fig. 4). Thus, Eq. (108) are automatically satisfied
and the period-11 mode is always Type 2 stable whenever it exists. Similarly, for a period-12 mode the condition for stability
is k < 0.371506 which is always satisfied for those values of k for which the period-12 mode exists.

5. Conclusions

We have investigated the dynamics of a new model of two coupled relaxation oscillators. The model replaces the usual
DDE (differential-delay equation) formulation with a discrete-time approach with jumps given by Eqs. (13)–(18). Omission
of the jumps produced a linear system in which all motions grew without bound. The addition of jumps introduced nonlin-
earity, resulting in stable periodic motions.

The system has a single parameter k, which, when changed, produces changes in the dynamics of the in-phase (IP) mode,
as shown in Fig. 4. We find either simple periodic motions which involve exactly two jumps per period, and which have large
plateaus in Fig. 4, or complicated periodic motions which involve many jumps per period, and which exist for very small
ranges in k, see Table 1. This structure is reminiscent of the Devil’s Staircase [5]. We note that IP modes do not exist for peri-
ods less than 10.

Period-10 motions possess a large plateau with two types of stability, Fig. 5. Type 1 stability involves motion in the invari-
ant IP manifold, while Type 2 stability involves motion in the full space. Periodic motions of period larger than 10 are found
to be Type 2 stable. We note that the linear stability analyses compare favorably with numerical simulation for small devi-
ations, i.e. the stable IP modes may have small basins of attraction.
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